Cantor & Zassenhaus algorithm, as described in Chapter 14 of "Modern Computer Algebra" by von zur Gathen and Gerhard.
typedef algebraic_number_extension<rational,ball<complex<floating<> > > > algebraic_complex_extension |
Definition at line 61 of file algebraic_number.hpp.
Definition at line 65 of file algebraic_number.hpp.
Definition at line 63 of file algebraic_number.hpp.
typedef algebraic_number_extension<rational,ball<floating<> > > algebraic_real_extension |
Definition at line 59 of file algebraic_number.hpp.
typedef matrix_unrolled<4,matrix_unrolled<4,matrix_naive> > matrix_unrolled_4_4 |
Definition at line 30 of file matrix_modular_int.hpp.
polynomial<Abs_type(C),V> mmx::abs | ( | const polynomial< C, V > & | p | ) | [inline] |
Definition at line 1455 of file polynomial.hpp.
Definition at line 772 of file matrix.hpp.
algebraic_real mmx::abs | ( | const algebraic_number & | z | ) | [inline] |
Definition at line 435 of file algebraic_number.hpp.
References conj(), algebraic_number_extension< C, Ball >::ext, field(), normalize(), Re(), sqrt(), value(), algebraic_number_extension< C, Ball >::x, and x.
Referenced by pivot_helper< complex< double > >::better(), pivot_helper< double >::better(), GLUE_103(), GLUE_126(), GLUE_72(), improve_zero(), and modulus_polynomial_inv_naive< V >::is_invertible_mod().
00435 { 00436 algebraic_number x= normalize (sqrt (z * conj (z))); 00437 algebraic_complex_extension cext= field (x); 00438 algebraic_real_extension rext (cext.ext, Re (cext.x)); 00439 return algebraic_real (rext, value (x)); 00440 }
Definition at line 67 of file series_vector.hpp.
References Series_rep.
00067 { 00068 return (Series_rep*) new vector_access_series_rep<C,V,W> (f, i); 00069 }
Definition at line 61 of file series_matrix.hpp.
References Series_rep.
00061 { 00062 return (Series_rep*) new matrix_access_series_rep<C,V,U> (f, i, j); 00063 }
matrix<M> mmx::access | ( | const matrix< series< M, V > > & | m, | |
nat | n | |||
) | [inline] |
vector< typename M::C > mmx::access | ( | const vector< series< M, V > > & | v, | |
nat | n | |||
) | [inline] |
Definition at line 166 of file series_carry_linear_algebra.hpp.
References M, N(), and Vector.
Referenced by as_matrix(), as_vector(), asmatrix(), vector_access_series_rep< C, V, W >::expression(), matrix_access_series_rep< C, V, U >::expression(), flatten(), implicit_series(), ldiv_mat_monoblock_series_rep< M, V >::Increase_order(), ldiv_vec_monoblock_series_rep< M, V >::Increase_order(), ldiv_mat_series_rep< M, V >::initialize(), ldiv_sc_mat_series_rep< M, V >::initialize(), ldiv_vec_series_rep< M, V >::initialize(), ldiv_sc_vec_series_rep< M, V >::initialize(), and solver_series_rep< C, V >::name_component().
Definition at line 65 of file series_elementary.hpp.
Definition at line 70 of file series_elementary.hpp.
nat mmx::aligned_size | ( | nat | r, | |
nat | c | |||
) | [inline] |
Definition at line 78 of file matrix_naive.hpp.
polynomial< C > annihilator | ( | const algebraic_number_extension< C, Ball > & | ext, | |
const typename algebraic_number_extension< C, Ball >::El & | p | |||
) | [inline] |
Definition at line 355 of file algebraic_number.hpp.
References annihilator().
00355 { 00356 return annihilator (ext.ext, p); 00357 }
polynomial<C> mmx::annihilator | ( | const algebraic_extension< C > & | ext, | |
const typename algebraic_extension< C >::El & | p | |||
) | [inline] |
Definition at line 311 of file algebraic_extension.hpp.
References CF(), deg(), Element, N(), Polynomial, promote(), rem(), row(), row_echelon(), and square_free().
00311 { 00312 nat n= deg (ext.mp); 00313 matrix<C> m (promote (0, CF(ext)), n+1, n); 00314 Element pp= promote (1, CF(ext)); 00315 for (nat i=0; i<=n; i++) { 00316 for (nat j=0; j<N(pp); j++) m (i, j)= pp[j]; 00317 pp= rem (p * pp, ext.mp); 00318 } 00319 matrix<C> e, k; 00320 e= row_echelon (m, k); 00321 for (nat i=0; i<=n; i++) { 00322 bool ok= true; 00323 for (nat j=0; j<n; j++) 00324 if (e (i, j) != 0) ok= false; 00325 if (ok) return square_free (Polynomial (row (k, i))); 00326 } 00327 ERROR ("unexpected situation"); 00328 }
polynomial<C> mmx::annihilator | ( | const algebraic< C, Extension > & | a | ) | [inline] |
Definition at line 194 of file algebraic.hpp.
References field(), and value().
Referenced by annihilator(), GLUE_47(), GLUE_5(), is_zero(), normalize(), and sign().
00194 { 00195 return annihilator (field (a), value (a)); 00196 }
polynomial<C,typename polynomial_variant_helper< C >::PV > mmx::annulator | ( | const vector< C > & | x | ) | [inline] |
Definition at line 1155 of file polynomial.hpp.
Referenced by implementation< polynomial_evaluate, V, polynomial_naive >::annulator(), GLUE_105(), GLUE_111(), and GLUE_90().
01155 { 01156 return annulator_bis<C,typename Polynomial_variant(C) > (x); 01157 }
polynomial<C,V> mmx::annulator_bis | ( | const vector< C > & | x | ) | [inline] |
Definition at line 1149 of file polynomial.hpp.
01149 { 01150 typedef implementation<polynomial_evaluate,V> Pol; 01151 return Pol::template annulator<Polynomial> (x); 01152 }
mmx::ARITH_SCALAR_INT_SUGAR | ( | template< typename C, typename V > | , | |
series< C, V > | ||||
) |
mmx::ARITH_SCALAR_INT_SUGAR | ( | template< typename Series, typename Monomial > | , | |
quotient_series< Series, Monomial > | ||||
) |
mmx::ARITH_SCALAR_INT_SUGAR | ( | template< typename NT, typename DT > | , | |
quotient< NT, DT > | ||||
) |
mmx::ARITH_SCALAR_INT_SUGAR | ( | template< typename C, typename V > | , | |
polynomial< C, V > | ||||
) |
mmx::ARITH_SCALAR_INT_SUGAR | ( | template< typename C, typename Extension > | , | |
algebraic< C, Extension > | ||||
) |
Ball mmx::as_ball | ( | const algebraic< C, algebraic_number_extension< C, Ball > > & | a | ) | [inline] |
Definition at line 218 of file algebraic_number.hpp.
References eval(), field(), and value().
Referenced by mmx_ball().
Definition at line 66 of file series_matrix.hpp.
References access(), cols(), Matrix_series, rows(), and Series.
00066 { 00067 nat nr= rows (f[0]), nc= cols (f[0]); 00068 Matrix_series m (Series (0), nr, nc); 00069 for (nat i=0; i<nr; i++) 00070 for (nat j=0; j<nc; j++) 00071 m (i, j)= access (f, i, j); 00072 return m; 00073 }
Definition at line 1109 of file matrix.hpp.
References N(), and promote().
Referenced by solve_lde(), and solve_lde_init().
polynomial< modular<modulus<C,U1>,U2> ,typename polynomial_carry_variant_helper< modular<modulus<C,U1>,U2> >::PV> mmx::as_p_expansion | ( | const Lift_type(modular< modulus< C, U1 >, U2 >)& | a, | |
const modulus< C, U1 > & | p | |||
) | [inline] |
Definition at line 57 of file p_expansion.hpp.
References Base_transformer_unsigned, C, direct_base(), M, N(), and x.
00057 { 00058 typedef typename polynomial_carry_variant_helper<M>::PV V; 00059 typedef typename Base_transformer_unsigned(Lift_type (M),C) Baser; 00060 Baser baser (* p); 00061 M::set_modulus (p); 00062 vector<C> x; direct_base (x, a, baser); 00063 nat n= N(x), l= aligned_size<M,V> (N(x)); 00064 M* c= mmx_new<M> (l); 00065 for (nat i= 0; i < n; i++) c[i]= M (x[i], true); 00066 format<M> fm; // FIXME: which format should be taken here? 00067 return polynomial<M,V> (c, n, l, fm); 00068 }
polynomial< modular< modulus< C >, modular_local > > as_polynomial_modular | ( | const polynomial< C > & | f, | |
const modulus< C > & | p | |||
) | [inline] |
Definition at line 51 of file glue_series_rational.cpp.
Definition at line 124 of file series_vector.hpp.
00124 { 00125 return (series_rep<Vector,V>*) new vector_series_rep<C,V,W> (v); 00126 }
Definition at line 118 of file series_matrix.hpp.
Referenced by cos_sin(), inv_mod_polynomial_series_rep< C, U, V, W >::initialize(), lshiftz_series_matrix(), lshiftz_series_vector(), solve_lde(), and solve_lde_init().
00118 { 00119 return (series_rep<Matrix,V>*) new matrix_series_rep<C,V,U> (m); 00120 }
Definition at line 80 of file series_vector.hpp.
References as_vector(), and N().
Definition at line 72 of file series_vector.hpp.
References access(), CF(), Series, and Vector_series.
Referenced by as_vector(), cos_sin(), fixed_point_vector_series(), GLUE_1(), GLUE_122(), GLUE_19(), GLUE_2(), GLUE_20(), GLUE_25(), GLUE_26(), GLUE_3(), GLUE_30(), GLUE_31(), GLUE_32(), GLUE_33(), GLUE_4(), GLUE_5(), GLUE_55(), GLUE_56(), GLUE_57(), GLUE_6(), GLUE_60(), GLUE_61(), GLUE_63(), GLUE_64(), GLUE_65(), GLUE_66(), GLUE_7(), GLUE_76(), GLUE_77(), GLUE_88(), implicit_vector_series(), ldiv_vec_monoblock_series_rep< M, V >::Increase_order(), fixed_point_vector_series_rep< C >::initialize(), ldiv_vec_series_rep< M, V >::initialize(), ldiv_sc_vec_series_rep< M, V >::initialize(), implementation< polynomial_gcd, X, polynomial_series< BV > >::invert_mod(), iterate(), and solve_lde_init().
00072 { 00073 Vector_series v (Series (get_format1 (CF(f))), n); 00074 for (nat i=0; i<n; i++) 00075 v[i]= access (f, i); 00076 return v; 00077 }
Definition at line 75 of file series_elementary.hpp.
Definition at line 80 of file series_elementary.hpp.
Definition at line 52 of file series_carry_linear_algebra.hpp.
References access(), cols(), Matrix_series, rows(), and Series.
Referenced by ldiv_mat_monoblock_series_rep< M, V >::Increase_order(), ldiv_mat_series_rep< M, V >::initialize(), and ldiv_sc_mat_series_rep< M, V >::initialize().
00052 { 00053 nat nr= rows (f[0]), nc= cols (f[0]); 00054 Matrix_series m (Series (0), nr, nc); 00055 for (nat i=0; i<nr; i++) 00056 for (nat j=0; j<nc; j++) 00057 m (i, j)= access (f, i, j); 00058 return m; 00059 }
Definition at line 68 of file series_carry_linear_algebra.hpp.
00068 { 00069 return (series_rep<Vector,V>*) 00070 new vector_series_rep<M,V,typename Vector_variant(M)> (v); 00071 }
Definition at line 62 of file series_carry_linear_algebra.hpp.
Referenced by ldiv_mat_monoblock_series_rep< M, V >::Increase_order(), ldiv_vec_monoblock_series_rep< M, V >::Increase_order(), ldiv_sc_mat_series_rep< M, V >::initialize(), and ldiv_sc_vec_series_rep< M, V >::initialize().
00062 { 00063 return (series_rep<Matrix,V>*) 00064 new matrix_series_rep<M,V,typename Matrix_variant(M)> (m); 00065 }
Definition at line 85 of file series_elementary.hpp.
Definition at line 90 of file series_elementary.hpp.
bool mmx::better_pivot | ( | const C & | x1, | |
const C & | x2 | |||
) | [inline] |
Definition at line 530 of file matrix_naive.hpp.
References pivot_helper< C >::better().
Referenced by reduce().
polynomial<C,V> mmx::big_add | ( | const vector< polynomial< C, V > > & | a | ) | [inline] |
Definition at line 481 of file polynomial.hpp.
References C, CF(), Format, max(), N(), Polynomial, and seg().
00481 { 00482 typedef implementation<polynomial_linear,V> Pol; 00483 nat i, k= N(a), n=0; 00484 nat l= aligned_size<C,V> (n); 00485 for (i=0; i<k; i++) n= max (N(a[i]), n); 00486 C* r= mmx_formatted_new<C> (l, CF (get_sample (CF (a)))); 00487 Pol::set (r, 0, n); 00488 for (i=0; i<k; i++) Pol::add (r, seg (a[i]), N(a[i])); 00489 return Polynomial (r, n, l, Format (CF(a))); 00490 }
C mmx::big_add | ( | const matrix< C, V > & | m | ) | [inline] |
Definition at line 645 of file matrix.hpp.
Referenced by GLUE_33(), GLUE_54(), GLUE_74(), GLUE_8(), and implementation< polynomial_evaluate, V, polynomial_naive >::multi_rem().
C mmx::big_max | ( | const matrix< C, V > & | m | ) | [inline] |
Definition at line 647 of file matrix.hpp.
polynomial<C,V> mmx::big_mul | ( | const vector< polynomial< C, V > > & | a | ) | [inline] |
C mmx::big_sup | ( | const matrix< C, V > & | m | ) | [inline] |
Definition at line 646 of file matrix.hpp.
matrix<Binary_return_type(Op,C1,C2),V> mmx::binary_map | ( | const matrix< C1, V > & | m, | |
const matrix< C2, V > & | n | |||
) | [inline] |
Definition at line 439 of file matrix.hpp.
References Binary_return_type(), C2, CF(), cols(), extend(), is_a_scalar(), is_non_scalar(), rows(), matrix< C, V >::scalar(), and tab().
00439 { 00440 typedef implementation<vector_linear,V> Vec; 00441 typedef Binary_return_type(Op,C1,C2) T; 00442 format<T> fm= binary_map<Op> (CF(m), CF(n)); 00443 if (is_a_scalar (m) || is_a_scalar (n)) { 00444 if (is_non_scalar (m)) return binary_map<Op> (m, extend (n, m)); 00445 if (is_non_scalar (n)) return binary_map<Op> (extend (m, n), n); 00446 return matrix<T,V> (Op::op (m.scalar(), n.scalar())); 00447 } 00448 nat nrows= rows (m); 00449 nat ncols= cols (m); 00450 ASSERT (rows (n) == nrows, "unequal number of rows"); 00451 ASSERT (cols (n) == ncols, "unequal number of columns"); 00452 nat l= aligned_size<T,V> (nrows * ncols); 00453 T* r= mmx_formatted_new<T> (l, fm); 00454 Vec::template vec_binary<Op> (r, tab (m), tab (n), nrows*ncols); 00455 return matrix<T,V> (r, nrows, ncols, fm); 00456 }
polynomial<Binary_return_type(Op,C,X),V> mmx::binary_map_scalar | ( | const polynomial< C, V > & | p, | |
const X & | x | |||
) | [inline] |
Definition at line 1358 of file polynomial.hpp.
References Binary_return_type(), C, CF(), N(), and seg().
01358 { 01359 typedef implementation<vector_linear,V> Vec; 01360 typedef Binary_return_type(Op,C,X) T; 01361 nat n= N(p); 01362 nat l= aligned_size<T,V> (n); 01363 format<T> fm= binary_map_scalar<Op> (CF(p), x); 01364 T* r= mmx_formatted_new<T> (l, fm); 01365 Vec::template vec_binary_scalar<Op> (r, seg (p), x, n); 01366 return polynomial<T,V> (r, n, l, fm); 01367 }
matrix<Binary_return_type(Op,C,X),V> mmx::binary_map_scalar | ( | const matrix< C, V > & | m, | |
const X & | x | |||
) | [inline] |
Definition at line 460 of file matrix.hpp.
References Binary_return_type(), C, CF(), cols(), is_a_scalar(), rows(), matrix< C, V >::scalar(), and tab().
00460 { 00461 typedef implementation<vector_linear,V> Vec; 00462 typedef Binary_return_type(Op,C,X) T; 00463 format<T> fm= binary_map_scalar<C> (CF(m), x); 00464 if (is_a_scalar (m)) return matrix<T,V> (Op::op (m.scalar(), x)); 00465 nat nrows= rows (m); 00466 nat ncols= cols (m); 00467 nat l= aligned_size<T,V> (nrows * ncols); 00468 T* r= mmx_formatted_new<T> (l, fm); 00469 Vec::template vec_binary_scalar<Op> (r, tab (m), x, nrows*ncols); 00470 return matrix<T,V> (r, nrows, ncols, fm); 00471 }
series<M,V> mmx::binary_monoblock_series | ( | const series< M, V > & | f, | |
const series< M, V > & | g | |||
) | [inline] |
Definition at line 225 of file series_carry_blocks.hpp.
References Series_rep.
00225 { 00226 typedef binary_monoblock_series_rep<Op,M,V,s,BV,t> Op_rep; 00227 return (Series_rep*) new Op_rep (f, g); }
series<C,V> mmx::binary_recursive_series | ( | const series< C, V > & | f, | |
const series< C, V > & | g | |||
) | [inline] |
Definition at line 642 of file series.hpp.
References recursive(), Series, and Series_rep.
00642 { 00643 typedef implementation<series_recursive_abstractions,V> Ser; 00644 typedef typename Ser::template binary_recursive_series_rep<Op,C,V> Binary; 00645 Series_rep* rep= new Binary (f, g); 00646 return recursive (Series (rep)); 00647 }
mmx::BINARY_RETURN_TYPE | ( | template< typename C, typename V > | , | |
truncate_op | , | |||
polynomial< C, V > | , | |||
nat | , | |||
polynomial< C, V > | ||||
) |
mmx::BINARY_RETURN_TYPE | ( | template< typename C, typename V > | , | |
truncate_op | , | |||
series< C, V > | , | |||
nat | , | |||
polynomial< C, typename series_polynomial_helper< C, V >::PV > | ||||
) |
mmx::Binary_return_type | ( | evaluate_op | , | |
quotient< NT, DT > | , | |||
K | ||||
) | const [inline] |
Referenced by binary_map(), and binary_map_scalar().
mmx::BINARY_RETURN_TYPE | ( | template< typename NT, typename DT, typename K > | , | |
evaluate_op | , | |||
quotient< NT, DT > | , | |||
K | , | |||
Binary_return_type(evaluate_op, NT, K) | ||||
) |
mmx::BINARY_RETURN_TYPE | ( | template< typename C, typename V > | , | |
evaluate_op | , | |||
polynomial< C, V > | , | |||
C | , | |||
C | ||||
) |
mmx::BINARY_RETURN_TYPE | ( | template< typename C, typename V, typename K > | , | |
evaluate_op | , | |||
matrix< C, V > | , | |||
K | , | |||
matrix< Evaluate_type(C, K)> | ||||
) |
mmx::BINARY_RETURN_TYPE | ( | template< typename C, typename V > | , | |
truncate_op | , | |||
matrix< C, V > | , | |||
nat | , | |||
matrix< Truncate_type(C)> | ||||
) |
mmx::BINARY_RETURN_TYPE | ( | STMPL | , | |
gaussian_op | , | |||
algebraic_real | , | |||
algebraic_real | , | |||
algebraic_number | ||||
) |
series<M,V> mmx::binary_scalar_recursive_monoblock_series | ( | const series< M, V > & | f, | |
const X & | x, | |||
const M & | init | |||
) | [inline] |
Definition at line 374 of file series_carry_blocks.hpp.
References Series_rep.
00375 { 00376 typedef binary_scalar_recursive_monoblock_series_rep<Op,M,V,s,BV,t,X> Op_rep; 00377 return (Series_rep*) new Op_rep (f, x, init); }
series<M,V> mmx::binary_scalar_recursive_monoblock_series | ( | const series< M, V > & | f, | |
const X & | x | |||
) | [inline] |
Definition at line 368 of file series_carry_blocks.hpp.
References Series_rep.
Referenced by implementation< series_separable_root, U, series_carry_monoblock< W, s, BV, t > >::sep_root(), implementation< series_separable_root, U, series_carry_monoblock< W, s, BV, t > >::sep_root_init(), and implementation< series_pth_root_reg, U, series_carry_monoblock< W, s, BV, t > >::unsep_root_reg().
00368 { 00369 typedef binary_scalar_recursive_monoblock_series_rep<Op,M,V,s,BV,t,X> Op_rep; 00370 return (Series_rep*) new Op_rep (f, x); }
series<C,V> mmx::binary_scalar_recursive_series | ( | const series< C, V > & | f, | |
const X & | x, | |||
const C & | init | |||
) | [inline] |
Definition at line 659 of file series.hpp.
References recursive(), Series, and Series_rep.
00659 { 00660 typedef implementation<series_recursive_abstractions,V> Ser; 00661 typedef typename Ser:: 00662 template binary_scalar_recursive_series_rep<Op,C,V,X> Binary; 00663 Series_rep* rep= new Binary (f, x, init); 00664 return recursive (Series (rep)); 00665 }
Definition at line 650 of file series.hpp.
References recursive(), Series, and Series_rep.
Referenced by implementation< series_separable_root, U, series_carry_naive >::sep_root(), and implementation< series_pth_root_reg, U, series_carry_p_adic< W > >::unsep_root_reg().
00650 { 00651 typedef implementation<series_recursive_abstractions,V> Ser; 00652 typedef typename Ser:: 00653 template binary_scalar_recursive_series_rep<Op,C,V,X> Binary; 00654 Series_rep* rep= new Binary (f, x); 00655 return recursive (Series (rep)); 00656 }
Definition at line 555 of file series.hpp.
References Series_rep.
00555 { 00556 typedef implementation<series_scalar_abstractions,V> Ser; 00557 typedef typename Ser::template binary_scalar_series_rep<Op,C,V,X> 00558 Binary_rep; 00559 return (Series_rep*) new Binary_rep (f, x); 00560 }
Definition at line 697 of file series.hpp.
References Series_rep.
00697 { 00698 typedef implementation<series_abstractions,V> Ser; 00699 typedef typename Ser::template binary_series_rep<Op,C,V> Binary; 00700 return (Series_rep*) new Binary (f, g); 00701 }
bool mmx::binary_test | ( | const unknown< C, V > & | c1, | |
const unknown< C, V > & | c2 | |||
) | [inline] |
Definition at line 135 of file series_implicit.hpp.
00135 { 00136 if (Op::not_op (c1->b, c2->b)) return false; 00137 if (c1->i1 == c1->i2 || c2->i1 == c2->i2) 00138 return c1->i1 == c1->i2 && c2->i1 == c2->i2; 00139 if (Op::not_op (c1->f, c2->f)) return false; 00140 if (Op::not_op (c1->i1, c2->i1)) return false; 00141 if (Op::not_op (c1->i2, c2->i2)) return false; 00142 for (nat i= c1->i1; i<c1->i2; i++) 00143 if (Op::not_op (c1->s[i - c1->i1], c2->s[i - c1->i1])) 00144 return false; 00145 return true; 00146 }
bool mmx::binary_test | ( | const series< C, V > & | f1, | |
const series< C, V > & | f2 | |||
) | [inline] |
Definition at line 296 of file series.hpp.
bool mmx::binary_test | ( | const polynomial< C, V > & | P1, | |
const polynomial< C, V > & | P2 | |||
) | [inline] |
bool mmx::binary_test | ( | const matrix< C1, V > & | m, | |
const matrix< C2, V > & | n | |||
) | [inline] |
Definition at line 515 of file matrix.hpp.
References cols(), extend(), is_a_scalar(), is_non_scalar(), rows(), matrix< C, V >::scalar(), and tab().
00515 { 00516 typedef implementation<vector_linear,V> Vec; 00517 if (is_a_scalar (m) || is_a_scalar (n)) { 00518 if (is_non_scalar (m)) return binary_test<Op> (m, extend (n, m)); 00519 if (is_non_scalar (n)) return binary_test<Op> (extend (m, n), n); 00520 return Op::op (m.scalar(), n.scalar()); 00521 } 00522 nat nrows= rows (m); 00523 nat ncols= cols (m); 00524 if (rows (n) != nrows || cols (n) != ncols) return false; 00525 return Vec::template vec_binary_test<Op> (tab (m), tab (n), nrows*ncols); 00526 }
static nat mmx::bit_mirror | ( | nat | i, | |
nat | n | |||
) | [static] |
Definition at line 29 of file fft_roots.hpp.
Referenced by roots_helper< CC, UU, SS >::create_roots().
00029 { 00030 if (n == 1) return i; 00031 else return (bit_mirror (i & ((n>>1) -1), n>>1) << 1) + i / (n>>1); 00032 }
Definition at line 1255 of file series.hpp.
01255 { 01256 return binary_map_scalar<blur_op> (f, x); }
polynomial<C,V> mmx::blur | ( | const polynomial< C, V > & | p, | |
const K & | x | |||
) | [inline] |
Definition at line 1470 of file polynomial.hpp.
01470 { 01471 return binary_map_scalar<blur_op> (p, x); }
Definition at line 790 of file matrix.hpp.
Definition at line 787 of file matrix.hpp.
00787 { 00788 return binary_map_scalar<blur_op> (m, x); }
polynomial<Center_type(C),V> mmx::center | ( | const polynomial< C, V > & | p | ) | [inline] |
Definition at line 1460 of file polynomial.hpp.
Definition at line 777 of file matrix.hpp.
Referenced by improve_zero().
mmx::Center_type | ( | Ball | ) | const [inline] |
Referenced by improve_zero(), and increase_precision().
format<C> mmx::CF | ( | const series< C, V > & | f | ) | [inline] |
Definition at line 116 of file series.hpp.
format<NT> mmx::CF | ( | const quotient< NT, DT > & | x | ) | [inline] |
Definition at line 101 of file quotient.hpp.
References numerator().
format<C> mmx::CF | ( | const polynomial< C, V > & | P | ) | [inline] |
Definition at line 195 of file polynomial.hpp.
format<C> mmx::CF | ( | const matrix< C, V > & | m | ) | [inline] |
Definition at line 189 of file matrix.hpp.
format<C> mmx::CF | ( | const algebraic_extension< C > & | x | ) | [inline] |
format<C> mmx::CF | ( | const algebraic< C, Extension > & | x | ) | [inline] |
Definition at line 93 of file algebraic.hpp.
Referenced by annihilator(), implementation< polynomial_evaluate, V, polynomial_naive >::annulator(), as_vector(), big_add(), binary_map(), binary_map_scalar(), CF(), coefficients(), column(), column_echelon(), column_orthogonalization(), column_orthonormalization(), compose(), as_helper< polynomial< T, TV >, polynomial< F, FV > >::cv(), as_helper< matrix< T, TV >, matrix< F, FV > >::cv(), fast_helper< polynomial< C, V > >::dd(), fast_helper< matrix< C, V > >::dd(), decode_kronecker(), deflate(), delete_col(), delete_row(), derive(), det(), dilate(), direct_base(), direct_crt(), encode_kronecker(), implementation< polynomial_evaluate, V, polynomial_naive >::evaluate(), expand(), extract_mod(), implementation< polynomial_gcd, V, polynomial_ring_naive< W > >::gcd(), implementation< polynomial_gcd, V, polynomial_naive >::gcd(), gcd(), get_matrix_format(), get_vector_format(), graeffe(), hankel_matrix(), horizontal_join(), image(), truncate_mul_monoblock_series_rep< M, V, s, BV, t >::Increase_order(), integrate(), implementation< polynomial_evaluate, V, polynomial_naive >::interpolate(), invert(), invert_hi(), invert_lo(), is_evaluable(), is_reconstructible(), is_reliable(), join(), kernel(), lshiftz(), lshiftz_series_matrix(), lshiftz_series_vector(), matrix< M >::matrix(), mul_matrix(), implementation< polynomial_evaluate, V, polynomial_naive >::multi_rem(), lshiftz_series_vector_rep< C, V, W >::next(), vector_series_rep< C, V, W >::next(), xderive_series_rep< C, V >::next(), derive_series_rep< C, V >::next(), normalize(), lift_helper< polynomial< C, V > >::op(), project_helper< matrix< C, V > >::op(), lift_helper< matrix< C, V > >::op(), operator*(), operator+(), operator-(), operator/(), polynomial< L >::operator[](), pade(), polynomial< L >::polynomial(), pow_matrix(), pquo(), prem(), primitive_part(), q_difference(), quo(), range(), implementation< polynomial_gcd, V, polynomial_ring_naive< W > >::reconstruct(), implementation< polynomial_gcd, V, polynomial_naive >::reconstruct(), reconstruct(), rem(), restrict(), resultant(), reverse(), root(), row(), row_matrix(), row_orthogonalization(), row_orthonormalization(), row_vectors(), rshiftz(), implementation< series_separable_root, U, series_naive >::sep_root(), implementation< series_separable_root, U, series_carry_naive >::sep_root(), implementation< series_compose, U, series_naive >::ser_compose(), implementation< series_divide, U, series_naive >::ser_div(), implementation< series_divide, U, series_carry_naive >::ser_div(), implementation< series_divide, U, series_carry_monoblock< W, s, BV, t > >::ser_div(), implementation< series_multiply, U, series_relaxed< W > >::ser_mul(), implementation< series_multiply, U, series_naive >::ser_mul(), implementation< series_multiply, U, series_fast >::ser_mul(), implementation< series_multiply, U, series_carry_relaxed< W > >::ser_mul(), implementation< series_multiply, U, series_carry_lift< W > >::ser_mul(), implementation< series_multiply, U, series_carry_naive >::ser_mul(), implementation< series_multiply, U, series_carry_blocks< W, s, BV, t > >::ser_mul(), implementation< series_multiply, U, series_carry_monoblock< W, s, BV, t > >::ser_mul(), implementation< series_multiply, U, series_carry_modular_int_naive< W > >::ser_mul(), implementation< series_divide, U, series_naive >::ser_quo(), implementation< series_divide, U, series_naive >::ser_rdiv_sc(), implementation< series_divide, U, series_carry_naive >::ser_rdiv_sc(), implementation< series_divide, U, series_naive >::ser_rquo_sc(), implementation< series_divide, U, series_naive >::ser_rrem_sc(), implementation< series_divide, U, series_carry_naive >::ser_rrem_sc(), implementation< series_divide, U, series_carry_monoblock< W, s, BV, t > >::ser_rrem_sc(), implementation< series_multiply, U, series_relaxed< W > >::ser_truncate_mul(), implementation< series_multiply, U, series_naive >::ser_truncate_mul(), implementation< series_multiply, U, series_fast >::ser_truncate_mul(), implementation< series_multiply, U, series_carry_relaxed< W > >::ser_truncate_mul(), implementation< series_multiply, U, series_carry_lift< W > >::ser_truncate_mul(), implementation< series_multiply, U, series_carry_naive >::ser_truncate_mul(), implementation< series_multiply, U, series_carry_blocks< W, s, BV, t > >::ser_truncate_mul(), implementation< series_multiply, U, series_carry_monoblock< W, s, BV, t > >::ser_truncate_mul(), implementation< series_multiply, U, series_carry_modular_int_naive< W > >::ser_truncate_mul(), set_as(), lift_helper< polynomial< C, V > >::set_op(), project_helper< matrix< C, V > >::set_op(), lift_helper< matrix< C, V > >::set_op(), shift(), shift1(), shift2(), skew_div(), sqrt(), square(), subresultant(), implementation< polynomial_subresultant_base, V, polynomial_naive >::subresultant_sequence(), subresultants(), tensor_matrix(), implementation< polynomial_evaluate, V, polynomial_naive >::tevaluate(), tmul(), toeplitz_matrix(), tquo(), transpose(), trem(), truncate(), unary_map(), implementation< series_map_as_abstractions, U, series_naive >::unary_map_as(), implementation< series_pth_root, U, series_carry_p_adic< W > >::unsep_root(), upgrade(), fast_helper< polynomial< C, V > >::uu(), fast_helper< matrix< C, V > >::uu(), vandermonde(), vertical_join(), binary_helper< polynomial< C, V > >::write(), binary_helper< matrix< C, V > >::write(), and xderive().
Definition at line 1244 of file series.hpp.
References Series_rep.
01244 { 01245 return (Series_rep*) new change_precision_series_rep<C,V> (f, p); 01246 }
polynomial<C,V> mmx::change_precision | ( | const polynomial< C, V > & | P, | |
xnat | p | |||
) | [inline] |
Definition at line 1441 of file polynomial.hpp.
Definition at line 758 of file matrix.hpp.
Referenced by change_precision_series_rep< C, V >::next().
vector<C> mmx::coefficients | ( | const polynomial< C, V > & | P, | |
nat | b, | |||
nat | e | |||
) | [inline] |
Definition at line 205 of file polynomial.hpp.
References CF().
00205 { 00206 if (b >= e) return vector<C> (); 00207 vector<C> v (get_sample (CF(P)), e - b); 00208 for (nat i= 0; i < e - b; i++) v[i]= P[b+i]; 00209 return v; 00210 }
vector<C> mmx::coefficients | ( | const polynomial< C, V > & | P | ) | [inline] |
Definition at line 198 of file polynomial.hpp.
Referenced by ser_carry_separable_root_op::binpow_no_tangent(), ser_carry_pth_root_reg_op::binpow_no_tangent_normalized(), ser_carry_separable_root_op::def(), ser_carry_pth_root_reg_op::def(), binary_helper< polynomial< C, V > >::disassemble(), inv_mod_polynomial_series_rep< C, U, V, W >::initialize(), integer_to_series_carry(), and is_reconstructible().
C mmx::cofactor | ( | const matrix< C, V > & | m, | |
nat | i, | |||
nat | j | |||
) | [inline] |
Definition at line 1250 of file matrix.hpp.
References cols(), first_minor(), is_non_scalar(), and rows().
01250 { 01251 ASSERT (is_non_scalar (m), "non-scalar matrix expected"); 01252 ASSERT (cols(m) == rows(m), "square matrix expected"); 01253 ASSERT (i < rows(m), "index out of range"); 01254 ASSERT (j < cols(m), "index out of range"); 01255 C c= first_minor (m, i, j); 01256 return ((i + j) & 1) ? -c : c; 01257 }
void mmx::col_div | ( | matrix< C, V > & | m, | |
C | c, | |||
nat | i | |||
) | [inline] |
Definition at line 1100 of file matrix.hpp.
Referenced by implementation< matrix_orthogonalization, V, matrix_naive >::col_orthonormalize(), and implementation< matrix_kernel, V, matrix_naive >::kernel().
void mmx::col_mul | ( | matrix< C, V > & | m, | |
C | c, | |||
nat | i | |||
) | [inline] |
Definition at line 1099 of file matrix.hpp.
nat mmx::cols | ( | const matrix< C, matrix_fixed< V, RS, CS > > & | m | ) | [inline] |
nat cols | ( | const matrix< C, V > & | m | ) | [inline] |
Definition at line 185 of file matrix.hpp.
Referenced by access(), matrix_iterator_rep< C, V >::advance(), as_matrix(), asmatrix(), binary_map(), binary_map_scalar(), binary_test(), cofactor(), column_echelon(), column_orthogonalization(), column_orthonormalization(), column_reduced_echelon(), as_helper< matrix< T, TV >, matrix< F, FV > >::cv(), fast_helper< matrix< C, V > >::dd(), delete_col(), delete_row(), det(), binary_helper< matrix< C, V > >::disassemble(), extend(), first_minor(), flatten(), get_matrix_format(), GLUE_36(), GLUE_69(), GLUE_8(), GLUE_9(), horizontal_join(), image(), matrix_series_rep< C, V, U >::Increase_order(), invert(), is_evaluable(), is_reconstructible(), is_square_matrix(), kernel(), lshiftz(), map(), matrix< M >::matrix(), matrix_new(), N(), nbcol(), matrix_series_rep< C, V, U >::next(), nullary_set(), operator!=(), matrix< M >::operator()(), operator*(), operator<=(), operator==(), operator>=(), permute_columns(), permute_rows(), range(), rank(), REP_STRUCT_1(), reverse_cols(), row(), row_orthogonalization(), row_orthonormalization(), implementation< matrix_vectorial, V, matrix_naive >::set(), project_helper< matrix< C, V > >::set_op(), lift_helper< matrix< C, V > >::set_op(), solve_lde(), swap_col(), swap_row(), transpose(), unary_hash(), unary_map(), unary_set(), unary_set_scalar(), fast_helper< matrix< C, V > >::uu(), vertical_join(), and binary_helper< matrix< C, V > >::write().
void mmx::cols_linsub | ( | matrix< C, V > & | m, | |
nat | i, | |||
C | ci, | |||
nat | j, | |||
C | cj | |||
) | [inline] |
Definition at line 1102 of file matrix.hpp.
vector<C> mmx::column | ( | const matrix< C, V > & | m, | |
nat | j | |||
) | [inline] |
matrix<C,V> mmx::column_echelon | ( | const matrix< C, V > & | m, | |
matrix< C, V > & | k, | |||
bool | reduced = false | |||
) | [inline] |
Definition at line 1190 of file matrix.hpp.
References CF(), cols(), copy(), is_non_scalar(), Matrix, promote(), rows(), and tab().
Definition at line 1163 of file matrix.hpp.
References cols(), copy(), is_non_scalar(), Matrix, rows(), and tab().
Referenced by column_reduced_echelon(), GLUE_116(), GLUE_41(), GLUE_65(), and row_echelon().
Definition at line 1351 of file matrix.hpp.
References CF(), cols(), copy(), is_non_scalar(), Matrix, promote(), rows(), seg(), and tab().
01351 { 01352 typedef implementation<matrix_orthogonalization,V> Mat; 01353 ASSERT (is_non_scalar (m), "non-scalar matrix expected"); 01354 Matrix c= copy (m); 01355 vector<C> n (promote (0, CF(m)), cols(m)); 01356 l= Matrix (promote (0, CF(m)), cols(m), cols(m)); 01357 Mat::col_orthogonalize (tab(c), rows(m), cols(m), tab(l), seg(n)); 01358 return c; 01359 }
matrix<C,V> mmx::column_orthonormalization | ( | const matrix< C, V > & | m, | |
matrix< C, V > & | l | |||
) | [inline] |
Definition at line 1390 of file matrix.hpp.
References CF(), cols(), copy(), is_non_scalar(), Matrix, promote(), rows(), and tab().
01390 { 01391 typedef implementation<matrix_orthogonalization,V> Mat; 01392 ASSERT (is_non_scalar (m), "non-scalar matrix expected"); 01393 Matrix c= copy (m); 01394 l= Matrix (promote (0, CF(m)), cols(m), cols(m)); 01395 Mat::col_orthonormalize (tab(c), rows(m), cols(m), tab(l)); 01396 return c; 01397 }
Definition at line 1371 of file matrix.hpp.
References cols(), copy(), is_non_scalar(), Matrix, rows(), and tab().
Definition at line 1200 of file matrix.hpp.
References column_echelon().
01200 { 01201 return column_echelon (m, k, true); 01202 }
Definition at line 1178 of file matrix.hpp.
References cols(), copy(), is_non_scalar(), Matrix, rows(), and tab().
01178 { 01179 typedef implementation<matrix_echelon,V> Mat; 01180 ASSERT (is_non_scalar (m), "non-scalar matrix expected"); 01181 Matrix c= copy (m); 01182 C* k= NULL; 01183 nat* buf= mmx_new<nat> (default_aligned_size<nat> (cols(m))); 01184 Mat::col_echelon (tab(c), k, rows(m), cols(m), true, buf); 01185 permut= permutation (vector<nat> (buf, cols(m), format<nat> ())); 01186 return c; 01187 }
Definition at line 1173 of file matrix.hpp.
References column_echelon().
Referenced by GLUE_118(), GLUE_43(), GLUE_67(), wrap_column_reduced_echelon_with_permutation(), and wrap_column_reduced_echelon_with_transform().
01173 { 01174 return column_echelon (m, true); 01175 }
Crter::base mmx::combine_crt | ( | const vector< typename Crter::modulus_base, W > & | src, | |
Crter & | crter | |||
) | [inline] |
Definition at line 353 of file crt_naive.hpp.
References C, combine_crt(), and seg().
00353 { 00354 C d; combine_crt (d, seg (src), crter); 00355 return d; 00356 }
void mmx::combine_crt | ( | typename Crter::base & | d, | |
const vector< typename Crter::modulus_base, W > & | src, | |||
Crter & | crter | |||
) | [inline] |
Definition at line 348 of file crt_naive.hpp.
References seg().
00348 { 00349 crter.combine (d, seg (src)); 00350 }
void mmx::combine_crt | ( | typename Crter::base & | d, | |
const typename Crter::modulus_base * | src, | |||
Crter & | crter | |||
) | [inline] |
Definition at line 343 of file crt_naive.hpp.
Referenced by combine_crt(), and implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::tevaluate().
Crter::base mmx::comodulus | ( | const Crter & | crter, | |
nat | i | |||
) | [inline] |
Definition at line 318 of file crt_naive.hpp.
int mmx::compare | ( | const series< C, V > & | f1, | |
const series< C, V > & | f2 | |||
) | [inline] |
Definition at line 354 of file series.hpp.
References compare().
00354 { 00355 for (nat n=0; n< Series::get_cancel_order (); n++) { 00356 int sgn= compare (f1[n], f2[n]); 00357 if (sgn != 0) return sgn; 00358 } 00359 return 0; 00360 }
int mmx::compare | ( | const polynomial< C, V > & | P1, | |
const polynomial< C, V > & | P2 | |||
) | [inline] |
Definition at line 377 of file polynomial.hpp.
References max(), N(), and sign().
Referenced by implementation< polynomial_linear, V, polynomial_naive >::cmp(), and compare().
series<C,V> mmx::COMPARE_INT_SUGAR | ( | template< typename C, typename V > | , | |
series< C, V > | ||||
) |
mmx::COMPARE_INT_SUGAR | ( | template< typename NT, typename DT > | , | |
quotient< NT, DT > | ||||
) |
mmx::COMPARE_INT_SUGAR | ( | template< typename C, typename Extension > | , | |
algebraic< C, Extension > | ||||
) |
series<C,V> C mmx::COMPARE_SCALAR_SUGAR | ( | template< typename C, typename V > | , | |
series< C, V > | , | |||
C | ||||
) |
mmx::COMPARE_SCALAR_SUGAR | ( | template< typename NT, typename DT > | , | |
quotient< NT, DT > | , | |||
NT | ||||
) |
mmx::COMPARE_SCALAR_SUGAR | ( | template< typename C, typename Extension > | , | |
algebraic< C, Extension > | , | |||
C | ||||
) |
series<C,V> C C mmx::COMPARE_SCALAR_SUGAR_BIS | ( | template< typename C, typename V > | , | |
series< C, V > | , | |||
C | ||||
) |
mmx::COMPARE_SCALAR_SUGAR_BIS | ( | template< typename C, typename Extension > | , | |
algebraic< C, Extension > | , | |||
C | ||||
) |
mmx::COMPARE_SUGAR | ( | template< typename NT, typename DT > | , | |
quotient< NT, DT > | ||||
) |
mmx::COMPARE_SUGAR | ( | template< typename C, typename Extension > | , | |
algebraic< C, Extension > | ||||
) |
Definition at line 1284 of file series.hpp.
References complete(), denominator(), and numerator().
01284 { 01285 return complete (numerator (f)) 01286 / complete (denominator (f)); }
Definition at line 1275 of file series.hpp.
01275 { 01276 return (series_rep<C>*) 01277 new polynomial_series_rep<C,typename Series_variant (C)> 01278 (as<Polynomial> (p)); }
Definition at line 1266 of file series.hpp.
Definition at line 735 of file matrix.hpp.
Referenced by complete().
Definition at line 1212 of file series.hpp.
polynomial<C,V> mmx::compose | ( | const polynomial< C, V > & | P1, | |
const polynomial< K, V > & | P2 | |||
) | [inline] |
Definition at line 1080 of file polynomial.hpp.
References C, CF(), compose(), N(), Polynomial, and seg().
01080 { 01081 typedef implementation<polynomial_compose,V> Pol; 01082 nat n1= N(P1), n2= N(P2); 01083 if (n1 <= 1) return P1; 01084 if (n2 == 0) return P1[0]; 01085 nat n= (n1-1) * (n2-1) + 1; 01086 nat l= aligned_size<C,V> (n); 01087 C* r= mmx_formatted_new<C> (l, CF(P1)); 01088 Pol::compose (r, seg (P1), seg (P2), n1, n2); 01089 return Polynomial (r, n, l, CF(P1)); 01090 }
algebraic_extension<C>::El mmx::compose | ( | const algebraic_extension< C > & | ext, | |
const polynomial< C > & | p, | |||
const typename algebraic_extension< C >::El & | q | |||
) | [inline] |
Definition at line 284 of file algebraic_extension.hpp.
References deg(), Element, promote(), and rem().
Referenced by implementation< polynomial_compose, V, polynomial_naive >::compose(), compose(), GLUE_102(), GLUE_108(), GLUE_159(), GLUE_31(), GLUE_43(), GLUE_44(), reverse_series_rep< C, V >::initialize(), implementation< polynomial_compose, V, polynomial_naive >::shift(), and upgrade().
polynomial<C,V> mmx::conj | ( | const polynomial< C, V > & | p | ) | [inline] |
Definition at line 1458 of file polynomial.hpp.
Definition at line 775 of file matrix.hpp.
algebraic_number mmx::conj | ( | const algebraic_number & | z | ) | [inline] |
Definition at line 417 of file algebraic_number.hpp.
References conj(), field(), and value().
00417 { 00418 return algebraic_number (conj (field (z)), value (z)); 00419 }
algebraic_number_extension<C,Ball> mmx::conj | ( | const algebraic_number_extension< C, Ball > & | ext | ) | [inline] |
Definition at line 787 of file polynomial.hpp.
Referenced by GLUE_115(), GLUE_48(), and primitive_part().
V polynomial<C,V> mmx::copy | ( | const polynomial< C, V > & | P | ) |
Definition at line 1375 of file polynomial.hpp.
Definition at line 572 of file matrix.hpp.
Referenced by column_echelon(), column_orthogonalization(), column_orthonormalization(), column_reduced_echelon(), implementation< polynomial_compose, V, polynomial_naive >::compose(), implementation< polynomial_vectorial, V, polynomial_naive >::copy(), implementation< polynomial_vectorial, V, polynomial_carry_naive< W > >::copy(), implementation< matrix_vectorial, V, matrix_naive >::copy(), decode_kronecker(), implementation< matrix_determinant, V, matrix_naive >::det(), implementation< matrix_determinant, V, matrix_bareiss< W > >::det(), nrelax_mul_series_rep< C, V >::direct_transform(), implementation< polynomial_exact_divide, V, polynomial_naive >::div(), div_kronecker(), implementation< polynomial_euclidean, V, polynomial_naive >::euclidean_sequence(), implementation< polynomial_gcd, V, polynomial_naive >::gcd(), implementation< polynomial_euclidean, V, polynomial_naive >::gcd(), implementation< polynomial_graeffe, V, polynomial_unrolled< W, m > >::graeffe(), implementation< matrix_image, V, matrix_naive >::image(), improve_zero(), implementation< polynomial_evaluate, V, polynomial_naive >::interpolate(), fkt_package< V >::inverse_fkt_step(), implementation< matrix_invert, V, matrix_ring_naive< W > >::invert(), implementation< matrix_invert, V, matrix_naive >::invert(), invert_lo(), implementation< matrix_kernel, V, matrix_naive >::kernel(), lshiftz(), implementation< polynomial_multiply, V, polynomial_tft_inc< W, Th > >::mul(), implementation< polynomial_multiply, V, polynomial_schonhage_triadic_inc< W, Th > >::mul(), implementation< polynomial_multiply, V, polynomial_schonhage_strassen_inc< W, Th > >::mul(), implementation< polynomial_multiply, V, polynomial_schonhage_inc< W, Th, Th_rec > >::mul(), implementation< polynomial_multiply, V, polynomial_schonhage_strassen_inc< W, Th > >::mul_negative_cyclic(), implementation< polynomial_multiply, V, polynomial_schonhage_strassen_inc< W, Th > >::mul_negative_cyclic_truncated(), implementation< polynomial_multiply, V, polynomial_schonhage_triadic_inc< W, Th > >::mul_triadic(), implementation< polynomial_evaluate, V, polynomial_naive >::multi_mod(), implementation< polynomial_evaluate, V, polynomial_naive >::multi_rem(), operator+(), operator-(), pquo(), implementation< polynomial_divide, V, polynomial_dicho< BV > >::pquo_rem(), prem(), quo(), implementation< polynomial_divide, V, polynomial_dicho< BV > >::quo_rem(), implementation< matrix_image, V, matrix_ring_naive< W > >::rank(), implementation< matrix_image, V, matrix_naive >::rank(), implementation< polynomial_euclidean, V, polynomial_naive >::reconstruct(), implementation< polynomial_euclidean, V, polynomial_dicho< BV > >::reconstruct(), rem(), row_orthogonalization(), row_orthonormalization(), nrelax_mul_series_rep< C, V >::Set_order(), implementation< polynomial_compose, V, polynomial_naive >::shift(), implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::shift(), shrink(), implementation< polynomial_multiply, V, polynomial_tft_inc< W, Th > >::square(), implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::tevaluate(), implementation< polynomial_evaluate, V, polynomial_naive >::tinterpolate(), tmul(), tquo(), implementation< polynomial_divide, V, polynomial_ring_dicho_inc< W > >::tquo_rem(), implementation< polynomial_divide, V, polynomial_naive >::tquo_rem(), implementation< polynomial_divide, V, polynomial_dicho< BV > >::tquo_rem(), and trem().
Definition at line 114 of file series_elementary.hpp.
Definition at line 109 of file series_elementary.hpp.
References as_series(), as_vector(), and trig().
permutation cycle | ( | nat | n, | |
int | plus = 1 | |||
) |
Definition at line 28 of file permutation.cpp.
References id_vector().
Referenced by GLUE_4().
00028 { 00029 if (plus >= 0) plus= ((nat) plus) % n; 00030 else plus= (n-1) - (((nat) (-1-plus)) % n); 00031 vector<nat> v= id_vector (n); 00032 for (nat i=0; i<n; i++) 00033 if (i + plus < n) v[i]= i + plus; 00034 else v[i]= i + plus - n; 00035 return permutation (v); 00036 }
void mmx::decode_kronecker | ( | polynomial< C, V > * | dest, | |
const polynomial< C, V > & | src, | |||
nat | n, | |||
nat | m | |||
) | [inline] |
Definition at line 45 of file kronecker_polynomial.hpp.
References C, CF(), copy(), N(), Polynomial, seg(), and x.
00045 { 00046 typedef implementation<polynomial_linear,V> Pol; 00047 if (n == 0) return; 00048 nat l= aligned_size<C,V> (m), i, j; C* x; 00049 const C* y= seg (src); 00050 for (i= 0, j= 0; i + 1 < n && j + m < N(src); i++, j += m, y += m) { 00051 x= mmx_new<C> (l); 00052 Pol::copy (x, y, m); 00053 dest[i]= Polynomial (x, m, l, CF(src)); 00054 } 00055 if (i < n && N(src) > i * m) { 00056 m= N(src) - i * m; 00057 l= aligned_size<C,V> (m); 00058 x= mmx_new<C> (l); 00059 Pol::copy (x, y, m); 00060 dest[i]= Polynomial (x, m, l, CF(src)); 00061 i++; 00062 } 00063 for (; i < n; i++) dest[i]= Polynomial (C(0)); 00064 }
void decode_kronecker | ( | integer * | dest, | |
nat | n, | |||
xnat | bits, | |||
const integer & | src | |||
) |
Definition at line 36 of file kronecker_integer.cpp.
References decode_kronecker().
00036 { 00037 if (n == 0); 00038 else if (n == 1) dest[0]= src; 00039 else if (src > 0) { 00040 nat h= n>>1; 00041 integer aux= src >> (h*bits); 00042 if (src[h*bits-1]) aux += 1; 00043 decode_kronecker (dest+h, n-h, bits, aux); 00044 aux= src - (aux << (h*bits)); 00045 decode_kronecker (dest, h, bits, aux); 00046 } 00047 else { 00048 integer bis= -src; 00049 nat h= n>>1; 00050 integer aux= bis >> (h*bits); 00051 if (bis[h*bits-1]) aux += 1; 00052 decode_kronecker (dest+h, n-h, bits, -aux); 00053 aux= bis - (aux << (h*bits)); 00054 decode_kronecker (dest, h, bits, -aux); 00055 } 00056 }
void decode_kronecker | ( | unsigned long long int * | dest, | |
nat | n, | |||
xnat | bits, | |||
const integer & | src | |||
) |
Definition at line 96 of file kronecker_int.cpp.
void decode_kronecker | ( | long long int * | dest, | |
nat | n, | |||
xnat | bits, | |||
const integer & | src | |||
) |
Definition at line 107 of file kronecker_int.cpp.
void decode_kronecker | ( | unsigned long int * | dest, | |
nat | n, | |||
xnat | bits, | |||
const integer & | src | |||
) |
Definition at line 95 of file kronecker_int.cpp.
void decode_kronecker | ( | long int * | dest, | |
nat | n, | |||
xnat | bits, | |||
const integer & | src | |||
) |
Definition at line 106 of file kronecker_int.cpp.
void decode_kronecker | ( | unsigned int * | dest, | |
nat | n, | |||
xnat | bits, | |||
const integer & | src | |||
) |
Definition at line 94 of file kronecker_int.cpp.
void decode_kronecker | ( | int * | dest, | |
nat | n, | |||
xnat | bits, | |||
const integer & | src | |||
) |
Definition at line 105 of file kronecker_int.cpp.
void decode_kronecker | ( | unsigned short int * | dest, | |
nat | n, | |||
xnat | bits, | |||
const integer & | src | |||
) |
Definition at line 93 of file kronecker_int.cpp.
void decode_kronecker | ( | short int * | dest, | |
nat | n, | |||
xnat | bits, | |||
const integer & | src | |||
) |
Definition at line 104 of file kronecker_int.cpp.
void decode_kronecker | ( | unsigned char * | dest, | |
nat | n, | |||
xnat | bits, | |||
const integer & | src | |||
) |
Definition at line 92 of file kronecker_int.cpp.
void decode_kronecker | ( | signed char * | dest, | |
nat | n, | |||
xnat | bits, | |||
const integer & | src | |||
) |
Definition at line 103 of file kronecker_int.cpp.
Referenced by decode_kronecker(), decode_kronecker_int(), div_kronecker(), mul_kronecker(), mul_kronecker_int(), square_kronecker(), and square_kronecker_int().
static void mmx::decode_kronecker_int | ( | I * | dest, | |
nat | n, | |||
xnat | bits, | |||
const integer & | src | |||
) | [inline, static] |
Definition at line 51 of file kronecker_int.cpp.
References decode_kronecker(), and I.
Referenced by decode_kronecker_uint().
00051 { 00052 static const integer mask= (integer (1) << (8 * sizeof (I))) - 1; 00053 if (n == 0); 00054 else if (n == 1) 00055 dest[0]= src > 0 ? as<I> (src & mask) : - as<I> ((-src) & mask); 00056 else if (src > 0) { 00057 nat h= n>>1; 00058 integer aux= src >> (h*bits); 00059 if (src[h*bits-1]) aux += 1; 00060 decode_kronecker (dest+h, n-h, bits, aux); 00061 aux= src - (aux << (h*bits)); 00062 decode_kronecker (dest, h, bits, aux); 00063 } 00064 else { 00065 integer bis= -src; 00066 nat h= n>>1; 00067 integer aux= bis >> (h*bits); 00068 if (bis[h*bits-1]) aux += 1; 00069 decode_kronecker (dest+h, n-h, bits, -aux); 00070 aux= bis - (aux << (h*bits)); 00071 decode_kronecker (dest, h, bits, -aux); 00072 } 00073 }
void decode_kronecker_mod | ( | unsigned long long int * | dest, | |
nat | n, | |||
xnat | bits, | |||
const integer & | src, | |||
const unsigned long long int & | p | |||
) |
Definition at line 51 of file kronecker_modular_int.cpp.
void decode_kronecker_mod | ( | long long int * | dest, | |
nat | n, | |||
xnat | bits, | |||
const integer & | src, | |||
const long long int & | p | |||
) |
Definition at line 50 of file kronecker_modular_int.cpp.
void decode_kronecker_mod | ( | unsigned long int * | dest, | |
nat | n, | |||
xnat | bits, | |||
const integer & | src, | |||
const unsigned long int & | p | |||
) |
Definition at line 49 of file kronecker_modular_int.cpp.
void decode_kronecker_mod | ( | long int * | dest, | |
nat | n, | |||
xnat | bits, | |||
const integer & | src, | |||
const long int & | p | |||
) |
Definition at line 48 of file kronecker_modular_int.cpp.
void decode_kronecker_mod | ( | unsigned int * | dest, | |
nat | n, | |||
xnat | bits, | |||
const integer & | src, | |||
const unsigned int & | p | |||
) |
Definition at line 47 of file kronecker_modular_int.cpp.
void decode_kronecker_mod | ( | int * | dest, | |
nat | n, | |||
xnat | bits, | |||
const integer & | src, | |||
const int & | p | |||
) |
Definition at line 46 of file kronecker_modular_int.cpp.
void decode_kronecker_mod | ( | unsigned short int * | dest, | |
nat | n, | |||
xnat | bits, | |||
const integer & | src, | |||
const unsigned short int & | p | |||
) |
Definition at line 45 of file kronecker_modular_int.cpp.
void decode_kronecker_mod | ( | short int * | dest, | |
nat | n, | |||
xnat | bits, | |||
const integer & | src, | |||
const short int & | p | |||
) |
Definition at line 44 of file kronecker_modular_int.cpp.
void decode_kronecker_mod | ( | unsigned char * | dest, | |
nat | n, | |||
xnat | bits, | |||
const integer & | src, | |||
const unsigned char & | p | |||
) |
Definition at line 43 of file kronecker_modular_int.cpp.
void decode_kronecker_mod | ( | signed char * | dest, | |
nat | n, | |||
xnat | bits, | |||
const integer & | src, | |||
const signed char & | p | |||
) |
Definition at line 42 of file kronecker_modular_int.cpp.
Referenced by mul_kronecker_mod_int(), and square_kronecker_mod_int().
void mmx::decode_kronecker_mod_int | ( | I * | dest, | |
nat | n, | |||
xnat | bits, | |||
const integer & | src, | |||
const I & | p | |||
) | [inline] |
Definition at line 24 of file kronecker_modular_int.cpp.
00025 { 00026 if (n == 0); 00027 else if (n == 1) dest[0]= as<I> (p == 0 ? src : src % p); 00028 else { 00029 nat h= n>>1; 00030 integer aux= src >> (h*bits); 00031 decode_kronecker_mod_int (dest+h, n-h, bits, aux, p); 00032 aux= src - (aux << (h*bits)); 00033 decode_kronecker_mod_int (dest, h, bits, aux, p); 00034 } 00035 }
static void mmx::decode_kronecker_uint | ( | I * | dest, | |
nat | n, | |||
xnat | bits, | |||
const integer & | src | |||
) | [inline, static] |
Definition at line 76 of file kronecker_int.cpp.
References decode_kronecker_int().
00076 { 00077 if (n == 0); 00078 else if (n == 1) dest[0]= as<I> (src); 00079 else { 00080 nat h= n>>1; 00081 integer aux= src >> (h*bits); 00082 decode_kronecker_int (dest+h, n-h, bits, aux); 00083 aux= src - (aux << (h*bits)); 00084 decode_kronecker_int (dest, h, bits, aux); 00085 } 00086 }
void mmx::decode_modular_int | ( | modular< modulus< C, V1 >, V2 > * | dest, | |
const D * | src, | |||
nat | r, | |||
nat | rr, | |||
nat | c, | |||
nat | cc | |||
) | [inline] |
Definition at line 98 of file matrix_modular_int.hpp.
References C, D, Modular, and Set.
00100 { 00101 typedef implementation<matrix_linear,V> Mat; 00102 typedef typename Op::nomul_op Set; 00103 C p = *Modular::get_modulus (); 00104 nat dest_rs= Mat::index (1, 0, rr, cc); 00105 nat dest_cs= Mat::index (0, 1, rr, cc); 00106 nat src_rs = Mat::index (1, 0, r, c); 00107 nat src_cs = Mat::index (0, 1, r, c); 00108 Modular* dest_row= dest; 00109 const D* src_row= src; 00110 for (nat i=0; i<r; i++, dest_row += dest_rs, src_row += src_rs) { 00111 Modular* dest_col= dest_row; 00112 const D* src_col= src_row; 00113 for (nat j=0; j<c; j++, dest_col += dest_cs, src_col += src_cs) 00114 Set::set_op (*dest_col, Modular ((*src_col) % p, true)); 00115 } 00116 }
nat mmx::default_aligned_size | ( | nat | r, | |
nat | c | |||
) | [inline] |
Definition at line 82 of file matrix_naive.hpp.
mmx::DEFINE_UNARY_FORMAT_2 | ( | quotient | ) |
mmx::DEFINE_VARIANT | ( | series_rational | , | |
series_relaxed< series_naive > | ||||
) |
Definition at line 21 of file series_rational.hpp.
mmx::DEFINE_VARIANT | ( | series_modular_integer | , | |
series_relaxed< series_naive > | ||||
) |
mmx::DEFINE_VARIANT | ( | series_modular_int | , | |
series_relaxed< series_naive > | ||||
) |
mmx::DEFINE_VARIANT | ( | series_integer | , | |
series_relaxed< series_naive > | ||||
) |
Definition at line 21 of file series_integer.hpp.
mmx::DEFINE_VARIANT | ( | series_int | , | |
series_relaxed< series_naive > | ||||
) |
Definition at line 21 of file series_int.hpp.
00025 { \ 00026 typedef series_int SV; \ 00027 }; 00028 00029 DECLARE_HELPER(unsigned char)
mmx::DEFINE_VARIANT | ( | series_complex | , | |
series_relaxed< series_naive > | ||||
) |
Definition at line 21 of file series_complex.hpp.
mmx::DEFINE_VARIANT | ( | polynomial_series_dicho | , | |
polynomial_series< polynomial_dicho< polynomial_naive > > | ||||
) |
mmx::DEFINE_VARIANT | ( | polynomial_generic_schonhage | , | |
polynomial_ring_dicho< polynomial_schonhage< polynomial_ring_naive< polynomial_naive > > > | ||||
) |
mmx::DEFINE_VARIANT | ( | polynomial_rational | , | |
polynomial_quotient< polynomial_dicho< polynomial_naive > > | ||||
) |
Definition at line 21 of file polynomial_rational.hpp.
mmx::DEFINE_VARIANT | ( | polynomial_modular_integer | , | |
polynomial_modular< polynomial_dicho< polynomial_naive > > | ||||
) |
mmx::DEFINE_VARIANT | ( | polynomial_modular_int | , | |
polynomial_dicho< polynomial_balanced< polynomial_kronecker< polynomial_naive > > > | ||||
) |
mmx::DEFINE_VARIANT | ( | polynomial_integer | , | |
polynomial_gcd_ring_dicho< polynomial_balanced< polynomial_kronecker< polynomial_naive > > > | ||||
) |
Definition at line 27 of file polynomial_integer.hpp.
mmx::DEFINE_VARIANT | ( | polynomial_int | , | |
polynomial_ring_dicho< polynomial_balanced< polynomial_kronecker< polynomial_naive > > > | ||||
) |
Definition at line 27 of file polynomial_int.hpp.
00034 { \ 00035 typedef polynomial_int PV; }; 00036 DECLARE_HELPER(signed char)
mmx::DEFINE_VARIANT | ( | matrix_rational | , | |
matrix_quotient< matrix_naive > | ||||
) |
Definition at line 40 of file matrix_quotient.hpp.
References MV.
00044 { 00045 typedef matrix_rational MV; 00046 };
mmx::DEFINE_VARIANT | ( | matrix_modular_integer | , | |
matrix_naive | ||||
) |
mmx::DEFINE_VARIANT | ( | matrix_modular_int | , | |
matrix_strassen< matrix_threads< matrix_unrolled_4_4 > > | ||||
) |
mmx::DEFINE_VARIANT | ( | matrix_integer | , | |
matrix_balanced< matrix_bareiss< matrix_crt< matrix_ring_naive< matrix_naive > > > > | ||||
) |
Definition at line 30 of file matrix_integer.hpp.
References MV.
00037 { 00038 typedef matrix_integer MV; 00039 };
mmx::DEFINE_VARIANT | ( | matrix_double | , | |
matrix_strassen< matrix_threads< Matrix_simd_variant(double)> > | ||||
) |
Definition at line 28 of file matrix_double.hpp.
References MV.
00034 { 00035 typedef matrix_double MV; 00036 };
mmx::DEFINE_VARIANT | ( | crt_dicho_integer | , | |
crt_dicho< crt_naive_integer > | ||||
) |
Definition at line 49 of file crt_integer.hpp.
mmx::DEFINE_VARIANT | ( | crt_naive_integer | , | |
crt_signed< crt_naive > | ||||
) |
Definition at line 27 of file crt_integer.hpp.
00031 : 00032 public implementation<crt_project,crt_signed<crt_naive> > 00033 { 00034 template<typename C, typename I, typename W> static inline I 00035 mod (const C& a, const modulus<I,W>& p) { 00036 static integer r; 00037 return (I) mpz_fdiv_r_ui (*r, *a, *p); } 00038 00039 template<typename C, typename W> static inline C 00040 mod (const C& a, const modulus<integer,W>& p) { 00041 return rem (a, *p); } 00042 }; 00043 #endif 00044 00045 STMPL 00046 struct crt_naive_variant_helper<integer> { 00047 typedef crt_naive_integer CV; };
mmx::DEFINE_VARIANT | ( | crt_int | , | |
crt_signed< crt_naive > | ||||
) |
mmx::DEFINE_VARIANT | ( | base_naive_integer | , | |
base_signed< base_naive > | ||||
) |
base_signed<base_dicho<base_naive> > mmx::DEFINE_VARIANT | ( | base_naive_uint | , | |
base_naive | ||||
) |
mmx::DEFINE_VARIANT | ( | base_naive_int | , | |
base_signed< base_naive > | ||||
) |
mmx::DEFINE_VARIANT_1 | ( | typename V | , | |
V | , | |||
polynomial_tft | , | |||
polynomial_dicho< polynomial_balanced_tft< polynomial_tft_inc< polynomial_karatsuba< V > > > > | ||||
) |
mmx::DEFINE_VARIANT_1 | ( | typename V | , | |
V | , | |||
polynomial_schonhage_triadic | , | |||
polynomial_balanced< polynomial_schonhage_triadic_inc< polynomial_karatsuba< V > > > | ||||
) |
mmx::DEFINE_VARIANT_1 | ( | typename V | , | |
V | , | |||
polynomial_schonhage_strassen | , | |||
polynomial_balanced_tft< polynomial_schonhage_strassen_inc< polynomial_karatsuba< V > > > | ||||
) |
mmx::DEFINE_VARIANT_1 | ( | typename V | , | |
V | , | |||
polynomial_schonhage | , | |||
polynomial_balanced_tft< polynomial_schonhage_inc< polynomial_karatsuba< V > > > | ||||
) |
mmx::DEFINE_VARIANT_1 | ( | typename V | , | |
V | , | |||
polynomial_gcd_ring_ducos | , | |||
polynomial_gcd_ring_ducos_inc< polynomial_gcd_ring_naive< V > > | ||||
) |
mmx::DEFINE_VARIANT_1 | ( | typename V | , | |
V | , | |||
polynomial_gcd_ring_naive | , | |||
polynomial_gcd_ring_naive_inc< polynomial_ring_naive< V > > | ||||
) |
Definition at line 60 of file polynomial_ring_naive.hpp.
00070 : public V { 00071 typedef typename V::Vec Vec; 00072 typedef polynomial_gcd_ring_ducos_inc<typename V::Naive> Naive; 00073 typedef polynomial_gcd_ring_ducos_inc<typename V::Positive> Positive; 00074 typedef polynomial_gcd_ring_ducos_inc<typename V::No_simd> No_simd; 00075 typedef polynomial_gcd_ring_ducos_inc<typename V::No_thread> No_thread; 00076 typedef polynomial_gcd_ring_ducos_inc<typename V::No_scaled> No_scaled; 00077 };
mmx::DEFINE_VARIANT_1 | ( | typename V | , | |
V | , | |||
polynomial_gcd_ring_dicho | , | |||
polynomial_gcd_ring_dicho_inc< polynomial_gcd_ring_naive< polynomial_ring_dicho< V > > > | ||||
) |
mmx::DEFINE_VARIANT_1 | ( | typename V | , | |
V | , | |||
polynomial_ring_dicho | , | |||
polynomial_ring_dicho_inc< polynomial_ring_naive< polynomial_dicho< V > > > | ||||
) |
Definition at line 41 of file polynomial_ring_dicho.hpp.
00052 : 00053 public V {};
mmx::DEFINE_VARIANT_1 | ( | typename I | , | |
I | , | |||
matrix_int_simd | , | |||
matrix_strassen< typename Matrix_simd_variant(I) > | ||||
) |
Definition at line 1086 of file series.hpp.
References CF(), is_exact_zero(), Series, and Series_rep.
01086 { 01087 if (is_exact_zero (f)) return Series (CF(f)); 01088 return (Series_rep*) new deflate_series_rep<C,V> (f, p); 01089 }
int deg | ( | const polynomial< C, V > & | P | ) | [inline] |
Definition at line 191 of file polynomial.hpp.
Referenced by annihilator(), compose(), eval(), flatten(), GLUE_5(), GLUE_62(), GLUE_7(), GLUE_81(), modulus_polynomial_inv_naive< V >::inv_mod(), implementation< polynomial_gcd, X, polynomial_series< BV > >::invert_mod(), implementation< polynomial_gcd, V, polynomial_ring_naive< W > >::invert_mod(), implementation< polynomial_gcd, V, polynomial_naive >::invert_mod(), polynomial_iterator_rep< C, V >::is_busy(), is_zero(), join(), root_modular_naive::linear_factorization(), root_modular_naive::linear_splitting(), minimal_polynomial_bis(), modulus< polynomial< C, V >, modulus_polynomial_power_of_the_variable< W > >::modulus(), mul_matrix(), _vector_sort_by_increasing_degree_op::not_op(), _vector_sort_by_increasing_degree_op::op(), pexponent(), pow_matrix(), implementation< polynomial_gcd, V, polynomial_ring_naive< W > >::reconstruct(), implementation< polynomial_gcd, V, polynomial_naive >::reconstruct(), reconstruct(), modulus_polynomial_reduction_preinverse< X >::reduce_mod(), root_modular_naive::roots(), shift1(), shift2(), sign(), square_free(), subresultant(), and subresultants().
int degree | ( | const polynomial< C, V > & | P | ) | [inline] |
Definition at line 192 of file polynomial.hpp.
Referenced by implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_dicho_inc< BV > >::_half_gcd(), implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::_multi_rem(), implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_ducos_inc< BV > >::defected_prem(), implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_naive_inc< W > >::defected_prem(), modulus_polynomial_mul_power_of_the_variable< X, W >::mul_mod(), modulus_polynomial_mul_preinverse< X, W >::mul_mod(), modulus_polynomial_reduction_preinverse< X >::reduce_mod(), resultant(), implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_ducos_inc< BV > >::subresultant_sequence(), implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_naive_inc< W > >::subresultant_sequence(), implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_dicho_inc< BV > >::subresultant_sequence(), and implementation< polynomial_subresultant, V, polynomial_naive >::subresultant_sequence().
Definition at line 952 of file matrix.hpp.
References CF(), cols(), is_non_scalar(), Matrix, promote(), and rows().
Referenced by first_minor().
00952 { 00953 ASSERT (is_non_scalar (m), "non-scalar matrix expected"); 00954 ASSERT (c < cols (m), "index out of range"); 00955 Matrix d (promote (0, CF(m)), rows (m), cols (m) - 1); 00956 for (nat j= 0; j < c; j++) 00957 for (nat i= 0; i < rows (m); i++) d(i,j)= m(i,j); 00958 for (nat j= c+1; j < cols (m); j++) 00959 for (nat i= 0; i < rows (m); i++) d(i,j-1)= m(i,j); 00960 return d; 00961 }
Definition at line 940 of file matrix.hpp.
References CF(), cols(), is_non_scalar(), Matrix, promote(), and rows().
Referenced by first_minor().
00940 { 00941 ASSERT (is_non_scalar (m), "non-scalar matrix expected"); 00942 ASSERT (r < rows (m), "index out of range"); 00943 Matrix d (promote (0, CF(m)), rows (m) - 1, cols (m)); 00944 for (nat i= 0; i < r; i++) 00945 for (nat j= 0; j < cols (m); j++) d(i,j)= m(i,j); 00946 for (nat i= r+1; i < rows (m); i++) 00947 for (nat j= 0; j < cols (m); j++) d(i-1,j)= m(i,j); 00948 return d; 00949 }
DT denominator | ( | const quotient< NT, DT > & | x | ) | [inline] |
Definition at line 99 of file quotient.hpp.
Referenced by complete(), as_helper< modular< modulus< polynomial< C, V >, MoV >, MaV >, quotient< polynomial< C, V >, polynomial< C, V > > >::cv(), derive(), binary_helper< quotient< NT, DT > >::disassemble(), exact_eq(), exact_hash(), flatten(), GLUE_6(), hard_eq(), hard_hash(), hash(), is_evaluable(), map(), operator*(), operator+(), operator-(), operator/(), operator==(), precision(), sign(), binary_helper< quotient< NT, DT > >::write(), and xderive().
00099 { return x.d; }
Denominator_type | ( | C | ) | const [inline] |
Definition at line 922 of file series.hpp.
References CF(), is_exact_zero(), Series, and Series_rep.
00922 { 00923 if (is_exact_zero (f)) return Series (CF(f)); 00924 return (Series_rep*) new derive_series_rep<C,V> (f); 00925 }
Definition at line 332 of file quotient.hpp.
References denominator(), derive(), numerator(), Quotient, and square().
00332 { 00333 return Quotient (derive (numerator (x), v) * denominator (x) - 00334 numerator (x) * derive (denominator (x), v), 00335 square (denominator (x)), 00336 true); 00337 }
Definition at line 316 of file quotient.hpp.
References denominator(), derive(), numerator(), Quotient, and square().
00316 { 00317 return Quotient (derive (numerator (x)) * denominator (x) - 00318 numerator (x) * derive (denominator (x)), 00319 square (denominator (x)), 00320 true); 00321 }
polynomial<C,V> mmx::derive | ( | const polynomial< C, V > & | P, | |
const nat & | order | |||
) | [inline] |
Definition at line 1049 of file polynomial.hpp.
References C, CF(), derive(), N(), Polynomial, promote(), and seg().
01049 { 01050 typedef implementation<polynomial_linear,V> Pol; 01051 nat n= N(P); 01052 if (n <= order) return promote (0, P); 01053 nat l= aligned_size<C,V> (n-order); 01054 C* r= mmx_formatted_new<C> (l, CF(P)); 01055 Pol::derive (r, seg (P), n, order); 01056 return Polynomial (r, n-order, l, CF(P)); 01057 }
polynomial<C,V> mmx::derive | ( | const polynomial< C, V > & | P | ) | [inline] |
Definition at line 1038 of file polynomial.hpp.
References C, CF(), derive(), N(), Polynomial, promote(), and seg().
01038 { 01039 typedef implementation<polynomial_linear,V> Pol; 01040 nat n= N(P); 01041 if (n <= 1) return promote (0, P); 01042 nat l= aligned_size<C,V> (n-1); 01043 C* r= mmx_formatted_new<C> (l, CF(P)); 01044 Pol::derive (r, seg (P), n); 01045 return Polynomial (r, n-1, l, CF(P)); 01046 }
Definition at line 637 of file matrix.hpp.
Referenced by derive(), discriminant(), derive_series_rep< C, V >::expression(), GLUE_113(), GLUE_145(), GLUE_19(), GLUE_29(), GLUE_30(), GLUE_32(), GLUE_75(), GLUE_84(), GLUE_93(), improve_zero(), implementation< polynomial_evaluate, V, polynomial_naive >::interpolate(), is_zero(), polynomial_modular_root(), sign(), square_free(), implementation< polynomial_evaluate, V, polynomial_naive >::tinterpolate(), and implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::tinterpolate().
Definition at line 928 of file series.hpp.
C mmx::det | ( | const matrix< C, V > & | m | ) | [inline] |
Definition at line 1231 of file matrix.hpp.
References CF(), cols(), is_non_scalar(), promote(), rows(), and tab().
Referenced by first_minor(), GLUE_114(), GLUE_39(), and GLUE_63().
static nat mmx::digit_mirror_triadic | ( | nat | i, | |
nat | n | |||
) | [static] |
Definition at line 36 of file fft_roots.hpp.
Referenced by roots_triadic_helper< CC, UU, SS >::create_roots(), and roots_triadic_helper< CC, UU, SS >::create_stoor().
00036 { 00037 if (n == 1) return i; 00038 else return digit_mirror_triadic (i % (n / 3), n / 3) * 3 + i / (n / 3); 00039 }
Definition at line 1065 of file series.hpp.
References CF(), is_exact_zero(), Series, and Series_rep.
01065 { 01066 if (is_exact_zero (f)) return Series (CF(f)); 01067 return (Series_rep*) new dilate_series_rep<C,V> (f, p); 01068 }
polynomial<C,V> mmx::dilate | ( | const polynomial< C, V > & | P, | |
nat | p | |||
) | [inline] |
Definition at line 1120 of file polynomial.hpp.
References C, CF(), N(), Polynomial, and seg().
Referenced by GLUE_104(), GLUE_110(), GLUE_115(), GLUE_147(), GLUE_21(), GLUE_32(), GLUE_34(), GLUE_45(), and ramify().
01120 { 01121 typedef implementation<polynomial_linear,V> Pol; 01122 if (p == 1) return P; 01123 nat n= N(P); 01124 if (n <= 1) return P; 01125 nat k= (n-1)*p + 1; 01126 nat l= aligned_size<C,V> (k); 01127 C* r= mmx_formatted_new<C> (l, CF(P)); 01128 Pol::dilate (r, seg (P), p, n); 01129 return Polynomial (r, k, l, CF(P)); 01130 }
vector< typename Baser::modulus_base > mmx::direct_base | ( | const typename Baser::base & | s, | |
Baser & | baser | |||
) | [inline] |
Definition at line 175 of file base_naive.hpp.
References direct_base().
00175 { 00176 vector<I> dest; 00177 direct_base (dest, s, baser); 00178 return dest; 00179 }
void mmx::direct_base | ( | vector< typename Baser::modulus_base, W > & | dest, | |
const typename Baser::base & | s, | |||
Baser & | baser | |||
) | [inline] |
Definition at line 166 of file base_naive.hpp.
References CF(), I, and size_bound().
00166 { 00167 nat n= size_bound (s, baser); 00168 nat l= aligned_size<I,W> (n); 00169 I* tmp= mmx_formatted_new<I> (l, CF(dest)); 00170 n= baser.direct_transform (tmp, n, s); 00171 dest= vector<I,W> (tmp, n, l, CF(dest)); 00172 }
nat mmx::direct_base | ( | typename Baser::modulus_base * | dest, | |
nat | n, | |||
const typename Baser::base & | s, | |||
Baser & | baser | |||
) | [inline] |
Definition at line 160 of file base_naive.hpp.
Referenced by as_p_expansion(), as_helper< polynomial< modular< modulus< C, U1 >, U2 >, V >, Lift_type(modular< modulus< C, U1 >, U2 >)>::cv(), implementation< base_transform, V, base_blocks< W > >::direct(), direct_base(), base_unsigned_integer_transformer< I >::direct_transform(), and base_integer_transformer< I >::direct_transform().
vector< typename Crter::modulus_base > mmx::direct_crt | ( | const typename Crter::base & | s, | |
Crter & | crter | |||
) | [inline] |
Definition at line 336 of file crt_naive.hpp.
References direct_crt().
00336 { 00337 vector<I> dest; 00338 direct_crt (dest, s, crter); 00339 return dest; 00340 }
void mmx::direct_crt | ( | vector< typename Crter::modulus_base, W > & | dest, | |
const typename Crter::base & | s, | |||
Crter & | crter | |||
) | [inline] |
void mmx::direct_crt | ( | typename Crter::modulus_base * | dest, | |
const typename Crter::base & | s, | |||
Crter & | crter | |||
) | [inline] |
Definition at line 323 of file crt_naive.hpp.
Referenced by implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::_multi_rem(), direct_crt(), implementation< matrix_multiply, V, matrix_crt< W > >::mat_direct_crt(), and implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::tinterpolate().
void mmx::direct_fft | ( | C * | dest, | |
nat | n | |||
) | [inline] |
Definition at line 210 of file fft_naive.hpp.
References fft_naive_transformer< C, V >::direct_transform().
void mmx::direct_fft_triadic | ( | C * | dest, | |
nat | n | |||
) | [inline] |
Definition at line 183 of file fft_triadic_naive.hpp.
References fft_triadic_naive_transformer< C, VV >::direct_transform_triadic().
void mmx::direct_kronecker | ( | integer & | dest, | |
const integer * | src, | |||
nat | n, | |||
xnat | bits | |||
) |
C mmx::discriminant | ( | const polynomial< C, V > & | P | ) | [inline] |
Definition at line 1028 of file polynomial.hpp.
References derive(), and resultant().
Referenced by GLUE_100(), GLUE_106(), and GLUE_41().
algebraic_number_extension<C,Ball>::El mmx::div | ( | const algebraic_number_extension< C, Ball > & | ext, | |
const typename algebraic_number_extension< C, Ball >::El & | p1, | |||
const typename algebraic_number_extension< C, Ball >::El & | p2 | |||
) | [inline] |
Definition at line 252 of file algebraic_number.hpp.
References div().
00252 { 00253 return div (ext.ext, p1, p2); 00254 }
algebraic_number_extension<C,Ball>::El mmx::div | ( | const algebraic_number_extension< C, Ball > & | ext, | |
const C & | c1, | |||
const typename algebraic_number_extension< C, Ball >::El & | p2 | |||
) | [inline] |
Definition at line 247 of file algebraic_number.hpp.
References div().
00247 { 00248 return div (ext.ext, c1, p2); 00249 }
algebraic_extension<C>::El mmx::div | ( | const algebraic_extension< C > & | ext, | |
const typename algebraic_extension< C >::El & | p1, | |||
const typename algebraic_extension< C >::El & | p2 | |||
) | [inline] |
algebraic_extension<C>::El mmx::div | ( | const algebraic_extension< C > & | ext, | |
const C & | c1, | |||
const typename algebraic_extension< C >::El & | p2 | |||
) | [inline] |
Definition at line 113 of file algebraic_extension.hpp.
References Element, gcd(), and promote().
Referenced by implementation< polynomial_exact_divide, V, polynomial_polynomial< W > >::div(), div(), implementation< polynomial_vectorial, V, polynomial_naive >::div_sc(), implementation< polynomial_evaluate, V, polynomial_naive >::interpolate(), operator/(), implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::shift(), and implementation< polynomial_evaluate, V, polynomial_naive >::tinterpolate().
void mmx::div_kronecker | ( | polynomial< C, V > * | dest, | |
const polynomial< C, V > * | s1, | |||
nat | n1, | |||
const polynomial< C, V > * | s2, | |||
nat | n2 | |||
) | [inline] |
Definition at line 95 of file kronecker_polynomial.hpp.
References copy(), decode_kronecker(), encode_kronecker(), is_exact_zero(), max_polynomial_size(), and Polynomial.
Referenced by implementation< polynomial_exact_divide, V, polynomial_polynomial< W > >::div().
00097 { 00098 typedef implementation<polynomial_linear,V> Pol; 00099 ASSERT (n2 != 0, "division by zero"); 00100 if (n1 == 0) return; 00101 nat m1= max_polynomial_size (s1, n1); 00102 nat m2= max_polynomial_size (s2, n2); 00103 nat n= n1 - n2 + 1; 00104 Polynomial x1, x2, y; 00105 encode_kronecker (x1, s1, n1, m1); 00106 encode_kronecker (x2, s2, n2, m1); 00107 y= x1 / x2; 00108 nat l= default_aligned_size<C> (n1); 00109 Polynomial* tmp= mmx_new<Polynomial> (l); 00110 decode_kronecker (tmp, y, n1, m1); 00111 while (n1 > 0 && is_exact_zero (tmp[n1-1])) n1--; 00112 nat m= max_polynomial_size (tmp, n1); 00113 if (n1 <= n && m1 != m + m2 - 1) { 00114 mmx_delete<Polynomial> (tmp, l); 00115 ERROR ("unexact division"); 00116 } 00117 Pol::copy (dest, tmp, n); 00118 mmx_delete<Polynomial> (tmp, l); }
bool mmx::divides | ( | const series< C, V > & | f, | |
const series< C, V > & | g | |||
) | [inline] |
Definition at line 1157 of file series.hpp.
References val().
bool mmx::divides | ( | const polynomial< C, V > & | P1, | |
const polynomial< C, V > & | P2 | |||
) | [inline] |
Definition at line 684 of file polynomial.hpp.
References rem().
Referenced by GLUE_102(), GLUE_155(), GLUE_27(), GLUE_37(), GLUE_40(), and GLUE_96().
00684 { 00685 return rem (P2, P1) == 0; 00686 }
list<Monomial > mmx::dominant_monomials | ( | const quotient_series< Series, Monomial > & | f | ) | [inline] |
Definition at line 128 of file quotient_series.hpp.
00128 { 00129 return stair_mul (f->m, dominant_monomials (f->f)); }
polynomial<C,V> mmx::duplicate | ( | const polynomial< C, V > & | P | ) | [inline] |
Definition at line 1377 of file polynomial.hpp.
Definition at line 574 of file matrix.hpp.
void mmx::encode_kronecker | ( | integer & | dest, | |
const unsigned short * | src, | |||
nat | n, | |||
xnat | bits | |||
) |
Definition at line 39 of file kronecker_int.cpp.
void mmx::encode_kronecker | ( | polynomial< C, V > & | dest, | |
const polynomial< C, V > * | src, | |||
nat | n, | |||
nat | m | |||
) | [inline] |
Definition at line 33 of file kronecker_polynomial.hpp.
References C, CF(), Polynomial, and x.
00033 { 00034 if (n == 0) return; 00035 nat p= n * m; 00036 nat l= aligned_size<C,V> (p); 00037 C* x= mmx_new<C> (l); C* y= x; 00038 for (nat i= 0; i < n; i++, x += m, src++) 00039 for (nat j= 0; j < m; j++) 00040 x[j]= (*src)[j]; 00041 dest= Polynomial (y, p, l, CF(src[0])); 00042 }
void encode_kronecker | ( | integer & | dest, | |
const integer * | src, | |||
nat | n, | |||
xnat | bits | |||
) |
Definition at line 23 of file kronecker_integer.cpp.
References encode_kronecker().
00023 { 00024 if (n == 0) dest= 0; 00025 else if (n == 1) dest= src[0]; 00026 else { 00027 nat h= n>>1; 00028 integer aux; 00029 encode_kronecker (aux , src+h, n-h, bits); 00030 encode_kronecker (dest, src , h , bits); 00031 dest += (aux << (h*bits)); 00032 } 00033 }
void encode_kronecker | ( | integer & | dest, | |
const unsigned long long int * | src, | |||
nat | n, | |||
xnat | bits | |||
) |
Definition at line 42 of file kronecker_int.cpp.
void encode_kronecker | ( | integer & | dest, | |
const long long int * | src, | |||
nat | n, | |||
xnat | bits | |||
) |
Definition at line 47 of file kronecker_int.cpp.
void encode_kronecker | ( | integer & | dest, | |
const unsigned long int * | src, | |||
nat | n, | |||
xnat | bits | |||
) |
Definition at line 41 of file kronecker_int.cpp.
void encode_kronecker | ( | integer & | dest, | |
const long int * | src, | |||
nat | n, | |||
xnat | bits | |||
) |
Definition at line 46 of file kronecker_int.cpp.
void encode_kronecker | ( | integer & | dest, | |
const unsigned int * | src, | |||
nat | n, | |||
xnat | bits | |||
) |
Definition at line 40 of file kronecker_int.cpp.
void encode_kronecker | ( | integer & | dest, | |
const int * | src, | |||
nat | n, | |||
xnat | bits | |||
) |
Definition at line 45 of file kronecker_int.cpp.
void mmx::encode_kronecker | ( | integer & | dest, | |
const unsigned short int * | src, | |||
nat | n, | |||
xnat | bits | |||
) |
void encode_kronecker | ( | integer & | dest, | |
const short int * | src, | |||
nat | n, | |||
xnat | bits | |||
) |
Definition at line 44 of file kronecker_int.cpp.
void encode_kronecker | ( | integer & | dest, | |
const unsigned char * | src, | |||
nat | n, | |||
xnat | bits | |||
) |
Definition at line 38 of file kronecker_int.cpp.
void encode_kronecker | ( | integer & | dest, | |
const signed char * | src, | |||
nat | n, | |||
xnat | bits | |||
) |
Definition at line 43 of file kronecker_int.cpp.
Referenced by div_kronecker(), encode_kronecker(), mul_kronecker(), mul_kronecker_int(), mul_kronecker_mod_int(), square_kronecker(), square_kronecker_int(), and square_kronecker_mod_int().
static void mmx::encode_kronecker_int | ( | integer & | dest, | |
const I * | src, | |||
nat | n, | |||
xnat | bits | |||
) | [inline, static] |
Definition at line 22 of file kronecker_int.cpp.
00022 { 00023 if (n == 0) dest= 0; 00024 else if (n == 1) dest= src[0]; 00025 else { 00026 nat h= n>>1; 00027 integer aux; 00028 encode_kronecker_int (aux , src+h, n-h, bits); 00029 encode_kronecker_int (dest, src , h , bits); 00030 dest += (aux << (h*bits)); 00031 } 00032 }
void mmx::encode_modular_int | ( | D * | dest, | |
const modular< modulus< C, V1 >, V2 > * | src, | |||
nat | r, | |||
nat | rr, | |||
nat | c, | |||
nat | cc | |||
) | [inline] |
Definition at line 78 of file matrix_modular_int.hpp.
00080 { 00081 typedef implementation<matrix_linear,V> Mat; 00082 nat dest_rs= Mat::index (1, 0, r, c); 00083 nat dest_cs= Mat::index (0, 1, r, c); 00084 nat src_rs = Mat::index (1, 0, rr, cc); 00085 nat src_cs = Mat::index (0, 1, rr, cc); 00086 D* dest_row= dest; 00087 const Modular* src_row= src; 00088 for (nat i=0; i<r; i++, dest_row += dest_rs, src_row += src_rs) { 00089 D* dest_col= dest_row; 00090 const Modular* src_col= src_row; 00091 for (nat j=0; j<c; j++, dest_col += dest_cs, src_col += src_cs) 00092 *dest_col= (D) (*(*src_col)); 00093 } 00094 }
mmx::EQUAL_INT_SUGAR | ( | template< typename C, typename V > | , | |
series< C, V > | ||||
) |
mmx::EQUAL_INT_SUGAR | ( | template< typename NT, typename DT > | , | |
quotient< NT, DT > | ||||
) |
mmx::EQUAL_INT_SUGAR | ( | template< typename C, typename Extension > | , | |
algebraic< C, Extension > | ||||
) |
mmx::EQUAL_SCALAR_SUGAR | ( | template< typename NT, typename DT > | , | |
quotient< NT, DT > | , | |||
NT | ||||
) |
mmx::EQUAL_SCALAR_SUGAR | ( | template< typename C, typename Extension > | , | |
algebraic< C, Extension > | , | |||
C | ||||
) |
mmx::EQUAL_SCALAR_SUGAR_BIS | ( | template< typename C, typename Extension > | , | |
algebraic< C, Extension > | , | |||
C | ||||
) |
vector<C> mmx::eval | ( | const polynomial< C, V > & | p, | |
const vector< C > & | x | |||
) | [inline] |
Definition at line 1199 of file polynomial.hpp.
References evaluate().
C mmx::eval | ( | const polynomial< C, V > & | p, | |
const C & | x | |||
) | [inline] |
Definition at line 1174 of file polynomial.hpp.
References evaluate().
Ball mmx::eval | ( | const algebraic_number_extension< C, Ball > & | ext1, | |
const algebraic_number_extension< C, Ball > & | ext2, | |||
const vector< C > & | v | |||
) | [inline] |
Definition at line 201 of file algebraic_number.hpp.
References Ball, deg(), and increase_precision().
00201 { 00202 increase_precision (ext1); 00203 increase_precision (ext2); 00204 Ball sum1= 0; 00205 for (int i1=deg(ext1.ext.mp)-1; i1>=0; i1--) { 00206 Ball sum2= 0; 00207 for (int i2=deg(ext2.ext.mp)-1; i2>=0; i2--) { 00208 sum2 *= ext2.x; 00209 sum2 += as<Ball> (v[i1*deg(ext2.ext.mp) + i2]); 00210 } 00211 sum1 *= ext1.x; 00212 sum1 += sum2; 00213 } 00214 return sum1; 00215 }
Ball mmx::eval | ( | const algebraic_number_extension< C, Ball > & | ext, | |
const typename algebraic_number_extension< C, Ball >::El & | p1 | |||
) | [inline] |
Definition at line 190 of file algebraic_number.hpp.
References Ball, deg(), and increase_precision().
00190 { 00191 increase_precision (ext); 00192 Ball sum= 0; 00193 for (int i=deg(p1); i>=0; i--) { 00194 sum *= ext.x; 00195 sum += as<Ball> (p1[i]); 00196 } 00197 return sum; 00198 }
K mmx::eval | ( | const polynomial< C, V > & | p, | |
const K & | x | |||
) | [inline] |
Definition at line 117 of file algebraic_number.hpp.
References deg().
Referenced by as_ball(), ser_polynomial_regular_root_op::def(), ser_carry_polynomial_regular_root_op::def(), improve_zero(), is_zero(), join(), normalize(), polynomial_modular_root(), and sign().
vector<C> mmx::evaluate | ( | const polynomial< C, V > & | p, | |
const vector< C > & | x | |||
) | [inline] |
Definition at line 1193 of file polynomial.hpp.
References evaluate().
01193 { 01194 typedef implementation<polynomial_evaluate,V> Pol; 01195 return Pol::evaluate (p, x); 01196 }
C mmx::evaluate | ( | const polynomial< C, V > & | p, | |
const C & | x | |||
) | [inline] |
Definition at line 1162 of file polynomial.hpp.
References evaluate(), N(), and seg().
01162 { 01163 typedef implementation<polynomial_evaluate,V> Pol; 01164 return Pol::evaluate (seg (p), x, N(p)); 01165 }
Definition at line 715 of file matrix.hpp.
Referenced by eval(), implementation< polynomial_evaluate, V, polynomial_naive >::evaluate(), implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::evaluate(), evaluate(), GLUE_31(), GLUE_32(), GLUE_34(), GLUE_35(), GLUE_54(), GLUE_55(), GLUE_86(), GLUE_87(), GLUE_88(), GLUE_89(), GLUE_95(), GLUE_96(), GLUE_97(), GLUE_98(), implementation< polynomial_evaluate, V, polynomial_naive >::interpolate(), is_evaluable(), polynomial_evaluate_helper< V, C >::op(), and implementation< polynomial_evaluate, V, polynomial_naive >::tinterpolate().
00715 { 00716 return as<Evaluated_matrix> (binary_map_scalar<evaluate_op> (v, x)); }
bool mmx::exact_eq | ( | const quotient_series< Series, Monomial > & | f, | |
const quotient_series< Series, Monomial > & | g | |||
) | [inline] |
Definition at line 102 of file quotient_series.hpp.
References exact_eq().
bool mmx::exact_eq | ( | const quotient< NT, DT > & | x1, | |
const quotient< NT, DT > & | x2 | |||
) | [inline] |
Definition at line 149 of file quotient.hpp.
References denominator(), exact_eq(), and numerator().
00149 { 00150 return exact_eq (numerator (x1), numerator (x2)) && 00151 exact_eq (denominator (x1), denominator (x2)); }
bool mmx::exact_eq | ( | const algebraic_number_extension< C, Ball > & | x, | |
const algebraic_number_extension< C, Ball > & | y | |||
) | [inline] |
Definition at line 82 of file algebraic_number.hpp.
References exact_eq().
bool mmx::exact_eq | ( | const algebraic_extension< C > & | x, | |
const algebraic_extension< C > & | y | |||
) | [inline] |
Definition at line 62 of file algebraic_extension.hpp.
References exact_eq().
bool mmx::exact_eq | ( | const algebraic< C, Extension > & | x1, | |
const algebraic< C, Extension > & | x2 | |||
) | [inline] |
Definition at line 111 of file algebraic.hpp.
References field(), and value().
Referenced by implementation< polynomial_vectorial, V, polynomial_naive >::exact_eq(), exact_eq(), and exact_neq().
nat mmx::exact_hash | ( | const quotient_series< Series, Monomial > & | f | ) | [inline] |
Definition at line 99 of file quotient_series.hpp.
References exact_hash().
00099 { 00100 return exact_hash (f->f) ^ exact_hash (f->m); }
nat mmx::exact_hash | ( | const quotient< NT, DT > & | x | ) | [inline] |
Definition at line 138 of file quotient.hpp.
References denominator(), exact_hash(), and numerator().
00138 { 00139 nat h= exact_hash (numerator (x)); 00140 return (h<<1) ^ (h<<5) ^ (h>>29) ^ exact_hash (denominator (x)); }
nat mmx::exact_hash | ( | const algebraic_number_extension< C, Ball > & | x | ) | [inline] |
Definition at line 76 of file algebraic_number.hpp.
References exact_hash().
00076 { return exact_hash (*x); }
nat mmx::exact_hash | ( | const algebraic_extension< C > & | x | ) | [inline] |
Definition at line 56 of file algebraic_extension.hpp.
References exact_hash().
00056 { return exact_hash (*x); }
nat mmx::exact_hash | ( | const algebraic< C, Extension > & | x | ) | [inline] |
Definition at line 105 of file algebraic.hpp.
References field(), and value().
Referenced by exact_hash().
00105 { 00106 nat h= exact_hash (value (x)); 00107 return (h<<1) ^ (h<<5) ^ (h>>29) ^ exact_hash (field (x)); }
bool mmx::exact_neq | ( | const quotient_series< Series, Monomial > & | f, | |
const quotient_series< Series, Monomial > & | g | |||
) | [inline] |
Definition at line 105 of file quotient_series.hpp.
References exact_eq().
00105 { 00106 return !exact_eq (f, g); }
bool mmx::exact_neq | ( | const quotient< NT, DT > & | x1, | |
const quotient< NT, DT > & | x2 | |||
) | [inline] |
Definition at line 152 of file quotient.hpp.
References exact_eq().
00152 { 00153 return !exact_eq (x1, x2); }
bool mmx::exact_neq | ( | const algebraic_number_extension< C, Ball > & | x, | |
const algebraic_number_extension< C, Ball > & | y | |||
) | [inline] |
Definition at line 84 of file algebraic_number.hpp.
References exact_neq().
bool mmx::exact_neq | ( | const algebraic_extension< C > & | x, | |
const algebraic_extension< C > & | y | |||
) | [inline] |
Definition at line 64 of file algebraic_extension.hpp.
References exact_neq().
bool mmx::exact_neq | ( | const algebraic< C, Extension > & | x1, | |
const algebraic< C, Extension > & | x2 | |||
) | [inline] |
Definition at line 114 of file algebraic.hpp.
References exact_eq().
Referenced by exact_neq(), mul_series_rep< C, V >::next(), and mul_series_rep< M, V >::next().
00114 { 00115 return !exact_eq (x1, x2); }
Definition at line 40 of file series_elementary.hpp.
Referenced by GLUE_21(), GLUE_38(), GLUE_65(), primitive_root_helper< C >::op(), pow(), and ramify().
vector< polynomial<C,V> > mmx::expand | ( | const polynomial< C, V > & | p, | |
const vector< C > & | v, | |||
const vector< nat > & | mu | |||
) | [inline] |
Definition at line 1232 of file polynomial.hpp.
References C, CF(), N(), Polynomial, and seg().
01232 { 01233 typedef implementation<polynomial_evaluate,V> Pol; 01234 nat k= N(v); 01235 ASSERT (N(mu) == k, "dimensions don't match"); 01236 C** r= mmx_new<C*> (k); 01237 for (nat i=0; i<k; i++) 01238 r[i]= mmx_formatted_new<C> (aligned_size<C,V> (mu[i]), CF(p)); 01239 Pol::expand (r, seg (p), seg (v), seg (mu), N (p), k); 01240 nat l= default_aligned_size<Polynomial > (k); 01241 Polynomial* ret= mmx_formatted_new<Polynomial > (l, get_format (p)); 01242 for (nat i=0; i<k; i++) 01243 ret[i]= Polynomial (r[i], mu[i], aligned_size<C,V> (mu[i]), CF(p)); 01244 mmx_delete<C*> (r, k); 01245 return vector<Polynomial > (ret, k, l); 01246 }
xint mmx::exponent | ( | const polynomial< C, V > & | p | ) | [inline] |
Definition at line 1446 of file polynomial.hpp.
xint mmx::exponent | ( | const matrix< C, V > & | m | ) | [inline] |
Definition at line 763 of file matrix.hpp.
Definition at line 200 of file matrix.hpp.
References cols(), is_a_scalar(), is_non_scalar(), Matrix, and rows().
Referenced by binary_map(), binary_test(), base_dicho_transformer< C, S, V >::direct_transform(), base_dicho_transformer< C, S, V >::inverse_transform(), polynomial< C, V >::operator+=(), coprime_moduli_sequence< M, V >::operator[](), and unary_set().
00200 { 00201 VERIFY (is_a_scalar (m), "scalar matrix expected"); 00202 VERIFY (is_non_scalar (n), "non-scalar matrix expected"); 00203 return Matrix (m.scalar(), rows (n), cols (n)); }
polynomial<C,V> mmx::extract_mod | ( | const polynomial< C, V > & | P, | |
nat | k, | |||
nat | p | |||
) | [inline] |
Definition at line 1262 of file polynomial.hpp.
References C, CF(), N(), and Polynomial.
01262 { 01263 typedef implementation<polynomial_linear,V> Pol; 01264 nat n= (N(P) - k + p - 1) / p; 01265 nat l= aligned_size<C,V> (n); 01266 C* r= mmx_formatted_new<C> (l, CF(P)); 01267 for (nat i=0; i<n; i++) r[i]= P[i*p+k]; 01268 return Polynomial (r, n, l, CF(P)); 01269 }
void mmx::fft_mul | ( | double * | dest, | |
const double * | s1, | |||
const double * | s2, | |||
nat | n1, | |||
nat | n2 | |||
) |
Definition at line 34 of file fft_double.cpp.
References mul().
00034 { 00035 typedef polynomial_dicho< 00036 polynomial_tft< 00037 polynomial_karatsuba< 00038 polynomial_naive> > > PV; 00039 typedef implementation<vector_linear,PV> Vec; 00040 typedef implementation<polynomial_multiply,PV> Pol; 00041 //mmout << "s1= "; Vec::print (mmout, s1, n1); mmout << "\n"; 00042 //mmout << "s2= "; Vec::print (mmout, s2, n2); mmout << "\n"; 00043 nat nd = n1 + n2 - 1; 00044 nat spc= n1 + n2 + nd; 00045 complex<double>* m1= mmx_new<complex<double> > (spc); 00046 complex<double>* m2= m1 + n1; 00047 complex<double>* md= m2 + n2; 00048 Vec::cast (m1, s1, n1); 00049 Vec::cast (m2, s2, n2); 00050 Pol::mul (md, m1, m2, n1, n2); 00051 Vec::vec_unary<Re_op> (dest, md, nd); 00052 mmx_delete<complex<double> > (m1, spc); 00053 //mmout << "dd= "; Vec::print (mmout, dest, nd); mmout << "\n"; 00054 }
Extension mmx::field | ( | const algebraic< C, Extension > & | x | ) | [inline] |
Definition at line 94 of file algebraic.hpp.
Referenced by abs(), annihilator(), as_ball(), conj(), binary_helper< algebraic< C, Extension > >::disassemble(), exact_eq(), exact_hash(), flatten(), hard_eq(), hard_hash(), hash(), invert(), is_zero(), normalize(), operator*(), operator+(), operator-(), operator/(), Re(), root(), sign(), square(), upgrade(), and binary_helper< algebraic< C, Extension > >::write().
00094 { return x.ext; }
polynomial<C> mmx::field_modulus | ( | const algebraic< C, Extension > & | x | ) | [inline] |
Definition at line 96 of file algebraic.hpp.
00096 { return x.ext.mp; }
C mmx::first_minor | ( | const matrix< C, V > & | m, | |
nat | i, | |||
nat | j | |||
) | [inline] |
Definition at line 1241 of file matrix.hpp.
References cols(), delete_col(), delete_row(), det(), is_non_scalar(), and rows().
Referenced by cofactor().
01241 { 01242 ASSERT (is_non_scalar (m), "non-scalar matrix expected"); 01243 ASSERT (cols(m) == rows(m), "square matrix expected"); 01244 ASSERT (i < rows(m), "index out of range"); 01245 ASSERT (j < cols(m), "index out of range"); 01246 return det (delete_col (delete_row (m, i), j)); 01247 }
Definition at line 58 of file series_sugar.hpp.
References fixed_point_series().
00058 { 00059 return fixed_point_series (fun, vec<C> (c)); 00060 }
Definition at line 52 of file series_sugar.hpp.
References recursive().
Referenced by fixed_point_series(), GLUE_173(), GLUE_50(), GLUE_81(), and integrate_series().
00052 { 00053 series_rep<C>* rep= new fixed_point_series_rep<C> (fun, c); 00054 return recursive (series<C> (rep)); 00055 }
series<vector<C> > mmx::fixed_point_series_vector | ( | const routine & | fun, | |
const vector< C > & | c | |||
) | [inline] |
Definition at line 99 of file series_sugar.hpp.
References fixed_point_series_vector().
00099 { 00100 return fixed_point_series_vector (fun, vec<vector<C> > (c)); 00101 }
series<vector<C> > mmx::fixed_point_series_vector | ( | const routine & | fun, | |
const vector< vector< C > > & | c | |||
) | [inline] |
Definition at line 88 of file series_sugar.hpp.
References recursive().
Referenced by fixed_point_series_vector(), and fixed_point_vector_series().
00088 { 00089 series_rep<vector<C> >* rep= new fixed_point_vector_series_rep<C> (fun, c); 00090 return recursive (series<vector<C> > (rep)); 00091 }
vector<series<C> > mmx::fixed_point_vector_series | ( | const routine & | fun, | |
const vector< C > & | c | |||
) | [inline] |
Definition at line 103 of file series_sugar.hpp.
References fixed_point_vector_series().
00103 { 00104 return fixed_point_vector_series (fun, vec<vector<C> > (c)); 00105 }
vector<series<C> > mmx::fixed_point_vector_series | ( | const routine & | fun, | |
const vector< vector< C > > & | c | |||
) | [inline] |
Definition at line 94 of file series_sugar.hpp.
References as_vector(), and fixed_point_series_vector().
Referenced by fixed_point_vector_series(), and gen_fixed_point_vector_series().
00094 { 00095 return as_vector (fixed_point_series_vector (fun, c)); 00096 }
syntactic mmx::flatten | ( | const vector< series< C, V >, W > & | v, | |
const syntactic & | z | |||
) | [inline] |
syntactic mmx::flatten | ( | const matrix< series< C, V >, U > & | m, | |
const syntactic & | z | |||
) | [inline] |
Definition at line 76 of file series_matrix.hpp.
syntactic mmx::flatten | ( | const unknown< C, V > & | c | ) | [inline] |
Definition at line 149 of file series_implicit.hpp.
syntactic mmx::flatten | ( | const series< C, V > & | f | ) | [inline] |
syntactic flatten | ( | const series< C, V > & | f, | |
const syntactic & | z | |||
) | [inline] |
Definition at line 315 of file series.hpp.
References C, flatten(), and pow().
00315 { 00316 if (Series::get_formula_output ()) return f->expression (z); 00317 syntactic s= 0; 00318 nat order= Series::get_output_order (); 00319 for (nat i=0; i<order; i++) { 00320 (void) f[order-1]; 00321 C coeff= f[i]; 00322 s= s + flatten (coeff) * pow (z, i); 00323 } 00324 s= s + apply ("O", pow (z, syntactic (order))); 00325 return s; 00326 }
syntactic mmx::flatten | ( | const quotient_series< Series, Monomial > & | f | ) | [inline] |
Definition at line 108 of file quotient_series.hpp.
References flatten().
NT syntactic mmx::flatten | ( | const quotient< NT, DT > & | x | ) | [inline] |
Definition at line 165 of file quotient.hpp.
References denominator(), flatten(), and numerator().
syntactic mmx::flatten | ( | const polynomial< C, V > & | P | ) | [inline] |
syntactic mmx::flatten | ( | const polynomial< C, V > & | P, | |
const syntactic & | v | |||
) | [inline] |
syntactic mmx::flatten | ( | const permutation & | p | ) | [inline] |
syntactic mmx::flatten | ( | const modulus< polynomial< C, PV >, MV > & | c | ) | [inline] |
Definition at line 85 of file modular_polynomial.hpp.
References flatten(), polynomial< C, V >::get_variable_name(), and x.
syntactic mmx::flatten | ( | const modular< modulus< polynomial< C, PV >, MW >, MV > & | c | ) | [inline] |
Definition at line 75 of file modular_polynomial.hpp.
References flatten(), polynomial< C, V >::get_variable_name(), and x.
syntactic mmx::flatten | ( | const matrix< C, V > & | m | ) | [inline] |
Definition at line 350 of file matrix.hpp.
References cols(), flatten(), is_a_scalar(), and rows().
00350 { 00351 if (is_a_scalar (m)) return flatten (m.scalar()); 00352 int i, j, nr= rows(m), nc= cols(m); 00353 vector<syntactic> v; 00354 for (i=0; i<nr; i++) { 00355 vector<syntactic> h; 00356 for (j=0; j<nc; j++) 00357 h << flatten (m (i, j)); 00358 v << apply (GEN_ROW, h); 00359 } 00360 return apply (GEN_SQTUPLE, v); 00361 }
syntactic mmx::flatten | ( | const algebraic_number_extension< C, Ball > & | x | ) | [inline] |
syntactic mmx::flatten | ( | const algebraic_extension< C > & | x | ) | [inline] |
Definition at line 71 of file algebraic_extension.hpp.
References flatten().
syntactic mmx::flatten | ( | const algebraic< C, Extension > & | x | ) | [inline] |
Definition at line 140 of file algebraic.hpp.
References field(), and value().
Referenced by lshiftz_series_vector_rep< C, V, W >::expression(), vector_series_rep< C, V, W >::expression(), vector_access_series_rep< C, V, W >::expression(), implicit_vector_series_rep< C, V >::expression(), implicit_series_rep< C, V >::expression(), fixed_point_vector_series_rep< C >::expression(), fixed_point_series_rep< C >::expression(), mul_series_rep< C, V >::expression(), reverse_series_rep< C, V >::expression(), compose_series_rep< C, V >::expression(), binary_series_rep< Op, C, V >::expression(), unary_series_rep< Op, C, V >::expression(), binary_scalar_recursive_series_rep< Op, C, V, X >::expression(), binary_recursive_series_rep< Op, C, V >::expression(), unary_polynomial_recursive_series_rep< Op, C, V, L >::expression(), unary_recursive_series_rep< Op, C, V >::expression(), nullary_recursive_series_rep< Op, C, V >::expression(), unary_map_as_series_rep< Op, C, V, S, SV >::expression(), ternary_scalar_series_rep< Op, C, V, X, Y >::expression(), binary_scalar_series_rep< Op, C, V, X >::expression(), matrix_series_rep< C, V, U >::expression(), matrix_access_series_rep< C, V, U >::expression(), solver_container_series_rep< C, V >::expression(), known_series_rep< C, V, UV >::expression(), nrelax_mul_series_rep< C, V >::expression(), div_series_rep< M, V >::expression(), rdiv_sc_series_rep< M, V, X >::expression(), carry_mul_sc_series_rep< M, V, X >::expression(), binary_series_rep< Op, M, V >::expression(), unary_series_rep< Op, M, V >::expression(), binary_scalar_series_rep< Op, M, V, X >::expression(), ldiv_mat_monoblock_series_rep< M, V >::expression(), ldiv_vec_monoblock_series_rep< M, V >::expression(), ldiv_mat_series_rep< M, V >::expression(), ldiv_sc_mat_series_rep< M, V >::expression(), matrix_carry_mul_rem_series_rep< M, V >::expression(), matrix_carry_mul_quo_series_rep< M, V, X >::expression(), ldiv_vec_series_rep< M, V >::expression(), ldiv_sc_vec_series_rep< M, V >::expression(), vector_carry_mul_rem_series_rep< M, V >::expression(), vector_carry_mul_quo_series_rep< M, V, X >::expression(), lshiftz_series_matrix_rep< M, V >::expression(), mul_series_rep< M, V >::expression(), binary_scalar_recursive_monoblock_series_rep< Op, M, V, s, BV, t, X >::expression(), unary_polynomial_recursive_monoblock_series_rep< Op, M, V, s, BV, t, L >::expression(), truncate_mul_monoblock_series_rep< M, V, s, BV, t >::expression(), binary_monoblock_series_rep< Op, M, V, s, BV, t >::expression(), change_precision_series_rep< C, V >::expression(), deflate_series_rep< C, V >::expression(), dilate_series_rep< C, V >::expression(), q_difference_series_rep< C, V >::expression(), shift_series_rep< C, V >::expression(), integrate_series_rep< C, V >::expression(), xderive_series_rep< C, V >::expression(), derive_series_rep< C, V >::expression(), piecewise_series_rep< C, V >::expression(), restrict_series_rep< C, V >::expression(), lshiftz_series_rep< C, V >::expression(), lcm_series_rep< C, V >::expression(), gcd_series_rep< C, V >::expression(), map_series_rep< C, V, S, SV, Fun >::expression(), cast_series_rep< C, V, K, W >::expression(), slow_series_rep< C, V >::expression(), fast_series_rep< C, V >::expression(), polynomial_series_rep< C, V >::expression(), scalar_series_rep< C, V >::expression(), zero_series_rep::expression(), recursive_container_series_rep< C, V >::expression(), inv_mod_polynomial_series_rep< C, U, V, W >::expression(), flatten(), and solver_series_rep< C, V >::name_component().
Definition at line 123 of file series_matrix.hpp.
00123 { 00124 return (series_rep<Matrix,V>*) new matrix_series_rep<C,V,U> (m); 00125 }
series<M,V> mmx::from_monoblock | ( | const series< modular< modulus< Lift_type(M)>, modular_global_series_carry_monoblock< M, s, BV > >, BV > & | f, | |
const series_carry_monoblock_transformer< M, V, s, BV > & | blocker | |||
) | [inline] |
Definition at line 185 of file series_carry_blocks.hpp.
Referenced by ldiv_mat_monoblock_series_rep< M, V >::Increase_order(), ldiv_vec_monoblock_series_rep< M, V >::Increase_order(), slp_polynomial_regular_root_monoblock_series_rep< M, V, L >::Increase_order(), binary_scalar_recursive_monoblock_series_rep< Op, M, V, s, BV, t, X >::Increase_order(), unary_polynomial_recursive_monoblock_series_rep< Op, M, V, s, BV, t, L >::Increase_order(), truncate_mul_monoblock_series_rep< M, V, s, BV, t >::Increase_order(), binary_monoblock_series_rep< Op, M, V, s, BV, t >::Increase_order(), and mul_series_rep< M, V >::mul_series_rep().
Definition at line 129 of file series_vector.hpp.
Referenced by fixed_point_vector_series_rep< C >::initialize().
00129 { 00130 return (series_rep<Vector,V>*) new vector_series_rep<C,V,W> (v); 00131 }
algebraic_number mmx::gaussian | ( | const algebraic_real & | x, | |
const algebraic_real & | y | |||
) | [inline] |
Definition at line 407 of file algebraic_number.hpp.
References times_i().
Referenced by GLUE_71().
00407 { 00408 return algebraic_number (x) + times_i (algebraic_number (y)); 00409 }
Definition at line 797 of file series.hpp.
References Series_rep.
00797 { 00798 return (Series_rep*) new gcd_series_rep<C,V> (f, g); 00799 }
static vector< polynomial<C,V> > mmx::gcd | ( | const polynomial< C, V > & | p, | |
const vector< polynomial< C, V > > & | q | |||
) | [inline, static] |
Definition at line 831 of file polynomial.hpp.
polynomial<C,V> mmx::gcd | ( | const polynomial< C, V > & | P1, | |
const polynomial< C, V > & | P2 | |||
) | [inline] |
Definition at line 825 of file polynomial.hpp.
References gcd().
00825 { 00826 typedef implementation<polynomial_gcd,V> Pol; 00827 return Pol::gcd (P1, P2); 00828 }
polynomial<C,V> mmx::gcd | ( | const polynomial< C, V > & | P1, | |
const polynomial< C, V > & | P2, | |||
polynomial< C, V > & | U1 | |||
) | [inline] |
Definition at line 819 of file polynomial.hpp.
References CF(), gcd(), Polynomial, and promote().
00819 { 00820 Polynomial U2(0); U1= promote (1, CF(P1)); 00821 return gcd (P1, P2, U1, U2); 00822 }
polynomial<C,V> mmx::gcd | ( | const polynomial< C, V > & | P1, | |
const polynomial< C, V > & | P2, | |||
polynomial< C, V > & | U1, | |||
polynomial< C, V > & | U2 | |||
) | [inline] |
Definition at line 810 of file polynomial.hpp.
References C, CF(), and promote().
Referenced by root_modular_naive::degree_one_factorization(), div(), gcd_series_rep< C, V >::expression(), implementation< polynomial_gcd, V, polynomial_naive >::gcd(), implementation< polynomial_euclidean, V, polynomial_naive >::gcd(), implementation< polynomial_euclidean, V, polynomial_dicho< BV > >::gcd(), gcd(), GLUE_117(), GLUE_156(), GLUE_27(), GLUE_28(), GLUE_41(), GLUE_50(), invert(), implementation< polynomial_gcd, V, polynomial_ring_naive< W > >::invert_mod(), implementation< polynomial_gcd, V, polynomial_naive >::invert_mod(), modulus_polynomial_inv_naive< V >::is_invertible_mod(), implementation< polynomial_gcd, V, polynomial_ring_naive< W > >::lcm(), implementation< polynomial_gcd, V, polynomial_naive >::lcm(), root_modular_naive::linear_splitting(), operator*(), operator+(), operator-(), operator/(), operator==(), quotient< NT, DT >::quotient(), reconstruct(), and square_free().
mmx::GCD_SUGAR | ( | template< typename NT, typename DT > | , | |
quotient< NT, DT > | ||||
) |
vector<generic> mmx::gen_fixed_point_vector_series | ( | const routine & | fun, | |
const vector< C > & | c | |||
) | [inline] |
Definition at line 108 of file series_sugar.hpp.
References fixed_point_vector_series().
Referenced by gen_integrate_vector_series(), GLUE_170(), GLUE_174(), and GLUE_51().
00108 { 00109 return as<vector<generic> > (fixed_point_vector_series (fun, c)); 00110 }
vector<generic> mmx::gen_implicit_vector_series | ( | const routine & | fun, | |
const vector< C > & | c | |||
) | [inline] |
Definition at line 201 of file series_sugar.hpp.
References implicit_vector_series().
Referenced by GLUE_172(), GLUE_178(), and GLUE_55().
00201 { 00202 return as<vector<generic> > (implicit_vector_series (fun, c)); 00203 }
vector<generic> mmx::gen_integrate_vector_series | ( | const routine & | fun, | |
const vector< C > & | c | |||
) | [inline] |
Definition at line 113 of file series_sugar.hpp.
References gen_fixed_point_vector_series(), and integrate().
Referenced by GLUE_171(), GLUE_176(), and GLUE_53().
00113 { 00114 return gen_fixed_point_vector_series (integrate (fun), c); 00115 }
Definition at line 87 of file series_matrix.hpp.
static void mmx::GLUE_1 | ( | const series< rational > & | arg_1, | |
const generic & | arg_2 | |||
) | [static] |
Definition at line 64 of file glue_series_rational.cpp.
References arg_2, and set_variable_name().
00064 { 00065 set_variable_name (arg_1, arg_2); 00066 }
static quotient< polynomial<rational> , polynomial<rational> > mmx::GLUE_1 | ( | const polynomial< rational > & | arg_1, | |
const polynomial< rational > & | arg_2 | |||
) | [static] |
Definition at line 57 of file glue_quotient_polynomial_rational.cpp.
References simple_quotient.
00057 { 00058 return (simple_quotient(polynomial<rational> ) (arg_1, arg_2)); 00059 }
static polynomial<rational> mmx::GLUE_1 | ( | const tuple< rational > & | arg_1 | ) | [static] |
Definition at line 25 of file glue_vector_rational.cpp.
References as_vector().
static polynomial<series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> > mmx::GLUE_1 | ( | const tuple< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1 | ) | [static] |
Definition at line 70 of file glue_polynomial_p_adic_modular_integer.cpp.
References arg_1, as_vector(), and polynomial_reverse().
00070 { 00071 return polynomial_reverse (as_vector (arg_1)); 00072 }
static polynomial<integer> mmx::GLUE_1 | ( | const tuple< integer > & | arg_1 | ) | [static] |
Definition at line 20 of file glue_vector_integer.cpp.
References as_vector().
static vector<generic> mmx::GLUE_1 | ( | const vector< generic > & | arg_1 | ) | [static] |
Definition at line 12 of file glue_vector_generic.cpp.
00012 { 00013 return -arg_1; 00014 }
static permutation mmx::GLUE_1 | ( | const tuple< int > & | arg_1 | ) | [static] |
Definition at line 14 of file glue_vector_int.cpp.
References as_vector().
static polynomial< mmx_modular(integer) , polynomial_carry_variant_helper< mmx_modular(integer) >::PV> mmx::GLUE_1 | ( | const tuple< mmx_modular(integer) > & | arg_1 | ) | [static] |
Definition at line 23 of file glue_vector_modular_integer.cpp.
References arg_1, and as_vector().
static void mmx::GLUE_1 | ( | const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_1, | |
const generic & | arg_2 | |||
) | [static] |
Definition at line 39 of file glue_p_adic_modular_integer.cpp.
References arg_2, and set_variable_name().
00039 { 00040 set_variable_name (arg_1, arg_2); 00041 }
Definition at line 56 of file glue_series_generic.cpp.
References integer_construct.
00056 { 00057 return integer_construct (arg_1); 00058 }
static row_tuple<generic> mmx::GLUE_1 | ( | const row_tuple< mmx_modular(integer) > & | arg_1 | ) | [static] |
Definition at line 81 of file glue_matrix_modular_integer.cpp.
References arg_1.
00081 { 00082 return as<row_tuple<generic> > (arg_1); 00083 }
static generic mmx::GLUE_1 | ( | const integer & | arg_1, | |
const integer & | arg_2 | |||
) | [static] |
Definition at line 60 of file glue_series_modular_integer.cpp.
References old_integer_pow.
00060 { 00061 return old_integer_pow (arg_1, arg_2); 00062 }
static bool mmx::GLUE_1 | ( | const generic & | arg_1 | ) | [static] |
Definition at line 80 of file glue_matrix_generic.cpp.
References arg_1.
00080 { 00081 return generic_is_string (arg_1); 00082 }
static algebraic_real mmx::GLUE_1 | ( | const rational & | arg_1 | ) | [static] |
Definition at line 63 of file glue_algebraic_number.cpp.
00063 { 00064 return algebraic_real (arg_1); 00065 }
static algebraic<generic> mmx::GLUE_1 | ( | const polynomial< generic > & | arg_1 | ) | [static] |
Definition at line 45 of file glue_algebraic_generic.cpp.
Referenced by glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_p_adic_modular_integer(), glue_p_expansion_modular_integer(), glue_permutation(), glue_polynomial_generic(), glue_polynomial_integer(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_quotient_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_generic(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
00045 { 00046 return algebraic<generic > (arg_1); 00047 }
static alias<vector<rational> > mmx::GLUE_10 | ( | const alias< vector< rational > > & | arg_1, | |
const vector< rational > & | arg_2 | |||
) | [static] |
Definition at line 70 of file glue_vector_rational.cpp.
References arg_1.
static alias<vector<integer> > mmx::GLUE_10 | ( | const alias< vector< integer > > & | arg_1, | |
const vector< integer > & | arg_2 | |||
) | [static] |
Definition at line 65 of file glue_vector_integer.cpp.
References arg_1.
static alias<vector<int> > mmx::GLUE_10 | ( | const alias< vector< int > > & | arg_1, | |
const vector< int > & | arg_2 | |||
) | [static] |
Definition at line 59 of file glue_vector_int.cpp.
References arg_1.
static polynomial<rational> mmx::GLUE_10 | ( | const series< rational > & | arg_1, | |
const int & | arg_2, | |||
const int & | arg_3 | |||
) | [static] |
static iterator<generic> mmx::GLUE_10 | ( | const series< mmx_modular(integer) > & | arg_1 | ) | [static] |
static iterator<generic> mmx::GLUE_10 | ( | const series< integer > & | arg_1 | ) | [static] |
Definition at line 101 of file glue_series_integer.cpp.
References iterate().
static polynomial<generic> mmx::GLUE_10 | ( | const series< generic > & | arg_1, | |
const int & | arg_2, | |||
const int & | arg_3 | |||
) | [static] |
static quotient< polynomial<rational> , polynomial<rational> > mmx::GLUE_10 | ( | const quotient< polynomial< rational >, polynomial< rational > > & | arg_1, | |
const quotient< polynomial< rational >, polynomial< rational > > & | arg_2 | |||
) | [static] |
Definition at line 102 of file glue_quotient_polynomial_rational.cpp.
static polynomial<rational> mmx::GLUE_10 | ( | const polynomial< rational > & | arg_1 | ) | [static] |
Definition at line 101 of file glue_polynomial_rational.cpp.
References square().
static polynomial<series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> > mmx::GLUE_10 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1 | ) | [static] |
static polynomial<integer> mmx::GLUE_10 | ( | const polynomial< integer > & | arg_1 | ) | [static] |
Definition at line 92 of file glue_polynomial_integer.cpp.
References square().
static bool mmx::GLUE_10 | ( | const vector< generic > & | arg_1, | |
const vector< generic > & | arg_2 | |||
) | [static] |
Definition at line 57 of file glue_vector_generic.cpp.
static permutation mmx::GLUE_10 | ( | const permutation & | arg_1, | |
const permutation & | arg_2 | |||
) | [static] |
Definition at line 59 of file glue_permutation.cpp.
static series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> mmx::GLUE_10 | ( | const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_1 | ) | [static] |
Definition at line 84 of file glue_p_adic_modular_integer.cpp.
00084 { 00085 return -arg_1; 00086 }
static alias<rational> mmx::GLUE_10 | ( | const alias< matrix< rational > > & | arg_1, | |
const int & | arg_2, | |||
const int & | arg_3 | |||
) | [static] |
Definition at line 128 of file glue_matrix_rational.cpp.
References arg_1.
static integer mmx::GLUE_10 | ( | const matrix< integer > & | arg_1, | |
const int & | arg_2, | |||
const int & | arg_3 | |||
) | [static] |
Definition at line 125 of file glue_matrix_integer.cpp.
References arg_1.
static bool mmx::GLUE_10 | ( | const string & | arg_1, | |
const string & | arg_2 | |||
) | [static] |
Definition at line 125 of file glue_matrix_generic.cpp.
static algebraic_real mmx::GLUE_10 | ( | const algebraic_real & | arg_1, | |
const algebraic_real & | arg_2 | |||
) | [static] |
Definition at line 108 of file glue_algebraic_number.cpp.
static algebraic<generic> mmx::GLUE_10 | ( | const algebraic< generic > & | arg_1, | |
const algebraic< generic > & | arg_2 | |||
) | [static] |
Definition at line 90 of file glue_algebraic_generic.cpp.
Referenced by glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_p_adic_modular_integer(), glue_permutation(), glue_polynomial_generic(), glue_polynomial_integer(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_quotient_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_generic(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static bool mmx::GLUE_100 | ( | const rational & | arg_1, | |
const vector< rational > & | arg_2 | |||
) | [static] |
Definition at line 520 of file glue_vector_rational.cpp.
static series<complex<rational> > mmx::GLUE_100 | ( | const series< complex< rational > > & | arg_1, | |
const complex< rational > & | arg_2 | |||
) | [static] |
Definition at line 559 of file glue_series_rational.cpp.
References arg_1.
Definition at line 551 of file glue_polynomial_rational.cpp.
References discriminant().
00551 { 00552 return discriminant (arg_1); 00553 }
static polynomial<generic> mmx::GLUE_100 | ( | const polynomial< generic > & | arg_1, | |
const polynomial< generic > & | arg_2 | |||
) | [static] |
static matrix<complex<rational> > mmx::GLUE_100 | ( | const matrix< complex< rational > > & | arg_1, | |
const complex< rational > & | arg_2 | |||
) | [static] |
Definition at line 578 of file glue_matrix_rational.cpp.
References arg_1.
Referenced by glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
static vector<rational> mmx::GLUE_101 | ( | const vector< rational > & | arg_1, | |
const vector< rational > & | arg_2 | |||
) | [static] |
Definition at line 525 of file glue_vector_rational.cpp.
static series<complex<rational> > mmx::GLUE_101 | ( | const complex< rational > & | arg_1, | |
const series< complex< rational > > & | arg_2 | |||
) | [static] |
Definition at line 564 of file glue_series_rational.cpp.
References arg_2.
static polynomial<complex<rational> > mmx::GLUE_101 | ( | const polynomial< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 556 of file glue_polynomial_rational.cpp.
References integrate().
static polynomial<generic> mmx::GLUE_101 | ( | const polynomial< generic > & | arg_1, | |
const polynomial< generic > & | arg_2 | |||
) | [static] |
static matrix<complex<rational> > mmx::GLUE_101 | ( | const complex< rational > & | arg_1, | |
const matrix< complex< rational > > & | arg_2 | |||
) | [static] |
Definition at line 583 of file glue_matrix_rational.cpp.
References arg_2.
Referenced by glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
static vector<rational> mmx::GLUE_102 | ( | const vector< rational > & | arg_1, | |
const vector< rational > & | arg_2 | |||
) | [static] |
Definition at line 530 of file glue_vector_rational.cpp.
static series<complex<rational> > mmx::GLUE_102 | ( | const series< complex< rational > > & | arg_1, | |
const complex< rational > & | arg_2 | |||
) | [static] |
Definition at line 569 of file glue_series_rational.cpp.
References arg_1.
static polynomial<complex<rational> > mmx::GLUE_102 | ( | const polynomial< complex< rational > > & | arg_1, | |
const polynomial< complex< rational > > & | arg_2 | |||
) | [static] |
static bool mmx::GLUE_102 | ( | const polynomial< generic > & | arg_1, | |
const polynomial< generic > & | arg_2 | |||
) | [static] |
static matrix<complex<rational> > mmx::GLUE_102 | ( | const matrix< complex< rational > > & | arg_1, | |
const complex< rational > & | arg_2 | |||
) | [static] |
Definition at line 588 of file glue_matrix_rational.cpp.
References arg_1.
Referenced by glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
static vector<rational> mmx::GLUE_103 | ( | const vector< rational > & | arg_1 | ) | [static] |
Definition at line 535 of file glue_vector_rational.cpp.
References abs().
static series<complex<rational> > mmx::GLUE_103 | ( | const complex< rational > & | arg_1, | |
const series< complex< rational > > & | arg_2 | |||
) | [static] |
Definition at line 574 of file glue_series_rational.cpp.
References arg_2.
static polynomial<complex<rational> > mmx::GLUE_103 | ( | const polynomial< complex< rational > > & | arg_1, | |
const complex< rational > & | arg_2 | |||
) | [static] |
Definition at line 566 of file glue_polynomial_rational.cpp.
References q_difference().
00566 { 00567 return q_difference (arg_1, arg_2); 00568 }
static polynomial<generic> mmx::GLUE_103 | ( | const polynomial< generic > & | arg_1, | |
const polynomial< generic > & | arg_2, | |||
const int & | arg_3 | |||
) | [static] |
Definition at line 556 of file glue_polynomial_generic.cpp.
References subresultant().
00556 { 00557 return subresultant (arg_1, arg_2, arg_3); 00558 }
static vector<complex<rational> > mmx::GLUE_103 | ( | const matrix< complex< rational > > & | arg_1, | |
const vector< complex< rational > > & | arg_2 | |||
) | [static] |
Definition at line 593 of file glue_matrix_rational.cpp.
Referenced by glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
Definition at line 540 of file glue_vector_rational.cpp.
00540 { 00541 return as<vector<complex<rational> > > (arg_1); 00542 }
static series<complex<rational> > mmx::GLUE_104 | ( | const series< complex< rational > > & | arg_1, | |
const complex< rational > & | arg_2 | |||
) | [static] |
Definition at line 579 of file glue_series_rational.cpp.
References arg_1.
static polynomial<complex<rational> > mmx::GLUE_104 | ( | const polynomial< complex< rational > > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
static vector<generic> mmx::GLUE_104 | ( | const polynomial< generic > & | arg_1, | |
const polynomial< generic > & | arg_2 | |||
) | [static] |
Definition at line 561 of file glue_polynomial_generic.cpp.
References wrap_subresultants().
00561 { 00562 return wrap_subresultants (arg_1, arg_2); 00563 }
static vector<complex<rational> > mmx::GLUE_104 | ( | const vector< complex< rational > > & | arg_1, | |
const matrix< complex< rational > > & | arg_2 | |||
) | [static] |
Definition at line 598 of file glue_matrix_rational.cpp.
Referenced by glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
static polynomial<complex<rational> > mmx::GLUE_105 | ( | const vector< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 576 of file glue_polynomial_rational.cpp.
References annulator().
static generic mmx::GLUE_105 | ( | const polynomial< generic > & | arg_1, | |
const polynomial< generic > & | arg_2 | |||
) | [static] |
Definition at line 566 of file glue_polynomial_generic.cpp.
References resultant().
static bool mmx::GLUE_105 | ( | const matrix< complex< rational > > & | arg_1, | |
const matrix< complex< rational > > & | arg_2 | |||
) | [static] |
Definition at line 603 of file glue_matrix_rational.cpp.
Referenced by glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_rational(), and glue_series_rational().
static polynomial<complex<rational> > mmx::GLUE_106 | ( | const vector< complex< rational > > & | arg_1, | |
const vector< complex< rational > > & | arg_2 | |||
) | [static] |
Definition at line 581 of file glue_polynomial_rational.cpp.
References arg_2, and interpolate().
00581 { 00582 return interpolate (arg_1, arg_2); 00583 }
static generic mmx::GLUE_106 | ( | const polynomial< generic > & | arg_1 | ) | [static] |
Definition at line 571 of file glue_polynomial_generic.cpp.
References discriminant().
00571 { 00572 return discriminant (arg_1); 00573 }
static bool mmx::GLUE_106 | ( | const matrix< complex< rational > > & | arg_1, | |
const matrix< complex< rational > > & | arg_2 | |||
) | [static] |
Definition at line 608 of file glue_matrix_rational.cpp.
Referenced by glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_rational(), and glue_series_rational().
static bool mmx::GLUE_107 | ( | const series< complex< rational > > & | arg_1, | |
const series< complex< rational > > & | arg_2 | |||
) | [static] |
static polynomial<complex<rational> > mmx::GLUE_107 | ( | const polynomial< complex< rational > > & | arg_1, | |
const complex< rational > & | arg_2 | |||
) | [static] |
static polynomial<generic> mmx::GLUE_107 | ( | const polynomial< generic > & | arg_1 | ) | [static] |
Definition at line 576 of file glue_polynomial_generic.cpp.
References integrate().
static bool mmx::GLUE_107 | ( | const matrix< complex< rational > > & | arg_1, | |
const complex< rational > & | arg_2 | |||
) | [static] |
Definition at line 613 of file glue_matrix_rational.cpp.
References arg_1.
Referenced by glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_rational(), and glue_series_rational().
static bool mmx::GLUE_108 | ( | const series< complex< rational > > & | arg_1, | |
const series< complex< rational > > & | arg_2 | |||
) | [static] |
static polynomial<complex<rational> > mmx::GLUE_108 | ( | const polynomial< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 591 of file glue_polynomial_rational.cpp.
References graeffe().
static polynomial<generic> mmx::GLUE_108 | ( | const polynomial< generic > & | arg_1, | |
const polynomial< generic > & | arg_2 | |||
) | [static] |
static bool mmx::GLUE_108 | ( | const matrix< complex< rational > > & | arg_1, | |
const complex< rational > & | arg_2 | |||
) | [static] |
Definition at line 618 of file glue_matrix_rational.cpp.
References arg_1.
Referenced by glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_rational(), and glue_series_rational().
static bool mmx::GLUE_109 | ( | const series< complex< rational > > & | arg_1, | |
const complex< rational > & | arg_2 | |||
) | [static] |
Definition at line 604 of file glue_series_rational.cpp.
References arg_1.
static polynomial<complex<rational> > mmx::GLUE_109 | ( | const polynomial< integer > & | arg_1 | ) | [static] |
Definition at line 596 of file glue_polynomial_rational.cpp.
00596 { 00597 return as<polynomial<complex<rational> > > (arg_1); 00598 }
static polynomial<generic> mmx::GLUE_109 | ( | const polynomial< generic > & | arg_1, | |
const generic & | arg_2 | |||
) | [static] |
Definition at line 586 of file glue_polynomial_generic.cpp.
References arg_2, and q_difference().
00586 { 00587 return q_difference (arg_1, arg_2); 00588 }
static bool mmx::GLUE_109 | ( | const complex< rational > & | arg_1, | |
const matrix< complex< rational > > & | arg_2 | |||
) | [static] |
Definition at line 623 of file glue_matrix_rational.cpp.
References arg_2.
Referenced by glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_rational(), and glue_series_rational().
static vector<rational> mmx::GLUE_11 | ( | const rational & | arg_1, | |
const vector< rational > & | arg_2 | |||
) | [static] |
Definition at line 75 of file glue_vector_rational.cpp.
static vector<integer> mmx::GLUE_11 | ( | const integer & | arg_1, | |
const vector< integer > & | arg_2 | |||
) | [static] |
Definition at line 70 of file glue_vector_integer.cpp.
static vector<int> mmx::GLUE_11 | ( | const int & | arg_1, | |
const vector< int > & | arg_2 | |||
) | [static] |
Definition at line 64 of file glue_vector_int.cpp.
Definition at line 114 of file glue_series_rational.cpp.
00114 { 00115 return -arg_1; 00116 }
static integer mmx::GLUE_11 | ( | const series< integer > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
Definition at line 106 of file glue_series_integer.cpp.
static series<generic> mmx::GLUE_11 | ( | const series< generic > & | arg_1 | ) | [static] |
Definition at line 106 of file glue_series_generic.cpp.
00106 { 00107 return -arg_1; 00108 }
static quotient< polynomial<rational> , polynomial<rational> > mmx::GLUE_11 | ( | const quotient< polynomial< rational >, polynomial< rational > > & | arg_1, | |
const quotient< polynomial< rational >, polynomial< rational > > & | arg_2 | |||
) | [static] |
Definition at line 107 of file glue_quotient_polynomial_rational.cpp.
static polynomial<rational> mmx::GLUE_11 | ( | const polynomial< rational > & | arg_1, | |
const polynomial< rational > & | arg_2 | |||
) | [static] |
Definition at line 106 of file glue_polynomial_rational.cpp.
static polynomial<series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> > mmx::GLUE_11 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1, | |
const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_2 | |||
) | [static] |
static polynomial<integer> mmx::GLUE_11 | ( | const polynomial< integer > & | arg_1, | |
const polynomial< integer > & | arg_2 | |||
) | [static] |
Definition at line 97 of file glue_polynomial_integer.cpp.
static vector<generic> mmx::GLUE_11 | ( | const vector< generic > & | arg_1 | ) | [static] |
Definition at line 62 of file glue_vector_generic.cpp.
References invert().
static permutation mmx::GLUE_11 | ( | const permutation & | arg_1 | ) | [static] |
Definition at line 64 of file glue_permutation.cpp.
References invert().
static series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> mmx::GLUE_11 | ( | const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_1 | ) | [static] |
Definition at line 89 of file glue_p_adic_modular_integer.cpp.
References square().
static alias<integer> mmx::GLUE_11 | ( | const alias< matrix< integer > > & | arg_1, | |
const int & | arg_2, | |||
const int & | arg_3 | |||
) | [static] |
Definition at line 130 of file glue_matrix_integer.cpp.
References arg_1.
static bool mmx::GLUE_11 | ( | const string & | arg_1, | |
const string & | arg_2 | |||
) | [static] |
Definition at line 130 of file glue_matrix_generic.cpp.
static algebraic_real mmx::GLUE_11 | ( | const algebraic_real & | arg_1, | |
const algebraic_real & | arg_2 | |||
) | [static] |
Definition at line 113 of file glue_algebraic_number.cpp.
static algebraic<generic> mmx::GLUE_11 | ( | const algebraic< generic > & | arg_1, | |
const algebraic< generic > & | arg_2 | |||
) | [static] |
Definition at line 95 of file glue_algebraic_generic.cpp.
Referenced by glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_p_adic_modular_integer(), glue_permutation(), glue_polynomial_generic(), glue_polynomial_integer(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_quotient_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_generic(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static bool mmx::GLUE_110 | ( | const series< complex< rational > > & | arg_1, | |
const complex< rational > & | arg_2 | |||
) | [static] |
Definition at line 609 of file glue_series_rational.cpp.
References arg_1.
static polynomial<complex<rational> > mmx::GLUE_110 | ( | const polynomial< rational > & | arg_1 | ) | [static] |
Definition at line 601 of file glue_polynomial_rational.cpp.
00601 { 00602 return as<polynomial<complex<rational> > > (arg_1); 00603 }
static polynomial<generic> mmx::GLUE_110 | ( | const polynomial< generic > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
static bool mmx::GLUE_110 | ( | const complex< rational > & | arg_1, | |
const matrix< complex< rational > > & | arg_2 | |||
) | [static] |
Definition at line 628 of file glue_matrix_rational.cpp.
References arg_2.
Referenced by glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_rational(), and glue_series_rational().
static bool mmx::GLUE_111 | ( | const complex< rational > & | arg_1, | |
const series< complex< rational > > & | arg_2 | |||
) | [static] |
Definition at line 614 of file glue_series_rational.cpp.
References arg_2.
static polynomial<generic> mmx::GLUE_111 | ( | const polynomial< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 606 of file glue_polynomial_rational.cpp.
00606 { 00607 return as<polynomial<generic> > (arg_1); 00608 }
static polynomial<generic> mmx::GLUE_111 | ( | const vector< generic > & | arg_1 | ) | [static] |
Definition at line 596 of file glue_polynomial_generic.cpp.
References annulator().
static matrix<complex<rational> > mmx::GLUE_111 | ( | const complex< rational > & | arg_1, | |
const matrix< complex< rational > > & | arg_2 | |||
) | [static] |
Definition at line 633 of file glue_matrix_rational.cpp.
References arg_2.
Referenced by glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_rational(), and glue_series_rational().
static bool mmx::GLUE_112 | ( | const complex< rational > & | arg_1, | |
const series< complex< rational > > & | arg_2 | |||
) | [static] |
Definition at line 619 of file glue_series_rational.cpp.
References arg_2.
static polynomial<generic> mmx::GLUE_112 | ( | const vector< generic > & | arg_1, | |
const vector< generic > & | arg_2 | |||
) | [static] |
Definition at line 601 of file glue_polynomial_generic.cpp.
References interpolate().
00601 { 00602 return interpolate (arg_1, arg_2); 00603 }
static matrix<complex<rational> > mmx::GLUE_112 | ( | const matrix< complex< rational > > & | arg_1, | |
const complex< rational > & | arg_2 | |||
) | [static] |
Definition at line 638 of file glue_matrix_rational.cpp.
References arg_1.
Referenced by glue_matrix_rational(), glue_polynomial_generic(), and glue_series_rational().
static polynomial<generic> mmx::GLUE_113 | ( | const polynomial< generic > & | arg_1, | |
const generic & | arg_2 | |||
) | [static] |
static matrix<complex<rational> > mmx::GLUE_113 | ( | const matrix< complex< rational > > & | arg_1, | |
const matrix< complex< rational > > & | arg_2 | |||
) | [static] |
Definition at line 643 of file glue_matrix_rational.cpp.
References arg_1, arg_2, and krylov().
Referenced by glue_matrix_rational(), glue_polynomial_generic(), and glue_series_rational().
static polynomial<generic> mmx::GLUE_114 | ( | const polynomial< generic > & | arg_1 | ) | [static] |
Definition at line 611 of file glue_polynomial_generic.cpp.
References graeffe().
Definition at line 648 of file glue_matrix_rational.cpp.
Referenced by glue_matrix_rational(), glue_polynomial_generic(), and glue_series_rational().
static generic mmx::GLUE_115 | ( | const polynomial< generic > & | arg_1 | ) | [static] |
Definition at line 616 of file glue_polynomial_generic.cpp.
References contents().
static matrix<complex<rational> > mmx::GLUE_115 | ( | const matrix< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 653 of file glue_matrix_rational.cpp.
References arg_1, and row_echelon().
Referenced by glue_matrix_rational(), glue_polynomial_generic(), and glue_series_rational().
00653 { 00654 return row_echelon (arg_1); 00655 }
static polynomial<generic> mmx::GLUE_116 | ( | const polynomial< generic > & | arg_1 | ) | [static] |
Definition at line 621 of file glue_polynomial_generic.cpp.
References primitive_part().
00621 { 00622 return primitive_part (arg_1); 00623 }
static matrix<complex<rational> > mmx::GLUE_116 | ( | const matrix< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 658 of file glue_matrix_rational.cpp.
References arg_1, and column_echelon().
Referenced by glue_matrix_rational(), glue_polynomial_generic(), and glue_series_rational().
00658 { 00659 return column_echelon (arg_1); 00660 }
static polynomial<generic> mmx::GLUE_117 | ( | const polynomial< generic > & | arg_1, | |
const polynomial< generic > & | arg_2 | |||
) | [static] |
static matrix<complex<rational> > mmx::GLUE_117 | ( | const matrix< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 663 of file glue_matrix_rational.cpp.
References arg_1, and row_reduced_echelon().
Referenced by glue_matrix_rational(), glue_polynomial_generic(), and glue_series_rational().
00663 { 00664 return row_reduced_echelon (arg_1); 00665 }
static void mmx::GLUE_118 | ( | const series< unknown< rational > > & | arg_1, | |
const generic & | arg_2 | |||
) | [static] |
Definition at line 649 of file glue_series_rational.cpp.
References arg_1, arg_2, and set_variable_name().
00649 { 00650 set_variable_name (arg_1, arg_2); 00651 }
static polynomial<generic> mmx::GLUE_118 | ( | const polynomial< generic > & | arg_1, | |
const polynomial< generic > & | arg_2 | |||
) | [static] |
static matrix<complex<rational> > mmx::GLUE_118 | ( | const matrix< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 668 of file glue_matrix_rational.cpp.
References arg_1, and column_reduced_echelon().
Referenced by glue_matrix_rational(), glue_polynomial_generic(), and glue_series_rational().
00668 { 00669 return column_reduced_echelon (arg_1); 00670 }
static void mmx::GLUE_119 | ( | const series< unknown< rational > > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
Definition at line 654 of file glue_series_rational.cpp.
References arg_1, and set_output_order().
00654 { 00655 set_output_order (arg_1, arg_2); 00656 }
static vector<generic> mmx::GLUE_119 | ( | const matrix< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 673 of file glue_matrix_rational.cpp.
References arg_1, and wrap_row_reduced_echelon_with_transform().
Referenced by glue_matrix_rational(), and glue_series_rational().
00673 { 00674 return wrap_row_reduced_echelon_with_transform (arg_1); 00675 }
static rational mmx::GLUE_12 | ( | const vector< rational > & | arg_1 | ) | [static] |
Definition at line 80 of file glue_vector_rational.cpp.
References car().
static integer mmx::GLUE_12 | ( | const vector< integer > & | arg_1 | ) | [static] |
Definition at line 75 of file glue_vector_integer.cpp.
References car().
static int mmx::GLUE_12 | ( | const vector< int > & | arg_1 | ) | [static] |
Definition at line 69 of file glue_vector_int.cpp.
References car().
Definition at line 119 of file glue_series_rational.cpp.
References square().
static polynomial<integer> mmx::GLUE_12 | ( | const series< integer > & | arg_1, | |
const int & | arg_2, | |||
const int & | arg_3 | |||
) | [static] |
static series<generic> mmx::GLUE_12 | ( | const series< generic > & | arg_1 | ) | [static] |
Definition at line 111 of file glue_series_generic.cpp.
References square().
static quotient< polynomial<rational> , polynomial<rational> > mmx::GLUE_12 | ( | const quotient< polynomial< rational >, polynomial< rational > > & | arg_1, | |
const quotient< polynomial< rational >, polynomial< rational > > & | arg_2 | |||
) | [static] |
Definition at line 112 of file glue_quotient_polynomial_rational.cpp.
static polynomial<rational> mmx::GLUE_12 | ( | const polynomial< rational > & | arg_1, | |
const polynomial< rational > & | arg_2 | |||
) | [static] |
Definition at line 111 of file glue_polynomial_rational.cpp.
static polynomial<series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> > mmx::GLUE_12 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1, | |
const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_2 | |||
) | [static] |
static polynomial<integer> mmx::GLUE_12 | ( | const polynomial< integer > & | arg_1, | |
const polynomial< integer > & | arg_2 | |||
) | [static] |
Definition at line 102 of file glue_polynomial_integer.cpp.
static vector<generic> mmx::GLUE_12 | ( | const vector< generic > & | arg_1, | |
const vector< generic > & | arg_2 | |||
) | [static] |
Definition at line 67 of file glue_vector_generic.cpp.
static series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> mmx::GLUE_12 | ( | const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_1, | |
const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_2 | |||
) | [static] |
Definition at line 94 of file glue_p_adic_modular_integer.cpp.
Definition at line 138 of file glue_matrix_rational.cpp.
References transpose().
static bool mmx::GLUE_12 | ( | const string & | arg_1, | |
const string & | arg_2 | |||
) | [static] |
Definition at line 135 of file glue_matrix_generic.cpp.
static algebraic_real mmx::GLUE_12 | ( | const algebraic_real & | arg_1, | |
const algebraic_real & | arg_2 | |||
) | [static] |
Definition at line 118 of file glue_algebraic_number.cpp.
static algebraic<generic> mmx::GLUE_12 | ( | const algebraic< generic > & | arg_1, | |
const algebraic< generic > & | arg_2 | |||
) | [static] |
Definition at line 100 of file glue_algebraic_generic.cpp.
Referenced by glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_p_adic_modular_integer(), glue_polynomial_generic(), glue_polynomial_integer(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_quotient_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_generic(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static void mmx::GLUE_120 | ( | const series< unknown< rational > > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
Definition at line 659 of file glue_series_rational.cpp.
References arg_1, and set_cancel_order().
00659 { 00660 set_cancel_order (arg_1, arg_2); 00661 }
static vector<generic> mmx::GLUE_120 | ( | const matrix< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 678 of file glue_matrix_rational.cpp.
References arg_1, and wrap_column_reduced_echelon_with_transform().
Referenced by glue_matrix_rational(), and glue_series_rational().
00678 { 00679 return wrap_column_reduced_echelon_with_transform (arg_1); 00680 }
static void mmx::GLUE_121 | ( | const series< unknown< rational > > & | arg_1, | |
const bool & | arg_2 | |||
) | [static] |
Definition at line 664 of file glue_series_rational.cpp.
References arg_1, and set_formula_output().
00664 { 00665 set_formula_output (arg_1, arg_2); 00666 }
static vector<generic> mmx::GLUE_121 | ( | const matrix< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 683 of file glue_matrix_rational.cpp.
References arg_1, and wrap_column_reduced_echelon_with_permutation().
Referenced by glue_matrix_rational(), and glue_series_rational().
00683 { 00684 return wrap_column_reduced_echelon_with_permutation (arg_1); 00685 }
static series<unknown<rational> > mmx::GLUE_122 | ( | const tuple< unknown< rational > > & | arg_1 | ) | [static] |
Definition at line 669 of file glue_series_rational.cpp.
References arg_1, and as_vector().
static matrix<complex<rational> > mmx::GLUE_122 | ( | const matrix< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 688 of file glue_matrix_rational.cpp.
References arg_1, and kernel().
Referenced by glue_matrix_rational(), and glue_series_rational().
Definition at line 674 of file glue_series_rational.cpp.
00674 { 00675 return series<unknown<rational> > (arg_1); 00676 }
static matrix<complex<rational> > mmx::GLUE_123 | ( | const matrix< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 693 of file glue_matrix_rational.cpp.
References arg_1, and image().
Referenced by glue_matrix_rational(), and glue_series_rational().
static iterator<generic> mmx::GLUE_124 | ( | const series< unknown< rational > > & | arg_1 | ) | [static] |
static int mmx::GLUE_124 | ( | const matrix< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 698 of file glue_matrix_rational.cpp.
Referenced by glue_matrix_rational(), and glue_series_rational().
static unknown<rational> mmx::GLUE_125 | ( | const series< unknown< rational > > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
Definition at line 684 of file glue_series_rational.cpp.
References arg_1.
static matrix<complex<rational> > mmx::GLUE_125 | ( | const matrix< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 703 of file glue_matrix_rational.cpp.
References arg_1, and invert().
Referenced by glue_matrix_rational(), and glue_series_rational().
static series<unknown<rational> > mmx::GLUE_126 | ( | const series< unknown< rational > > & | arg_1 | ) | [static] |
Definition at line 689 of file glue_series_rational.cpp.
References arg_1.
00689 { 00690 return -arg_1; 00691 }
Definition at line 708 of file glue_matrix_rational.cpp.
References abs().
Referenced by glue_matrix_rational(), and glue_series_rational().
Definition at line 713 of file glue_matrix_rational.cpp.
Referenced by glue_matrix_rational(), and glue_series_rational().
00713 { 00714 return as<row_tuple<complex<rational> > > (arg_1); 00715 }
Definition at line 718 of file glue_matrix_rational.cpp.
Referenced by glue_matrix_rational(), and glue_series_rational().
00718 { 00719 return as<matrix<complex<rational> > > (arg_1); 00720 }
static series<unknown<rational> > mmx::GLUE_129 | ( | const series< unknown< rational > > & | arg_1, | |
const series< unknown< rational > > & | arg_2 | |||
) | [static] |
Definition at line 704 of file glue_series_rational.cpp.
Referenced by glue_series_rational().
static vector<rational> mmx::GLUE_13 | ( | const vector< rational > & | arg_1 | ) | [static] |
Definition at line 85 of file glue_vector_rational.cpp.
References cdr().
static vector<integer> mmx::GLUE_13 | ( | const vector< integer > & | arg_1 | ) | [static] |
Definition at line 80 of file glue_vector_integer.cpp.
References cdr().
static vector<int> mmx::GLUE_13 | ( | const vector< int > & | arg_1 | ) | [static] |
Definition at line 74 of file glue_vector_int.cpp.
References cdr().
static series<rational> mmx::GLUE_13 | ( | const series< rational > & | arg_1, | |
const series< rational > & | arg_2 | |||
) | [static] |
Definition at line 124 of file glue_series_rational.cpp.
Definition at line 116 of file glue_series_integer.cpp.
00116 { 00117 return -arg_1; 00118 }
static series<generic> mmx::GLUE_13 | ( | const series< generic > & | arg_1, | |
const series< generic > & | arg_2 | |||
) | [static] |
Definition at line 116 of file glue_series_generic.cpp.
static quotient< polynomial<rational> , polynomial<rational> > mmx::GLUE_13 | ( | const polynomial< rational > & | arg_1, | |
const quotient< polynomial< rational >, polynomial< rational > > & | arg_2 | |||
) | [static] |
Definition at line 117 of file glue_quotient_polynomial_rational.cpp.
static polynomial<rational> mmx::GLUE_13 | ( | const polynomial< rational > & | arg_1, | |
const polynomial< rational > & | arg_2 | |||
) | [static] |
Definition at line 116 of file glue_polynomial_rational.cpp.
static polynomial<series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> > mmx::GLUE_13 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1, | |
const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_2 | |||
) | [static] |
static polynomial<integer> mmx::GLUE_13 | ( | const polynomial< integer > & | arg_1, | |
const polynomial< integer > & | arg_2 | |||
) | [static] |
Definition at line 107 of file glue_polynomial_integer.cpp.
static bool mmx::GLUE_13 | ( | const vector< generic > & | arg_1, | |
const vector< generic > & | arg_2 | |||
) | [static] |
Definition at line 72 of file glue_vector_generic.cpp.
static series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> mmx::GLUE_13 | ( | const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_1, | |
const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_2 | |||
) | [static] |
Definition at line 99 of file glue_p_adic_modular_integer.cpp.
static matrix<rational> mmx::GLUE_13 | ( | const matrix< rational > & | arg_1, | |
const matrix< rational > & | arg_2 | |||
) | [static] |
Definition at line 143 of file glue_matrix_rational.cpp.
References horizontal_join().
00143 { 00144 return horizontal_join (arg_1, arg_2); 00145 }
Definition at line 140 of file glue_matrix_integer.cpp.
References transpose().
static string mmx::GLUE_13 | ( | const string & | arg_1, | |
const string & | arg_2, | |||
const string & | arg_3 | |||
) | [static] |
Definition at line 140 of file glue_matrix_generic.cpp.
static algebraic_real mmx::GLUE_13 | ( | const rational & | arg_1, | |
const algebraic_real & | arg_2 | |||
) | [static] |
Definition at line 123 of file glue_algebraic_number.cpp.
static bool mmx::GLUE_13 | ( | const algebraic< generic > & | arg_1, | |
const algebraic< generic > & | arg_2 | |||
) | [static] |
Definition at line 105 of file glue_algebraic_generic.cpp.
Referenced by glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_p_adic_modular_integer(), glue_polynomial_generic(), glue_polynomial_integer(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_quotient_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_generic(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static series<unknown<rational> > mmx::GLUE_130 | ( | const series< unknown< rational > > & | arg_1, | |
const series< unknown< rational > > & | arg_2 | |||
) | [static] |
Definition at line 709 of file glue_series_rational.cpp.
Referenced by glue_series_rational().
static series<unknown<rational> > mmx::GLUE_131 | ( | const unknown< rational > & | arg_1, | |
const series< unknown< rational > > & | arg_2 | |||
) | [static] |
Definition at line 714 of file glue_series_rational.cpp.
References arg_2.
Referenced by glue_series_rational().
static series<unknown<rational> > mmx::GLUE_132 | ( | const series< unknown< rational > > & | arg_1, | |
const unknown< rational > & | arg_2 | |||
) | [static] |
Definition at line 719 of file glue_series_rational.cpp.
References arg_1.
Referenced by glue_series_rational().
static series<unknown<rational> > mmx::GLUE_133 | ( | const unknown< rational > & | arg_1, | |
const series< unknown< rational > > & | arg_2 | |||
) | [static] |
Definition at line 724 of file glue_series_rational.cpp.
References arg_2.
Referenced by glue_series_rational().
static series<unknown<rational> > mmx::GLUE_134 | ( | const series< unknown< rational > > & | arg_1, | |
const unknown< rational > & | arg_2 | |||
) | [static] |
Definition at line 729 of file glue_series_rational.cpp.
References arg_1.
Referenced by glue_series_rational().
static series<unknown<rational> > mmx::GLUE_135 | ( | const unknown< rational > & | arg_1, | |
const series< unknown< rational > > & | arg_2 | |||
) | [static] |
Definition at line 734 of file glue_series_rational.cpp.
References arg_2.
Referenced by glue_series_rational().
static series<unknown<rational> > mmx::GLUE_136 | ( | const series< unknown< rational > > & | arg_1, | |
const unknown< rational > & | arg_2 | |||
) | [static] |
Definition at line 739 of file glue_series_rational.cpp.
References arg_1.
Referenced by glue_series_rational().
static series<unknown<rational> > mmx::GLUE_137 | ( | const series< unknown< rational > > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
Definition at line 744 of file glue_series_rational.cpp.
References arg_1, and binpow().
Referenced by glue_series_rational().
static series<unknown<rational> > mmx::GLUE_138 | ( | const series< unknown< rational > > & | arg_1, | |
const integer & | arg_2 | |||
) | [static] |
Definition at line 749 of file glue_series_rational.cpp.
References arg_1, and binpow().
Referenced by glue_series_rational().
static bool mmx::GLUE_139 | ( | const series< unknown< rational > > & | arg_1, | |
const series< unknown< rational > > & | arg_2 | |||
) | [static] |
Definition at line 754 of file glue_series_rational.cpp.
Referenced by glue_series_rational().
static bool mmx::GLUE_14 | ( | const vector< rational > & | arg_1 | ) | [static] |
Definition at line 90 of file glue_vector_rational.cpp.
00090 { 00091 return is_nil (arg_1); 00092 }
static bool mmx::GLUE_14 | ( | const vector< integer > & | arg_1 | ) | [static] |
Definition at line 85 of file glue_vector_integer.cpp.
00085 { 00086 return is_nil (arg_1); 00087 }
static bool mmx::GLUE_14 | ( | const vector< int > & | arg_1 | ) | [static] |
Definition at line 79 of file glue_vector_int.cpp.
00079 { 00080 return is_nil (arg_1); 00081 }
static series<rational> mmx::GLUE_14 | ( | const series< rational > & | arg_1, | |
const series< rational > & | arg_2 | |||
) | [static] |
Definition at line 129 of file glue_series_rational.cpp.
Definition at line 121 of file glue_series_integer.cpp.
References square().
static series<generic> mmx::GLUE_14 | ( | const series< generic > & | arg_1, | |
const series< generic > & | arg_2 | |||
) | [static] |
Definition at line 121 of file glue_series_generic.cpp.
static quotient< polynomial<rational> , polynomial<rational> > mmx::GLUE_14 | ( | const quotient< polynomial< rational >, polynomial< rational > > & | arg_1, | |
const polynomial< rational > & | arg_2 | |||
) | [static] |
Definition at line 122 of file glue_quotient_polynomial_rational.cpp.
static polynomial<rational> mmx::GLUE_14 | ( | const rational & | arg_1, | |
const polynomial< rational > & | arg_2 | |||
) | [static] |
Definition at line 121 of file glue_polynomial_rational.cpp.
static polynomial<series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> > mmx::GLUE_14 | ( | const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_1, | |
const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_2 | |||
) | [static] |
Definition at line 135 of file glue_polynomial_p_adic_modular_integer.cpp.
References arg_2.
static polynomial<integer> mmx::GLUE_14 | ( | const integer & | arg_1, | |
const polynomial< integer > & | arg_2 | |||
) | [static] |
Definition at line 112 of file glue_polynomial_integer.cpp.
static bool mmx::GLUE_14 | ( | const vector< generic > & | arg_1, | |
const vector< generic > & | arg_2 | |||
) | [static] |
Definition at line 77 of file glue_vector_generic.cpp.
static series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> mmx::GLUE_14 | ( | const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_1, | |
const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_2 | |||
) | [static] |
Definition at line 104 of file glue_p_adic_modular_integer.cpp.
static matrix<rational> mmx::GLUE_14 | ( | const matrix< rational > & | arg_1, | |
const matrix< rational > & | arg_2 | |||
) | [static] |
Definition at line 148 of file glue_matrix_rational.cpp.
References vertical_join().
00148 { 00149 return vertical_join (arg_1, arg_2); 00150 }
static matrix<integer> mmx::GLUE_14 | ( | const matrix< integer > & | arg_1, | |
const matrix< integer > & | arg_2 | |||
) | [static] |
Definition at line 145 of file glue_matrix_integer.cpp.
References horizontal_join().
00145 { 00146 return horizontal_join (arg_1, arg_2); 00147 }
static int mmx::GLUE_14 | ( | const string & | arg_1, | |
const string & | arg_2, | |||
const int & | arg_3 | |||
) | [static] |
Definition at line 145 of file glue_matrix_generic.cpp.
static algebraic_real mmx::GLUE_14 | ( | const algebraic_real & | arg_1, | |
const rational & | arg_2 | |||
) | [static] |
Definition at line 128 of file glue_algebraic_number.cpp.
static bool mmx::GLUE_14 | ( | const algebraic< generic > & | arg_1, | |
const algebraic< generic > & | arg_2 | |||
) | [static] |
Definition at line 110 of file glue_algebraic_generic.cpp.
Referenced by glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_p_adic_modular_integer(), glue_polynomial_generic(), glue_polynomial_integer(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_quotient_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_generic(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static bool mmx::GLUE_140 | ( | const series< unknown< rational > > & | arg_1, | |
const series< unknown< rational > > & | arg_2 | |||
) | [static] |
Definition at line 759 of file glue_series_rational.cpp.
Referenced by glue_series_rational().
static bool mmx::GLUE_141 | ( | const series< unknown< rational > > & | arg_1, | |
const unknown< rational > & | arg_2 | |||
) | [static] |
Definition at line 764 of file glue_series_rational.cpp.
References arg_1.
Referenced by glue_series_rational().
static bool mmx::GLUE_142 | ( | const series< unknown< rational > > & | arg_1, | |
const unknown< rational > & | arg_2 | |||
) | [static] |
Definition at line 769 of file glue_series_rational.cpp.
References arg_1.
Referenced by glue_series_rational().
static bool mmx::GLUE_143 | ( | const unknown< rational > & | arg_1, | |
const series< unknown< rational > > & | arg_2 | |||
) | [static] |
Definition at line 774 of file glue_series_rational.cpp.
References arg_2.
Referenced by glue_series_rational().
static bool mmx::GLUE_144 | ( | const unknown< rational > & | arg_1, | |
const series< unknown< rational > > & | arg_2 | |||
) | [static] |
Definition at line 779 of file glue_series_rational.cpp.
References arg_2.
Referenced by glue_series_rational().
static series<unknown<rational> > mmx::GLUE_145 | ( | const series< unknown< rational > > & | arg_1 | ) | [static] |
Definition at line 784 of file glue_series_rational.cpp.
References arg_1, and derive().
Referenced by glue_series_rational().
static series<unknown<rational> > mmx::GLUE_146 | ( | const series< unknown< rational > > & | arg_1 | ) | [static] |
Definition at line 789 of file glue_series_rational.cpp.
References arg_1, and xderive().
Referenced by glue_series_rational().
static series<unknown<rational> > mmx::GLUE_147 | ( | const series< unknown< rational > > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
Definition at line 794 of file glue_series_rational.cpp.
References arg_1, and dilate().
Referenced by glue_series_rational().
static series<unknown<rational> > mmx::GLUE_148 | ( | const series< unknown< rational > > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
Definition at line 799 of file glue_series_rational.cpp.
References arg_1, and lshiftz().
Referenced by glue_series_rational().
static series<unknown<rational> > mmx::GLUE_149 | ( | const series< unknown< rational > > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
Definition at line 804 of file glue_series_rational.cpp.
References arg_1, and rshiftz().
Referenced by glue_series_rational().
static bool mmx::GLUE_15 | ( | const vector< rational > & | arg_1 | ) | [static] |
Definition at line 95 of file glue_vector_rational.cpp.
00095 { 00096 return is_atom (arg_1); 00097 }
static bool mmx::GLUE_15 | ( | const vector< integer > & | arg_1 | ) | [static] |
Definition at line 90 of file glue_vector_integer.cpp.
00090 { 00091 return is_atom (arg_1); 00092 }
static bool mmx::GLUE_15 | ( | const vector< int > & | arg_1 | ) | [static] |
Definition at line 84 of file glue_vector_int.cpp.
00084 { 00085 return is_atom (arg_1); 00086 }
static series<rational> mmx::GLUE_15 | ( | const series< rational > & | arg_1, | |
const series< rational > & | arg_2 | |||
) | [static] |
Definition at line 134 of file glue_series_rational.cpp.
static series<integer> mmx::GLUE_15 | ( | const series< integer > & | arg_1, | |
const series< integer > & | arg_2 | |||
) | [static] |
Definition at line 126 of file glue_series_integer.cpp.
static series<generic> mmx::GLUE_15 | ( | const series< generic > & | arg_1, | |
const series< generic > & | arg_2 | |||
) | [static] |
Definition at line 126 of file glue_series_generic.cpp.
static quotient< polynomial<rational> , polynomial<rational> > mmx::GLUE_15 | ( | const polynomial< rational > & | arg_1, | |
const quotient< polynomial< rational >, polynomial< rational > > & | arg_2 | |||
) | [static] |
Definition at line 127 of file glue_quotient_polynomial_rational.cpp.
static polynomial<rational> mmx::GLUE_15 | ( | const polynomial< rational > & | arg_1, | |
const rational & | arg_2 | |||
) | [static] |
Definition at line 126 of file glue_polynomial_rational.cpp.
static polynomial<series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> > mmx::GLUE_15 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1, | |
const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_2 | |||
) | [static] |
Definition at line 140 of file glue_polynomial_p_adic_modular_integer.cpp.
static polynomial<integer> mmx::GLUE_15 | ( | const polynomial< integer > & | arg_1, | |
const integer & | arg_2 | |||
) | [static] |
Definition at line 117 of file glue_polynomial_integer.cpp.
static bool mmx::GLUE_15 | ( | const vector< generic > & | arg_1, | |
const vector< generic > & | arg_2 | |||
) | [static] |
Definition at line 82 of file glue_vector_generic.cpp.
static series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> mmx::GLUE_15 | ( | const mmx_modular(integer)& | arg_1, | |
const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_2 | |||
) | [static] |
Definition at line 109 of file glue_p_adic_modular_integer.cpp.
static matrix<rational> mmx::GLUE_15 | ( | const matrix< rational > & | arg_1, | |
const permutation & | arg_2 | |||
) | [static] |
Definition at line 153 of file glue_matrix_rational.cpp.
static matrix<integer> mmx::GLUE_15 | ( | const matrix< integer > & | arg_1, | |
const matrix< integer > & | arg_2 | |||
) | [static] |
Definition at line 150 of file glue_matrix_integer.cpp.
References vertical_join().
00150 { 00151 return vertical_join (arg_1, arg_2); 00152 }
static int mmx::GLUE_15 | ( | const string & | arg_1, | |
const string & | arg_2, | |||
const int & | arg_3 | |||
) | [static] |
Definition at line 150 of file glue_matrix_generic.cpp.
static algebraic_real mmx::GLUE_15 | ( | const rational & | arg_1, | |
const algebraic_real & | arg_2 | |||
) | [static] |
Definition at line 133 of file glue_algebraic_number.cpp.
Referenced by glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_p_adic_modular_integer(), glue_polynomial_generic(), glue_polynomial_integer(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_quotient_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_generic(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static series<complex<rational> > mmx::GLUE_150 | ( | const series< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 809 of file glue_series_rational.cpp.
References arg_1, and invert().
Referenced by glue_series_rational().
static series<complex<rational> > mmx::GLUE_151 | ( | const series< complex< rational > > & | arg_1, | |
const series< complex< rational > > & | arg_2 | |||
) | [static] |
Definition at line 814 of file glue_series_rational.cpp.
Referenced by glue_series_rational().
static series<complex<rational> > mmx::GLUE_152 | ( | const complex< rational > & | arg_1, | |
const series< complex< rational > > & | arg_2 | |||
) | [static] |
Definition at line 819 of file glue_series_rational.cpp.
References arg_2.
Referenced by glue_series_rational().
static series<complex<rational> > mmx::GLUE_153 | ( | const series< complex< rational > > & | arg_1, | |
const complex< rational > & | arg_2 | |||
) | [static] |
Definition at line 824 of file glue_series_rational.cpp.
References arg_1.
Referenced by glue_series_rational().
static series<complex<rational> > mmx::GLUE_154 | ( | const series< complex< rational > > & | arg_1, | |
const series< complex< rational > > & | arg_2 | |||
) | [static] |
Definition at line 829 of file glue_series_rational.cpp.
Referenced by glue_series_rational().
static bool mmx::GLUE_155 | ( | const series< complex< rational > > & | arg_1, | |
const series< complex< rational > > & | arg_2 | |||
) | [static] |
Definition at line 834 of file glue_series_rational.cpp.
References arg_1, arg_2, and divides().
Referenced by glue_series_rational().
static series<complex<rational> > mmx::GLUE_156 | ( | const series< complex< rational > > & | arg_1, | |
const series< complex< rational > > & | arg_2 | |||
) | [static] |
Definition at line 839 of file glue_series_rational.cpp.
References arg_1, arg_2, and gcd().
Referenced by glue_series_rational().
static series<complex<rational> > mmx::GLUE_157 | ( | const series< complex< rational > > & | arg_1, | |
const series< complex< rational > > & | arg_2 | |||
) | [static] |
Definition at line 844 of file glue_series_rational.cpp.
References arg_1, arg_2, and lcm().
Referenced by glue_series_rational().
static series<complex<rational> > mmx::GLUE_158 | ( | const series< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 849 of file glue_series_rational.cpp.
References arg_1, and integrate().
Referenced by glue_series_rational().
static series<complex<rational> > mmx::GLUE_159 | ( | const series< complex< rational > > & | arg_1, | |
const series< complex< rational > > & | arg_2 | |||
) | [static] |
Definition at line 854 of file glue_series_rational.cpp.
References arg_1, arg_2, and compose().
Referenced by glue_series_rational().
static vector<rational> mmx::GLUE_16 | ( | const vector< rational > & | arg_1, | |
const rational & | arg_2 | |||
) | [static] |
Definition at line 100 of file glue_vector_rational.cpp.
static vector<integer> mmx::GLUE_16 | ( | const vector< integer > & | arg_1, | |
const integer & | arg_2 | |||
) | [static] |
Definition at line 95 of file glue_vector_integer.cpp.
static vector<int> mmx::GLUE_16 | ( | const vector< int > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
Definition at line 89 of file glue_vector_int.cpp.
static series<rational> mmx::GLUE_16 | ( | const rational & | arg_1, | |
const series< rational > & | arg_2 | |||
) | [static] |
Definition at line 139 of file glue_series_rational.cpp.
static series<integer> mmx::GLUE_16 | ( | const series< integer > & | arg_1, | |
const series< integer > & | arg_2 | |||
) | [static] |
Definition at line 131 of file glue_series_integer.cpp.
static series<generic> mmx::GLUE_16 | ( | const series< generic > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
static quotient< polynomial<rational> , polynomial<rational> > mmx::GLUE_16 | ( | const quotient< polynomial< rational >, polynomial< rational > > & | arg_1, | |
const polynomial< rational > & | arg_2 | |||
) | [static] |
Definition at line 132 of file glue_quotient_polynomial_rational.cpp.
static polynomial<rational> mmx::GLUE_16 | ( | const rational & | arg_1, | |
const polynomial< rational > & | arg_2 | |||
) | [static] |
Definition at line 131 of file glue_polynomial_rational.cpp.
static polynomial<series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> > mmx::GLUE_16 | ( | const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_1, | |
const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_2 | |||
) | [static] |
Definition at line 145 of file glue_polynomial_p_adic_modular_integer.cpp.
References arg_2.
static polynomial<integer> mmx::GLUE_16 | ( | const integer & | arg_1, | |
const polynomial< integer > & | arg_2 | |||
) | [static] |
Definition at line 122 of file glue_polynomial_integer.cpp.
static bool mmx::GLUE_16 | ( | const vector< generic > & | arg_1, | |
const vector< generic > & | arg_2 | |||
) | [static] |
Definition at line 87 of file glue_vector_generic.cpp.
static series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> mmx::GLUE_16 | ( | const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_1, | |
const mmx_modular(integer)& | arg_2 | |||
) | [static] |
Definition at line 114 of file glue_p_adic_modular_integer.cpp.
static matrix<rational> mmx::GLUE_16 | ( | const permutation & | arg_1, | |
const matrix< rational > & | arg_2 | |||
) | [static] |
Definition at line 158 of file glue_matrix_rational.cpp.
static matrix<integer> mmx::GLUE_16 | ( | const matrix< integer > & | arg_1, | |
const permutation & | arg_2 | |||
) | [static] |
Definition at line 155 of file glue_matrix_integer.cpp.
static string mmx::GLUE_16 | ( | const string & | arg_1 | ) | [static] |
Definition at line 155 of file glue_matrix_generic.cpp.
00155 { 00156 return upcase (arg_1); 00157 }
static algebraic_real mmx::GLUE_16 | ( | const algebraic_real & | arg_1, | |
const rational & | arg_2 | |||
) | [static] |
Definition at line 138 of file glue_algebraic_number.cpp.
Referenced by glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_p_adic_modular_integer(), glue_polynomial_generic(), glue_polynomial_integer(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_quotient_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_generic(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static series<complex<rational> > mmx::GLUE_160 | ( | const series< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 859 of file glue_series_rational.cpp.
References arg_1, and reverse().
Referenced by glue_series_rational().
static series<complex<rational> > mmx::GLUE_161 | ( | const series< complex< rational > > & | arg_1, | |
const complex< rational > & | arg_2 | |||
) | [static] |
Definition at line 864 of file glue_series_rational.cpp.
References arg_1, and q_difference().
Referenced by glue_series_rational().
00864 { 00865 return q_difference (arg_1, arg_2); 00866 }
static series<complex<rational> > mmx::GLUE_162 | ( | const series< complex< rational > > & | arg_1, | |
const complex< rational > & | arg_2 | |||
) | [static] |
Definition at line 869 of file glue_series_rational.cpp.
References arg_1, and series_shift_default().
Referenced by glue_series_rational().
00869 { 00870 return series_shift_default (arg_1, arg_2); 00871 }
static series<complex<rational> > mmx::GLUE_163 | ( | const series< complex< rational > > & | arg_1, | |
const complex< rational > & | arg_2, | |||
const int & | arg_3 | |||
) | [static] |
Definition at line 874 of file glue_series_rational.cpp.
References arg_1, and shift().
Referenced by glue_series_rational().
Definition at line 879 of file glue_series_rational.cpp.
Referenced by glue_series_rational().
00879 { 00880 return as<series<complex<rational> > > (arg_1); 00881 }
Definition at line 884 of file glue_series_rational.cpp.
Referenced by glue_series_rational().
00884 { 00885 return as<series<unknown<rational> > > (arg_1); 00886 }
Definition at line 889 of file glue_series_rational.cpp.
Referenced by glue_series_rational().
00889 { 00890 return as<series<complex<rational> > > (arg_1); 00891 }
Definition at line 894 of file glue_series_rational.cpp.
Referenced by glue_series_rational().
00894 { 00895 return as<series<unknown<rational> > > (arg_1); 00896 }
static series<generic> mmx::GLUE_168 | ( | const series< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 899 of file glue_series_rational.cpp.
References arg_1.
Referenced by glue_series_rational().
00899 { 00900 return as<series<generic> > (arg_1); 00901 }
static series<generic> mmx::GLUE_169 | ( | const series< unknown< rational > > & | arg_1 | ) | [static] |
Definition at line 904 of file glue_series_rational.cpp.
References arg_1.
Referenced by glue_series_rational().
00904 { 00905 return as<series<generic> > (arg_1); 00906 }
static int mmx::GLUE_17 | ( | const vector< rational > & | arg_1, | |
const rational & | arg_2 | |||
) | [static] |
Definition at line 105 of file glue_vector_rational.cpp.
static int mmx::GLUE_17 | ( | const vector< integer > & | arg_1, | |
const integer & | arg_2 | |||
) | [static] |
Definition at line 100 of file glue_vector_integer.cpp.
static int mmx::GLUE_17 | ( | const vector< int > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
Definition at line 94 of file glue_vector_int.cpp.
static series<rational> mmx::GLUE_17 | ( | const series< rational > & | arg_1, | |
const rational & | arg_2 | |||
) | [static] |
Definition at line 144 of file glue_series_rational.cpp.
static series<integer> mmx::GLUE_17 | ( | const series< integer > & | arg_1, | |
const series< integer > & | arg_2 | |||
) | [static] |
Definition at line 136 of file glue_series_integer.cpp.
static bool mmx::GLUE_17 | ( | const series< generic > & | arg_1, | |
const series< generic > & | arg_2 | |||
) | [static] |
Definition at line 136 of file glue_series_generic.cpp.
static quotient< polynomial<rational> , polynomial<rational> > mmx::GLUE_17 | ( | const polynomial< rational > & | arg_1, | |
const quotient< polynomial< rational >, polynomial< rational > > & | arg_2 | |||
) | [static] |
Definition at line 137 of file glue_quotient_polynomial_rational.cpp.
static polynomial<rational> mmx::GLUE_17 | ( | const polynomial< rational > & | arg_1, | |
const rational & | arg_2 | |||
) | [static] |
Definition at line 136 of file glue_polynomial_rational.cpp.
static polynomial<series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> > mmx::GLUE_17 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1, | |
const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_2 | |||
) | [static] |
Definition at line 150 of file glue_polynomial_p_adic_modular_integer.cpp.
static polynomial<integer> mmx::GLUE_17 | ( | const polynomial< integer > & | arg_1, | |
const integer & | arg_2 | |||
) | [static] |
Definition at line 127 of file glue_polynomial_integer.cpp.
static vector<generic> mmx::GLUE_17 | ( | const vector< generic > & | arg_1, | |
const vector< generic > & | arg_2 | |||
) | [static] |
Definition at line 92 of file glue_vector_generic.cpp.
static series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> mmx::GLUE_17 | ( | const mmx_modular(integer)& | arg_1, | |
const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_2 | |||
) | [static] |
Definition at line 119 of file glue_p_adic_modular_integer.cpp.
static matrix<rational> mmx::GLUE_17 | ( | const rational & | arg_1, | |
const int & | arg_2, | |||
const int & | arg_3 | |||
) | [static] |
Definition at line 163 of file glue_matrix_rational.cpp.
References fill_matrix().
00163 { 00164 return fill_matrix (arg_1, arg_2, arg_3); 00165 }
static matrix<integer> mmx::GLUE_17 | ( | const permutation & | arg_1, | |
const matrix< integer > & | arg_2 | |||
) | [static] |
Definition at line 160 of file glue_matrix_integer.cpp.
static string mmx::GLUE_17 | ( | const string & | arg_1 | ) | [static] |
Definition at line 160 of file glue_matrix_generic.cpp.
00160 { 00161 return locase (arg_1); 00162 }
static algebraic_real mmx::GLUE_17 | ( | const rational & | arg_1, | |
const algebraic_real & | arg_2 | |||
) | [static] |
Definition at line 143 of file glue_algebraic_number.cpp.
Referenced by glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_p_adic_modular_integer(), glue_polynomial_generic(), glue_polynomial_integer(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_quotient_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_generic(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static vector<generic> mmx::GLUE_170 | ( | const routine & | arg_1, | |
const vector< rational > & | arg_2 | |||
) | [static] |
Definition at line 909 of file glue_series_rational.cpp.
References gen_fixed_point_vector_series().
Referenced by glue_series_rational().
00909 { 00910 return gen_fixed_point_vector_series (arg_1, arg_2); 00911 }
static vector<generic> mmx::GLUE_171 | ( | const routine & | arg_1, | |
const vector< rational > & | arg_2 | |||
) | [static] |
Definition at line 914 of file glue_series_rational.cpp.
References gen_integrate_vector_series().
Referenced by glue_series_rational().
00914 { 00915 return gen_integrate_vector_series (arg_1, arg_2); 00916 }
static vector<generic> mmx::GLUE_172 | ( | const routine & | arg_1, | |
const vector< rational > & | arg_2 | |||
) | [static] |
Definition at line 919 of file glue_series_rational.cpp.
References gen_implicit_vector_series().
Referenced by glue_series_rational().
00919 { 00920 return gen_implicit_vector_series (arg_1, arg_2); 00921 }
static series<complex<rational> > mmx::GLUE_173 | ( | const routine & | arg_1, | |
const complex< rational > & | arg_2 | |||
) | [static] |
Definition at line 924 of file glue_series_rational.cpp.
References fixed_point_series().
Referenced by glue_series_rational().
00924 { 00925 return fixed_point_series (arg_1, arg_2); 00926 }
static vector<generic> mmx::GLUE_174 | ( | const routine & | arg_1, | |
const vector< complex< rational > > & | arg_2 | |||
) | [static] |
Definition at line 929 of file glue_series_rational.cpp.
References arg_2, and gen_fixed_point_vector_series().
Referenced by glue_series_rational().
00929 { 00930 return gen_fixed_point_vector_series (arg_1, arg_2); 00931 }
static series<complex<rational> > mmx::GLUE_175 | ( | const routine & | arg_1, | |
const complex< rational > & | arg_2 | |||
) | [static] |
Definition at line 934 of file glue_series_rational.cpp.
References integrate_series().
Referenced by glue_series_rational().
00934 { 00935 return integrate_series (arg_1, arg_2); 00936 }
static vector<generic> mmx::GLUE_176 | ( | const routine & | arg_1, | |
const vector< complex< rational > > & | arg_2 | |||
) | [static] |
Definition at line 939 of file glue_series_rational.cpp.
References arg_2, and gen_integrate_vector_series().
Referenced by glue_series_rational().
00939 { 00940 return gen_integrate_vector_series (arg_1, arg_2); 00941 }
static series<complex<rational> > mmx::GLUE_177 | ( | const routine & | arg_1, | |
const complex< rational > & | arg_2 | |||
) | [static] |
Definition at line 944 of file glue_series_rational.cpp.
References implicit_series().
Referenced by glue_series_rational().
00944 { 00945 return implicit_series (arg_1, arg_2); 00946 }
static vector<generic> mmx::GLUE_178 | ( | const routine & | arg_1, | |
const vector< complex< rational > > & | arg_2 | |||
) | [static] |
Definition at line 949 of file glue_series_rational.cpp.
References arg_2, and gen_implicit_vector_series().
Referenced by glue_series_rational().
00949 { 00950 return gen_implicit_vector_series (arg_1, arg_2); 00951 }
static bool mmx::GLUE_18 | ( | const vector< rational > & | arg_1, | |
const rational & | arg_2 | |||
) | [static] |
Definition at line 110 of file glue_vector_rational.cpp.
static bool mmx::GLUE_18 | ( | const vector< integer > & | arg_1, | |
const integer & | arg_2 | |||
) | [static] |
Definition at line 105 of file glue_vector_integer.cpp.
static bool mmx::GLUE_18 | ( | const vector< int > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
Definition at line 99 of file glue_vector_int.cpp.
static series<rational> mmx::GLUE_18 | ( | const rational & | arg_1, | |
const series< rational > & | arg_2 | |||
) | [static] |
Definition at line 149 of file glue_series_rational.cpp.
static series<integer> mmx::GLUE_18 | ( | const integer & | arg_1, | |
const series< integer > & | arg_2 | |||
) | [static] |
Definition at line 141 of file glue_series_integer.cpp.
static bool mmx::GLUE_18 | ( | const series< generic > & | arg_1, | |
const series< generic > & | arg_2 | |||
) | [static] |
Definition at line 141 of file glue_series_generic.cpp.
static quotient< polynomial<rational> , polynomial<rational> > mmx::GLUE_18 | ( | const quotient< polynomial< rational >, polynomial< rational > > & | arg_1, | |
const polynomial< rational > & | arg_2 | |||
) | [static] |
Definition at line 142 of file glue_quotient_polynomial_rational.cpp.
static polynomial<rational> mmx::GLUE_18 | ( | const rational & | arg_1, | |
const polynomial< rational > & | arg_2 | |||
) | [static] |
Definition at line 141 of file glue_polynomial_rational.cpp.
static polynomial<series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> > mmx::GLUE_18 | ( | const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_1, | |
const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_2 | |||
) | [static] |
Definition at line 155 of file glue_polynomial_p_adic_modular_integer.cpp.
References arg_2.
static polynomial<integer> mmx::GLUE_18 | ( | const integer & | arg_1, | |
const polynomial< integer > & | arg_2 | |||
) | [static] |
Definition at line 132 of file glue_polynomial_integer.cpp.
static vector<generic> mmx::GLUE_18 | ( | const vector< generic > & | arg_1, | |
const vector< generic > & | arg_2 | |||
) | [static] |
Definition at line 97 of file glue_vector_generic.cpp.
static series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> mmx::GLUE_18 | ( | const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_1, | |
const mmx_modular(integer)& | arg_2 | |||
) | [static] |
Definition at line 124 of file glue_p_adic_modular_integer.cpp.
Definition at line 168 of file glue_matrix_rational.cpp.
References jordan_matrix().
00168 { 00169 return jordan_matrix (arg_1, arg_2); 00170 }
static matrix<integer> mmx::GLUE_18 | ( | const integer & | arg_1, | |
const int & | arg_2, | |||
const int & | arg_3 | |||
) | [static] |
Definition at line 165 of file glue_matrix_integer.cpp.
References fill_matrix().
00165 { 00166 return fill_matrix (arg_1, arg_2, arg_3); 00167 }
static string mmx::GLUE_18 | ( | const string & | arg_1 | ) | [static] |
Definition at line 165 of file glue_matrix_generic.cpp.
00165 { 00166 return upcase_first (arg_1); 00167 }
static algebraic_real mmx::GLUE_18 | ( | const algebraic_real & | arg_1, | |
const rational & | arg_2 | |||
) | [static] |
Definition at line 148 of file glue_algebraic_number.cpp.
Referenced by glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_p_adic_modular_integer(), glue_polynomial_generic(), glue_polynomial_integer(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_quotient_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_generic(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static vector<complex<rational> > mmx::GLUE_19 | ( | const tuple< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 115 of file glue_vector_rational.cpp.
References arg_1, and as_vector().
static vector<generic> mmx::GLUE_19 | ( | const vector< integer > & | arg_1 | ) | [static] |
Definition at line 110 of file glue_vector_integer.cpp.
00110 { 00111 return as<vector<generic> > (arg_1); 00112 }
static vector<generic> mmx::GLUE_19 | ( | const vector< int > & | arg_1 | ) | [static] |
Definition at line 104 of file glue_vector_int.cpp.
00104 { 00105 return as<vector<generic> > (arg_1); 00106 }
static series<rational> mmx::GLUE_19 | ( | const series< rational > & | arg_1, | |
const rational & | arg_2 | |||
) | [static] |
Definition at line 154 of file glue_series_rational.cpp.
static series<integer> mmx::GLUE_19 | ( | const series< integer > & | arg_1, | |
const integer & | arg_2 | |||
) | [static] |
Definition at line 146 of file glue_series_integer.cpp.
static series<generic> mmx::GLUE_19 | ( | const series< generic > & | arg_1 | ) | [static] |
Definition at line 146 of file glue_series_generic.cpp.
References derive().
static quotient< polynomial<rational> , polynomial<rational> > mmx::GLUE_19 | ( | const polynomial< rational > & | arg_1, | |
const quotient< polynomial< rational >, polynomial< rational > > & | arg_2 | |||
) | [static] |
Definition at line 147 of file glue_quotient_polynomial_rational.cpp.
static polynomial<rational> mmx::GLUE_19 | ( | const polynomial< rational > & | arg_1, | |
const rational & | arg_2 | |||
) | [static] |
Definition at line 146 of file glue_polynomial_rational.cpp.
static polynomial<series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> > mmx::GLUE_19 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1, | |
const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_2 | |||
) | [static] |
Definition at line 160 of file glue_polynomial_p_adic_modular_integer.cpp.
static polynomial<integer> mmx::GLUE_19 | ( | const polynomial< integer > & | arg_1, | |
const integer & | arg_2 | |||
) | [static] |
Definition at line 137 of file glue_polynomial_integer.cpp.
static vector<generic> mmx::GLUE_19 | ( | const vector< generic > & | arg_1, | |
const vector< generic > & | arg_2 | |||
) | [static] |
static series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> mmx::GLUE_19 | ( | const mmx_modular(integer)& | arg_1, | |
const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_2 | |||
) | [static] |
Definition at line 129 of file glue_p_adic_modular_integer.cpp.
Definition at line 173 of file glue_matrix_rational.cpp.
00173 { 00174 return -arg_1; 00175 }
Definition at line 170 of file glue_matrix_integer.cpp.
References jordan_matrix().
00170 { 00171 return jordan_matrix (arg_1, arg_2); 00172 }
static string mmx::GLUE_19 | ( | const string & | arg_1 | ) | [static] |
Definition at line 170 of file glue_matrix_generic.cpp.
00170 { 00171 return locase_first (arg_1); 00172 }
static algebraic_real mmx::GLUE_19 | ( | const rational & | arg_1, | |
const algebraic_real & | arg_2 | |||
) | [static] |
Definition at line 153 of file glue_algebraic_number.cpp.
Referenced by glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_p_adic_modular_integer(), glue_polynomial_generic(), glue_polynomial_integer(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_quotient_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_generic(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static vector<int> mmx::GLUE_2 | ( | const tuple< int > & | arg_1 | ) | [static] |
Definition at line 19 of file glue_vector_int.cpp.
References as_vector().
static void mmx::GLUE_2 | ( | const series< rational > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
Definition at line 69 of file glue_series_rational.cpp.
References set_output_order().
00069 { 00070 set_output_order (arg_1, arg_2); 00071 }
static series<generic> mmx::GLUE_2 | ( | const series< generic > & | arg_1, | |
const integer & | arg_2 | |||
) | [static] |
static void mmx::GLUE_2 | ( | const series< generic > & | arg_1, | |
const generic & | arg_2 | |||
) | [static] |
Definition at line 61 of file glue_series_generic.cpp.
References arg_2, and set_variable_name().
00061 { 00062 set_variable_name (arg_1, arg_2); 00063 }
static quotient< polynomial<rational> , polynomial<rational> > mmx::GLUE_2 | ( | const polynomial< rational > & | arg_1 | ) | [static] |
Definition at line 62 of file glue_quotient_polynomial_rational.cpp.
References simple_quotient.
00062 { 00063 return (simple_quotient(polynomial<rational> ) (arg_1)); 00064 }
static polynomial<series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> > mmx::GLUE_2 | ( | const tuple< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1 | ) | [static] |
Definition at line 75 of file glue_polynomial_p_adic_modular_integer.cpp.
References arg_1, and as_vector().
static polynomial<mmx_modular(integer) > mmx::GLUE_2 | ( | const tuple< mmx_modular(integer) > & | arg_1 | ) | [static] |
Definition at line 28 of file glue_vector_modular_integer.cpp.
References arg_1, and as_vector().
static polynomial<integer> mmx::GLUE_2 | ( | const tuple< integer > & | arg_1 | ) | [static] |
Definition at line 25 of file glue_vector_integer.cpp.
References as_vector().
static vector<generic> mmx::GLUE_2 | ( | const vector< generic > & | arg_1 | ) | [static] |
Definition at line 17 of file glue_vector_generic.cpp.
References square().
static void mmx::GLUE_2 | ( | const polynomial< mmx_modular(integer), polynomial_carry_variant_helper< mmx_modular(integer) >::PV > & | arg_1, | |
const generic & | arg_2 | |||
) | [static] |
Definition at line 40 of file glue_p_expansion_modular_integer.cpp.
References arg_2, and set_variable_name().
00040 { 00041 set_variable_name (arg_1, arg_2); 00042 }
static void mmx::GLUE_2 | ( | const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
Definition at line 44 of file glue_p_adic_modular_integer.cpp.
References set_output_order().
00044 { 00045 set_output_order (arg_1, arg_2); 00046 }
static row_tuple<rational> mmx::GLUE_2 | ( | const tuple< rational > & | arg_1 | ) | [static] |
Definition at line 30 of file glue_vector_rational.cpp.
References as_vector().
static matrix<generic> mmx::GLUE_2 | ( | const matrix< mmx_modular(integer) > & | arg_1 | ) | [static] |
Definition at line 86 of file glue_matrix_modular_integer.cpp.
References arg_1.
00086 { 00087 return as<matrix<generic> > (arg_1); 00088 }
Definition at line 19 of file glue_permutation.cpp.
00019 { 00020 return permutation (arg_1); 00021 }
static int mmx::GLUE_2 | ( | const string & | arg_1 | ) | [static] |
Definition at line 85 of file glue_matrix_generic.cpp.
References N().
static mmx_floating mmx::GLUE_2 | ( | const algebraic_real & | arg_1 | ) | [static] |
Definition at line 68 of file glue_algebraic_number.cpp.
References as_floating().
00068 { 00069 return as_floating (arg_1); 00070 }
static algebraic<generic> mmx::GLUE_2 | ( | const polynomial< generic > & | arg_1, | |
const polynomial< generic > & | arg_2 | |||
) | [static] |
Definition at line 50 of file glue_algebraic_generic.cpp.
Referenced by glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_p_adic_modular_integer(), glue_p_expansion_modular_integer(), glue_permutation(), glue_polynomial_generic(), glue_polynomial_integer(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_quotient_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_generic(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static vector<complex<rational> > mmx::GLUE_20 | ( | const tuple< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 120 of file glue_vector_rational.cpp.
References arg_1, and as_vector().
static vector<integer> mmx::GLUE_20 | ( | const vector< integer > & | arg_1 | ) | [static] |
Definition at line 115 of file glue_vector_integer.cpp.
00115 { 00116 return -arg_1; 00117 }
static vector<int> mmx::GLUE_20 | ( | const vector< int > & | arg_1 | ) | [static] |
Definition at line 109 of file glue_vector_int.cpp.
00109 { 00110 return -arg_1; 00111 }
static series<rational> mmx::GLUE_20 | ( | const rational & | arg_1, | |
const series< rational > & | arg_2 | |||
) | [static] |
Definition at line 159 of file glue_series_rational.cpp.
static series<integer> mmx::GLUE_20 | ( | const integer & | arg_1, | |
const series< integer > & | arg_2 | |||
) | [static] |
Definition at line 151 of file glue_series_integer.cpp.
static series<generic> mmx::GLUE_20 | ( | const series< generic > & | arg_1 | ) | [static] |
Definition at line 151 of file glue_series_generic.cpp.
References xderive().
static quotient< polynomial<rational> , polynomial<rational> > mmx::GLUE_20 | ( | const quotient< polynomial< rational >, polynomial< rational > > & | arg_1, | |
const polynomial< rational > & | arg_2 | |||
) | [static] |
Definition at line 152 of file glue_quotient_polynomial_rational.cpp.
static polynomial<rational> mmx::GLUE_20 | ( | const polynomial< rational > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
static polynomial<series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> > mmx::GLUE_20 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
static polynomial<integer> mmx::GLUE_20 | ( | const polynomial< integer > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
static vector<generic> mmx::GLUE_20 | ( | const vector< generic > & | arg_1 | ) | [static] |
Definition at line 107 of file glue_vector_generic.cpp.
References sqrt().
static series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> mmx::GLUE_20 | ( | const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_1, | |
const mmx_modular(integer)& | arg_2 | |||
) | [static] |
Definition at line 134 of file glue_p_adic_modular_integer.cpp.
Definition at line 178 of file glue_matrix_rational.cpp.
References square().
Definition at line 175 of file glue_matrix_integer.cpp.
00175 { 00176 return -arg_1; 00177 }
static string mmx::GLUE_20 | ( | const string & | arg_1 | ) | [static] |
Definition at line 175 of file glue_matrix_generic.cpp.
00175 { 00176 return quote (arg_1); 00177 }
static algebraic_real mmx::GLUE_20 | ( | const algebraic_real & | arg_1, | |
const rational & | arg_2 | |||
) | [static] |
Definition at line 158 of file glue_algebraic_number.cpp.
Referenced by glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_p_adic_modular_integer(), glue_polynomial_generic(), glue_polynomial_integer(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_quotient_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_generic(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static iterator<generic> mmx::GLUE_21 | ( | const vector< complex< rational > > & | arg_1 | ) | [static] |
static vector<integer> mmx::GLUE_21 | ( | const vector< integer > & | arg_1 | ) | [static] |
Definition at line 120 of file glue_vector_integer.cpp.
References square().
static vector<int> mmx::GLUE_21 | ( | const vector< int > & | arg_1 | ) | [static] |
Definition at line 114 of file glue_vector_int.cpp.
References square().
static series<rational> mmx::GLUE_21 | ( | const series< rational > & | arg_1, | |
const rational & | arg_2 | |||
) | [static] |
Definition at line 164 of file glue_series_rational.cpp.
static series<integer> mmx::GLUE_21 | ( | const series< integer > & | arg_1, | |
const integer & | arg_2 | |||
) | [static] |
Definition at line 156 of file glue_series_integer.cpp.
static series<generic> mmx::GLUE_21 | ( | const series< generic > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
static quotient< polynomial<rational> , polynomial<rational> > mmx::GLUE_21 | ( | const quotient< polynomial< rational >, polynomial< rational > > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
Definition at line 157 of file glue_quotient_polynomial_rational.cpp.
static polynomial<rational> mmx::GLUE_21 | ( | const polynomial< rational > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
static polynomial<series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> > mmx::GLUE_21 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
static polynomial<integer> mmx::GLUE_21 | ( | const polynomial< integer > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
static vector<generic> mmx::GLUE_21 | ( | const vector< generic > & | arg_1 | ) | [static] |
Definition at line 112 of file glue_vector_generic.cpp.
References exp().
static series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> mmx::GLUE_21 | ( | const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
static matrix<rational> mmx::GLUE_21 | ( | const matrix< rational > & | arg_1, | |
const matrix< rational > & | arg_2 | |||
) | [static] |
Definition at line 183 of file glue_matrix_rational.cpp.
Definition at line 180 of file glue_matrix_integer.cpp.
References square().
static string mmx::GLUE_21 | ( | const string & | arg_1 | ) | [static] |
Definition at line 180 of file glue_matrix_generic.cpp.
00180 { 00181 return unquote (arg_1); 00182 }
static algebraic_real mmx::GLUE_21 | ( | const algebraic_real & | arg_1 | ) | [static] |
Definition at line 163 of file glue_algebraic_number.cpp.
References sqrt().
Referenced by glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_p_adic_modular_integer(), glue_polynomial_generic(), glue_polynomial_integer(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_quotient_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_generic(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static int mmx::GLUE_22 | ( | const vector< complex< rational > > & | arg_1 | ) | [static] |
static vector<integer> mmx::GLUE_22 | ( | const vector< integer > & | arg_1, | |
const vector< integer > & | arg_2 | |||
) | [static] |
Definition at line 125 of file glue_vector_integer.cpp.
static vector<int> mmx::GLUE_22 | ( | const vector< int > & | arg_1, | |
const vector< int > & | arg_2 | |||
) | [static] |
Definition at line 119 of file glue_vector_int.cpp.
static series<integer> mmx::GLUE_22 | ( | const integer & | arg_1, | |
const series< integer > & | arg_2 | |||
) | [static] |
Definition at line 161 of file glue_series_integer.cpp.
static series<generic> mmx::GLUE_22 | ( | const series< generic > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
static bool mmx::GLUE_22 | ( | const quotient< polynomial< rational >, polynomial< rational > > & | arg_1, | |
const quotient< polynomial< rational >, polynomial< rational > > & | arg_2 | |||
) | [static] |
Definition at line 162 of file glue_quotient_polynomial_rational.cpp.
static polynomial<rational> mmx::GLUE_22 | ( | const polynomial< rational > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
static polynomial<series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> > mmx::GLUE_22 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
static polynomial<integer> mmx::GLUE_22 | ( | const polynomial< integer > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
static vector<generic> mmx::GLUE_22 | ( | const vector< generic > & | arg_1 | ) | [static] |
Definition at line 117 of file glue_vector_generic.cpp.
References log().
static series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> mmx::GLUE_22 | ( | const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
static matrix<rational> mmx::GLUE_22 | ( | const matrix< rational > & | arg_1, | |
const matrix< rational > & | arg_2 | |||
) | [static] |
Definition at line 188 of file glue_matrix_rational.cpp.
static matrix<integer> mmx::GLUE_22 | ( | const matrix< integer > & | arg_1, | |
const matrix< integer > & | arg_2 | |||
) | [static] |
Definition at line 185 of file glue_matrix_integer.cpp.
static string mmx::GLUE_22 | ( | const int & | arg_1 | ) | [static] |
Definition at line 185 of file glue_matrix_generic.cpp.
00185 { 00186 return charcode_as_string (arg_1); 00187 }
static algebraic_real mmx::GLUE_22 | ( | const algebraic_real & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
Definition at line 168 of file glue_algebraic_number.cpp.
References root().
Referenced by glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_p_adic_modular_integer(), glue_polynomial_generic(), glue_polynomial_integer(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_quotient_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_generic(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static complex<rational> mmx::GLUE_23 | ( | const vector< complex< rational > > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
Definition at line 135 of file glue_vector_rational.cpp.
References arg_1.
static vector<integer> mmx::GLUE_23 | ( | const vector< integer > & | arg_1, | |
const vector< integer > & | arg_2 | |||
) | [static] |
Definition at line 130 of file glue_vector_integer.cpp.
static vector<int> mmx::GLUE_23 | ( | const vector< int > & | arg_1, | |
const vector< int > & | arg_2 | |||
) | [static] |
Definition at line 124 of file glue_vector_int.cpp.
static series<integer> mmx::GLUE_23 | ( | const series< integer > & | arg_1, | |
const integer & | arg_2 | |||
) | [static] |
Definition at line 166 of file glue_series_integer.cpp.
static series<generic> mmx::GLUE_23 | ( | const series< generic > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
static bool mmx::GLUE_23 | ( | const quotient< polynomial< rational >, polynomial< rational > > & | arg_1, | |
const quotient< polynomial< rational >, polynomial< rational > > & | arg_2 | |||
) | [static] |
Definition at line 167 of file glue_quotient_polynomial_rational.cpp.
static bool mmx::GLUE_23 | ( | const polynomial< rational > & | arg_1, | |
const polynomial< rational > & | arg_2 | |||
) | [static] |
Definition at line 166 of file glue_polynomial_rational.cpp.
static bool mmx::GLUE_23 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1, | |
const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_2 | |||
) | [static] |
Definition at line 180 of file glue_polynomial_p_adic_modular_integer.cpp.
References arg_2.
static bool mmx::GLUE_23 | ( | const polynomial< integer > & | arg_1, | |
const polynomial< integer > & | arg_2 | |||
) | [static] |
Definition at line 157 of file glue_polynomial_integer.cpp.
static vector<generic> mmx::GLUE_23 | ( | const vector< generic > & | arg_1 | ) | [static] |
Definition at line 122 of file glue_vector_generic.cpp.
References cos().
static series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> mmx::GLUE_23 | ( | const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
static matrix<rational> mmx::GLUE_23 | ( | const matrix< rational > & | arg_1, | |
const matrix< rational > & | arg_2 | |||
) | [static] |
Definition at line 193 of file glue_matrix_rational.cpp.
static matrix<integer> mmx::GLUE_23 | ( | const matrix< integer > & | arg_1, | |
const matrix< integer > & | arg_2 | |||
) | [static] |
Definition at line 190 of file glue_matrix_integer.cpp.
static int mmx::GLUE_23 | ( | const string & | arg_1 | ) | [static] |
Definition at line 190 of file glue_matrix_generic.cpp.
00190 { 00191 return string_as_charcode (arg_1); 00192 }
static int mmx::GLUE_23 | ( | const algebraic_real & | arg_1 | ) | [static] |
Definition at line 173 of file glue_algebraic_number.cpp.
References sign().
Referenced by glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_p_adic_modular_integer(), glue_polynomial_generic(), glue_polynomial_integer(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_quotient_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_generic(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static alias<complex<rational> > mmx::GLUE_24 | ( | const alias< vector< complex< rational > > > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
Definition at line 140 of file glue_vector_rational.cpp.
References arg_1.
static vector<integer> mmx::GLUE_24 | ( | const vector< integer > & | arg_1, | |
const vector< integer > & | arg_2 | |||
) | [static] |
Definition at line 135 of file glue_vector_integer.cpp.
static vector<int> mmx::GLUE_24 | ( | const vector< int > & | arg_1, | |
const vector< int > & | arg_2 | |||
) | [static] |
Definition at line 129 of file glue_vector_int.cpp.
static bool mmx::GLUE_24 | ( | const series< rational > & | arg_1, | |
const series< rational > & | arg_2 | |||
) | [static] |
Definition at line 179 of file glue_series_rational.cpp.
static series<generic> mmx::GLUE_24 | ( | const series< generic > & | arg_1 | ) | [static] |
Definition at line 171 of file glue_series_generic.cpp.
References invert().
static bool mmx::GLUE_24 | ( | const quotient< polynomial< rational >, polynomial< rational > > & | arg_1, | |
const polynomial< rational > & | arg_2 | |||
) | [static] |
Definition at line 172 of file glue_quotient_polynomial_rational.cpp.
static bool mmx::GLUE_24 | ( | const polynomial< rational > & | arg_1, | |
const polynomial< rational > & | arg_2 | |||
) | [static] |
Definition at line 171 of file glue_polynomial_rational.cpp.
static bool mmx::GLUE_24 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1, | |
const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_2 | |||
) | [static] |
Definition at line 185 of file glue_polynomial_p_adic_modular_integer.cpp.
References arg_2.
static bool mmx::GLUE_24 | ( | const polynomial< integer > & | arg_1, | |
const polynomial< integer > & | arg_2 | |||
) | [static] |
Definition at line 162 of file glue_polynomial_integer.cpp.
static vector<generic> mmx::GLUE_24 | ( | const vector< generic > & | arg_1 | ) | [static] |
Definition at line 127 of file glue_vector_generic.cpp.
References sin().
static series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> mmx::GLUE_24 | ( | const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_1, | |
const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_2 | |||
) | [static] |
Definition at line 154 of file glue_p_adic_modular_integer.cpp.
static matrix<rational> mmx::GLUE_24 | ( | const rational & | arg_1, | |
const matrix< rational > & | arg_2 | |||
) | [static] |
Definition at line 198 of file glue_matrix_rational.cpp.
static matrix<integer> mmx::GLUE_24 | ( | const matrix< integer > & | arg_1, | |
const matrix< integer > & | arg_2 | |||
) | [static] |
Definition at line 195 of file glue_matrix_integer.cpp.
static bool mmx::GLUE_24 | ( | const generic & | arg_1 | ) | [static] |
Definition at line 195 of file glue_matrix_generic.cpp.
References arg_1, and is_generic_literal.
00195 { 00196 return is_generic_literal (arg_1); 00197 }
static bool mmx::GLUE_24 | ( | const algebraic_real & | arg_1, | |
const algebraic_real & | arg_2 | |||
) | [static] |
Definition at line 178 of file glue_algebraic_number.cpp.
Referenced by glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_p_adic_modular_integer(), glue_polynomial_generic(), glue_polynomial_integer(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_quotient_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_generic(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static vector<integer> mmx::GLUE_25 | ( | const integer & | arg_1, | |
const vector< integer > & | arg_2 | |||
) | [static] |
Definition at line 140 of file glue_vector_integer.cpp.
static vector<int> mmx::GLUE_25 | ( | const int & | arg_1, | |
const vector< int > & | arg_2 | |||
) | [static] |
Definition at line 134 of file glue_vector_int.cpp.
static bool mmx::GLUE_25 | ( | const series< rational > & | arg_1, | |
const series< rational > & | arg_2 | |||
) | [static] |
Definition at line 184 of file glue_series_rational.cpp.
static series<generic> mmx::GLUE_25 | ( | const series< generic > & | arg_1, | |
const series< generic > & | arg_2 | |||
) | [static] |
Definition at line 176 of file glue_series_generic.cpp.
static bool mmx::GLUE_25 | ( | const quotient< polynomial< rational >, polynomial< rational > > & | arg_1, | |
const polynomial< rational > & | arg_2 | |||
) | [static] |
Definition at line 177 of file glue_quotient_polynomial_rational.cpp.
static bool mmx::GLUE_25 | ( | const polynomial< rational > & | arg_1, | |
const rational & | arg_2 | |||
) | [static] |
Definition at line 176 of file glue_polynomial_rational.cpp.
static bool mmx::GLUE_25 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1, | |
const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_2 | |||
) | [static] |
Definition at line 190 of file glue_polynomial_p_adic_modular_integer.cpp.
static bool mmx::GLUE_25 | ( | const polynomial< integer > & | arg_1, | |
const integer & | arg_2 | |||
) | [static] |
Definition at line 167 of file glue_polynomial_integer.cpp.
static vector<generic> mmx::GLUE_25 | ( | const vector< generic > & | arg_1 | ) | [static] |
Definition at line 132 of file glue_vector_generic.cpp.
References tan().
static series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> mmx::GLUE_25 | ( | const mmx_modular(integer)& | arg_1, | |
const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_2 | |||
) | [static] |
Definition at line 159 of file glue_p_adic_modular_integer.cpp.
static matrix<rational> mmx::GLUE_25 | ( | const matrix< rational > & | arg_1, | |
const rational & | arg_2 | |||
) | [static] |
Definition at line 203 of file glue_matrix_rational.cpp.
static matrix<integer> mmx::GLUE_25 | ( | const integer & | arg_1, | |
const matrix< integer > & | arg_2 | |||
) | [static] |
Definition at line 200 of file glue_matrix_integer.cpp.
static generic mmx::GLUE_25 | ( | const literal & | arg_1, | |
const tuple< generic > & | arg_2 | |||
) | [static] |
Definition at line 200 of file glue_matrix_generic.cpp.
References as_vector(), and gen_literal_apply.
00200 { 00201 return gen_literal_apply (arg_1, as_vector (arg_2)); 00202 }
static bool mmx::GLUE_25 | ( | const algebraic_real & | arg_1, | |
const algebraic_real & | arg_2 | |||
) | [static] |
Definition at line 183 of file glue_algebraic_number.cpp.
Referenced by glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_p_adic_modular_integer(), glue_polynomial_generic(), glue_polynomial_integer(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_quotient_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_generic(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static vector<integer> mmx::GLUE_26 | ( | const vector< integer > & | arg_1, | |
const integer & | arg_2 | |||
) | [static] |
Definition at line 145 of file glue_vector_integer.cpp.
static vector<int> mmx::GLUE_26 | ( | const vector< int > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
Definition at line 139 of file glue_vector_int.cpp.
static bool mmx::GLUE_26 | ( | const series< rational > & | arg_1, | |
const rational & | arg_2 | |||
) | [static] |
Definition at line 189 of file glue_series_rational.cpp.
static bool mmx::GLUE_26 | ( | const series< integer > & | arg_1, | |
const series< integer > & | arg_2 | |||
) | [static] |
Definition at line 181 of file glue_series_integer.cpp.
static series<generic> mmx::GLUE_26 | ( | const series< generic > & | arg_1, | |
const series< generic > & | arg_2 | |||
) | [static] |
Definition at line 181 of file glue_series_generic.cpp.
static bool mmx::GLUE_26 | ( | const polynomial< rational > & | arg_1, | |
const quotient< polynomial< rational >, polynomial< rational > > & | arg_2 | |||
) | [static] |
Definition at line 182 of file glue_quotient_polynomial_rational.cpp.
static bool mmx::GLUE_26 | ( | const polynomial< rational > & | arg_1, | |
const rational & | arg_2 | |||
) | [static] |
Definition at line 181 of file glue_polynomial_rational.cpp.
static bool mmx::GLUE_26 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1, | |
const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_2 | |||
) | [static] |
Definition at line 195 of file glue_polynomial_p_adic_modular_integer.cpp.
static bool mmx::GLUE_26 | ( | const polynomial< integer > & | arg_1, | |
const integer & | arg_2 | |||
) | [static] |
Definition at line 172 of file glue_polynomial_integer.cpp.
static vector<generic> mmx::GLUE_26 | ( | const vector< generic > & | arg_1 | ) | [static] |
Definition at line 137 of file glue_vector_generic.cpp.
References acos().
static series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> mmx::GLUE_26 | ( | const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_1, | |
const mmx_modular(integer)& | arg_2 | |||
) | [static] |
Definition at line 164 of file glue_p_adic_modular_integer.cpp.
static matrix<rational> mmx::GLUE_26 | ( | const rational & | arg_1, | |
const matrix< rational > & | arg_2 | |||
) | [static] |
Definition at line 208 of file glue_matrix_rational.cpp.
static matrix<integer> mmx::GLUE_26 | ( | const matrix< integer > & | arg_1, | |
const integer & | arg_2 | |||
) | [static] |
Definition at line 205 of file glue_matrix_integer.cpp.
static generic mmx::GLUE_26 | ( | const literal & | arg_1, | |
const tuple< generic > & | arg_2 | |||
) | [static] |
Definition at line 205 of file glue_matrix_generic.cpp.
References as_vector(), and gen_literal_access.
00205 { 00206 return gen_literal_access (arg_1, as_vector (arg_2)); 00207 }
static bool mmx::GLUE_26 | ( | const algebraic_real & | arg_1, | |
const algebraic_real & | arg_2 | |||
) | [static] |
Definition at line 188 of file glue_algebraic_number.cpp.
Referenced by glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_p_adic_modular_integer(), glue_polynomial_generic(), glue_polynomial_integer(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_quotient_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_generic(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static vector<integer> mmx::GLUE_27 | ( | const integer & | arg_1, | |
const vector< integer > & | arg_2 | |||
) | [static] |
Definition at line 150 of file glue_vector_integer.cpp.
static vector<int> mmx::GLUE_27 | ( | const int & | arg_1, | |
const vector< int > & | arg_2 | |||
) | [static] |
Definition at line 144 of file glue_vector_int.cpp.
static bool mmx::GLUE_27 | ( | const series< rational > & | arg_1, | |
const rational & | arg_2 | |||
) | [static] |
Definition at line 194 of file glue_series_rational.cpp.
static bool mmx::GLUE_27 | ( | const series< integer > & | arg_1, | |
const series< integer > & | arg_2 | |||
) | [static] |
Definition at line 186 of file glue_series_integer.cpp.
static bool mmx::GLUE_27 | ( | const series< generic > & | arg_1, | |
const series< generic > & | arg_2 | |||
) | [static] |
static bool mmx::GLUE_27 | ( | const polynomial< rational > & | arg_1, | |
const quotient< polynomial< rational >, polynomial< rational > > & | arg_2 | |||
) | [static] |
Definition at line 187 of file glue_quotient_polynomial_rational.cpp.
static bool mmx::GLUE_27 | ( | const rational & | arg_1, | |
const polynomial< rational > & | arg_2 | |||
) | [static] |
Definition at line 186 of file glue_polynomial_rational.cpp.
static bool mmx::GLUE_27 | ( | const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_1, | |
const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_2 | |||
) | [static] |
Definition at line 200 of file glue_polynomial_p_adic_modular_integer.cpp.
References arg_2.
static bool mmx::GLUE_27 | ( | const integer & | arg_1, | |
const polynomial< integer > & | arg_2 | |||
) | [static] |
Definition at line 177 of file glue_polynomial_integer.cpp.
static vector<generic> mmx::GLUE_27 | ( | const vector< generic > & | arg_1 | ) | [static] |
Definition at line 142 of file glue_vector_generic.cpp.
References asin().
static series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> mmx::GLUE_27 | ( | const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_1, | |
const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_2 | |||
) | [static] |
static matrix<rational> mmx::GLUE_27 | ( | const matrix< rational > & | arg_1, | |
const rational & | arg_2 | |||
) | [static] |
Definition at line 213 of file glue_matrix_rational.cpp.
static matrix<integer> mmx::GLUE_27 | ( | const integer & | arg_1, | |
const matrix< integer > & | arg_2 | |||
) | [static] |
Definition at line 210 of file glue_matrix_integer.cpp.
static literal mmx::GLUE_27 | ( | const string & | arg_1 | ) | [static] |
Definition at line 210 of file glue_matrix_generic.cpp.
00210 { 00211 return literal (arg_1); 00212 }
static bool mmx::GLUE_27 | ( | const algebraic_real & | arg_1, | |
const algebraic_real & | arg_2 | |||
) | [static] |
Definition at line 193 of file glue_algebraic_number.cpp.
Referenced by glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_p_adic_modular_integer(), glue_polynomial_generic(), glue_polynomial_integer(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_quotient_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_generic(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static vector<integer> mmx::GLUE_28 | ( | const vector< integer > & | arg_1, | |
const integer & | arg_2 | |||
) | [static] |
Definition at line 155 of file glue_vector_integer.cpp.
static vector<int> mmx::GLUE_28 | ( | const vector< int > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
Definition at line 149 of file glue_vector_int.cpp.
static bool mmx::GLUE_28 | ( | const rational & | arg_1, | |
const series< rational > & | arg_2 | |||
) | [static] |
Definition at line 199 of file glue_series_rational.cpp.
static bool mmx::GLUE_28 | ( | const series< integer > & | arg_1, | |
const integer & | arg_2 | |||
) | [static] |
Definition at line 191 of file glue_series_integer.cpp.
static series<generic> mmx::GLUE_28 | ( | const series< generic > & | arg_1, | |
const series< generic > & | arg_2 | |||
) | [static] |
static bool mmx::GLUE_28 | ( | const rational & | arg_1, | |
const polynomial< rational > & | arg_2 | |||
) | [static] |
Definition at line 191 of file glue_polynomial_rational.cpp.
static bool mmx::GLUE_28 | ( | const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_1, | |
const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_2 | |||
) | [static] |
Definition at line 205 of file glue_polynomial_p_adic_modular_integer.cpp.
References arg_2.
static bool mmx::GLUE_28 | ( | const integer & | arg_1, | |
const polynomial< integer > & | arg_2 | |||
) | [static] |
Definition at line 182 of file glue_polynomial_integer.cpp.
static vector<generic> mmx::GLUE_28 | ( | const vector< generic > & | arg_1 | ) | [static] |
Definition at line 147 of file glue_vector_generic.cpp.
References atan().
static series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> mmx::GLUE_28 | ( | const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_1, | |
const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_2 | |||
) | [static] |
static matrix<rational> mmx::GLUE_28 | ( | const rational & | arg_1, | |
const matrix< rational > & | arg_2 | |||
) | [static] |
Definition at line 218 of file glue_matrix_rational.cpp.
static matrix<integer> mmx::GLUE_28 | ( | const matrix< integer > & | arg_1, | |
const integer & | arg_2 | |||
) | [static] |
Definition at line 215 of file glue_matrix_integer.cpp.
static string mmx::GLUE_28 | ( | const literal & | arg_1 | ) | [static] |
Definition at line 215 of file glue_matrix_generic.cpp.
00215 { 00216 return *arg_1; 00217 }
static bool mmx::GLUE_28 | ( | const algebraic_real & | arg_1, | |
const algebraic_real & | arg_2 | |||
) | [static] |
Definition at line 198 of file glue_algebraic_number.cpp.
Referenced by glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_p_adic_modular_integer(), glue_polynomial_generic(), glue_polynomial_integer(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_generic(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static vector<complex<rational> > mmx::GLUE_29 | ( | const complex< rational > & | arg_1, | |
const vector< complex< rational > > & | arg_2 | |||
) | [static] |
Definition at line 165 of file glue_vector_rational.cpp.
References arg_2.
static vector<integer> mmx::GLUE_29 | ( | const integer & | arg_1, | |
const vector< integer > & | arg_2 | |||
) | [static] |
Definition at line 160 of file glue_vector_integer.cpp.
static vector<int> mmx::GLUE_29 | ( | const int & | arg_1, | |
const vector< int > & | arg_2 | |||
) | [static] |
Definition at line 154 of file glue_vector_int.cpp.
static bool mmx::GLUE_29 | ( | const rational & | arg_1, | |
const series< rational > & | arg_2 | |||
) | [static] |
Definition at line 204 of file glue_series_rational.cpp.
static bool mmx::GLUE_29 | ( | const series< integer > & | arg_1, | |
const integer & | arg_2 | |||
) | [static] |
Definition at line 196 of file glue_series_integer.cpp.
static series<generic> mmx::GLUE_29 | ( | const series< generic > & | arg_1, | |
const series< generic > & | arg_2 | |||
) | [static] |
static polynomial<rational> mmx::GLUE_29 | ( | const polynomial< rational > & | arg_1 | ) | [static] |
Definition at line 196 of file glue_polynomial_rational.cpp.
References derive().
static polynomial<series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> > mmx::GLUE_29 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1 | ) | [static] |
Definition at line 210 of file glue_polynomial_p_adic_modular_integer.cpp.
References derive().
static polynomial<integer> mmx::GLUE_29 | ( | const polynomial< integer > & | arg_1 | ) | [static] |
Definition at line 187 of file glue_polynomial_integer.cpp.
References derive().
static vector<generic> mmx::GLUE_29 | ( | const vector< generic > & | arg_1 | ) | [static] |
Definition at line 152 of file glue_vector_generic.cpp.
References derive().
static series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> mmx::GLUE_29 | ( | const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
Definition at line 179 of file glue_p_adic_modular_integer.cpp.
References separable_root().
00179 { 00180 return separable_root (arg_1, arg_2); 00181 }
static matrix<rational> mmx::GLUE_29 | ( | const matrix< rational > & | arg_1, | |
const rational & | arg_2 | |||
) | [static] |
Definition at line 223 of file glue_matrix_rational.cpp.
static matrix<integer> mmx::GLUE_29 | ( | const integer & | arg_1, | |
const matrix< integer > & | arg_2 | |||
) | [static] |
Definition at line 220 of file glue_matrix_integer.cpp.
static generic mmx::GLUE_29 | ( | const int & | arg_1 | ) | [static] |
Definition at line 220 of file glue_matrix_generic.cpp.
References integer_construct.
00220 { 00221 return integer_construct (arg_1); 00222 }
static bool mmx::GLUE_29 | ( | const algebraic_real & | arg_1, | |
const algebraic_real & | arg_2 | |||
) | [static] |
Definition at line 203 of file glue_algebraic_number.cpp.
Referenced by glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_p_adic_modular_integer(), glue_polynomial_generic(), glue_polynomial_integer(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_generic(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static iterator<generic> mmx::GLUE_3 | ( | const vector< rational > & | arg_1 | ) | [static] |
Definition at line 35 of file glue_vector_rational.cpp.
References iterate().
static iterator<generic> mmx::GLUE_3 | ( | const vector< mmx_modular(integer) > & | arg_1 | ) | [static] |
static iterator<generic> mmx::GLUE_3 | ( | const vector< integer > & | arg_1 | ) | [static] |
Definition at line 30 of file glue_vector_integer.cpp.
References iterate().
static iterator<generic> mmx::GLUE_3 | ( | const vector< int > & | arg_1 | ) | [static] |
Definition at line 24 of file glue_vector_int.cpp.
References iterate().
static void mmx::GLUE_3 | ( | const series< rational > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
Definition at line 74 of file glue_series_rational.cpp.
References set_cancel_order().
00074 { 00075 set_cancel_order (arg_1, arg_2); 00076 }
static void mmx::GLUE_3 | ( | const series< mmx_modular(integer) > & | arg_1, | |
const generic & | arg_2 | |||
) | [static] |
Definition at line 70 of file glue_series_modular_integer.cpp.
References arg_1, arg_2, and set_variable_name().
00070 { 00071 set_variable_name (arg_1, arg_2); 00072 }
static void mmx::GLUE_3 | ( | const series< integer > & | arg_1, | |
const generic & | arg_2 | |||
) | [static] |
Definition at line 66 of file glue_series_integer.cpp.
References arg_2, and set_variable_name().
00066 { 00067 set_variable_name (arg_1, arg_2); 00068 }
static void mmx::GLUE_3 | ( | const series< generic > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
Definition at line 66 of file glue_series_generic.cpp.
References set_output_order().
00066 { 00067 set_output_order (arg_1, arg_2); 00068 }
static quotient< polynomial<rational> , polynomial<rational> > mmx::GLUE_3 | ( | const polynomial< rational > & | arg_1, | |
const polynomial< rational > & | arg_2 | |||
) | [static] |
Definition at line 67 of file glue_quotient_polynomial_rational.cpp.
References simple_quotient.
00067 { 00068 return (simple_quotient(polynomial<rational> ) (arg_1, arg_2)); 00069 }
static void mmx::GLUE_3 | ( | const polynomial< rational > & | arg_1, | |
const generic & | arg_2 | |||
) | [static] |
Definition at line 66 of file glue_polynomial_rational.cpp.
References arg_2, and set_variable_name().
00066 { 00067 set_variable_name (arg_1, arg_2); 00068 }
static void mmx::GLUE_3 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1, | |
const generic & | arg_2 | |||
) | [static] |
Definition at line 80 of file glue_polynomial_p_adic_modular_integer.cpp.
References arg_1, arg_2, and set_variable_name().
00080 { 00081 set_variable_name (arg_1, arg_2); 00082 }
static void mmx::GLUE_3 | ( | const polynomial< mmx_modular(integer) > & | arg_1, | |
const generic & | arg_2 | |||
) | [static] |
Definition at line 62 of file glue_polynomial_modular_integer.cpp.
References arg_1, arg_2, and set_variable_name().
00062 { 00063 set_variable_name (arg_1, arg_2); 00064 }
static void mmx::GLUE_3 | ( | const polynomial< integer > & | arg_1, | |
const generic & | arg_2 | |||
) | [static] |
Definition at line 57 of file glue_polynomial_integer.cpp.
References arg_2, and set_variable_name().
00057 { 00058 set_variable_name (arg_1, arg_2); 00059 }
static vector<generic> mmx::GLUE_3 | ( | const vector< generic > & | arg_1, | |
const vector< generic > & | arg_2 | |||
) | [static] |
Definition at line 22 of file glue_vector_generic.cpp.
static permutation mmx::GLUE_3 | ( | const int & | arg_1, | |
const int & | arg_2, | |||
const int & | arg_3 | |||
) | [static] |
Definition at line 24 of file glue_permutation.cpp.
References transposition().
00024 { 00025 return transposition (arg_1, arg_2, arg_3); 00026 }
static iterator<generic> mmx::GLUE_3 | ( | const polynomial< mmx_modular(integer), polynomial_carry_variant_helper< mmx_modular(integer) >::PV > & | arg_1 | ) | [static] |
Definition at line 45 of file glue_p_expansion_modular_integer.cpp.
References iterate().
static void mmx::GLUE_3 | ( | const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
Definition at line 49 of file glue_p_adic_modular_integer.cpp.
References set_cancel_order().
00049 { 00050 set_cancel_order (arg_1, arg_2); 00051 }
Definition at line 93 of file glue_matrix_rational.cpp.
References as_vector(), and matrix_new().
00093 { 00094 return matrix_new (as_vector (arg_1)); 00095 }
static row_tuple<mmx_modular(integer) > mmx::GLUE_3 | ( | const tuple< mmx_modular(integer) > & | arg_1 | ) | [static] |
Definition at line 91 of file glue_matrix_modular_integer.cpp.
References arg_1, and as_vector().
static row_tuple<integer> mmx::GLUE_3 | ( | const tuple< integer > & | arg_1 | ) | [static] |
Definition at line 90 of file glue_matrix_integer.cpp.
References as_vector().
static string mmx::GLUE_3 | ( | const string & | arg_1, | |
const int & | arg_2, | |||
const int & | arg_3 | |||
) | [static] |
Definition at line 90 of file glue_matrix_generic.cpp.
References arg_1.
static algebraic_real mmx::GLUE_3 | ( | const algebraic_real & | arg_1, | |
const algebraic_real & | arg_2 | |||
) | [static] |
static algebraic<generic> mmx::GLUE_3 | ( | const algebraic< generic > & | arg_1, | |
const algebraic< generic > & | arg_2 | |||
) | [static] |
Definition at line 55 of file glue_algebraic_generic.cpp.
References lcommon().
Referenced by glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_p_adic_modular_integer(), glue_p_expansion_modular_integer(), glue_permutation(), glue_polynomial_generic(), glue_polynomial_integer(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_quotient_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_generic(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static vector<integer> mmx::GLUE_30 | ( | const vector< integer > & | arg_1, | |
const integer & | arg_2 | |||
) | [static] |
Definition at line 165 of file glue_vector_integer.cpp.
static vector<int> mmx::GLUE_30 | ( | const vector< int > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
Definition at line 159 of file glue_vector_int.cpp.
Definition at line 209 of file glue_series_rational.cpp.
References derive().
static bool mmx::GLUE_30 | ( | const integer & | arg_1, | |
const series< integer > & | arg_2 | |||
) | [static] |
Definition at line 201 of file glue_series_integer.cpp.
static series<generic> mmx::GLUE_30 | ( | const series< generic > & | arg_1 | ) | [static] |
Definition at line 201 of file glue_series_generic.cpp.
References integrate().
static polynomial<rational> mmx::GLUE_30 | ( | const polynomial< rational > & | arg_1 | ) | [static] |
Definition at line 201 of file glue_polynomial_rational.cpp.
References xderive().
static polynomial<series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> > mmx::GLUE_30 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1 | ) | [static] |
Definition at line 215 of file glue_polynomial_p_adic_modular_integer.cpp.
References xderive().
static polynomial<integer> mmx::GLUE_30 | ( | const polynomial< integer > & | arg_1 | ) | [static] |
Definition at line 192 of file glue_polynomial_integer.cpp.
References xderive().
static vector<generic> mmx::GLUE_30 | ( | const vector< generic > & | arg_1 | ) | [static] |
Definition at line 157 of file glue_vector_generic.cpp.
References integrate().
static series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> mmx::GLUE_30 | ( | const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_1 | ) | [static] |
Definition at line 184 of file glue_p_adic_modular_integer.cpp.
References pth_root().
static bool mmx::GLUE_30 | ( | const matrix< rational > & | arg_1, | |
const matrix< rational > & | arg_2 | |||
) | [static] |
Definition at line 228 of file glue_matrix_rational.cpp.
static matrix<integer> mmx::GLUE_30 | ( | const matrix< integer > & | arg_1, | |
const integer & | arg_2 | |||
) | [static] |
Definition at line 225 of file glue_matrix_integer.cpp.
static row_tuple<generic> mmx::GLUE_30 | ( | const tuple< generic > & | arg_1 | ) | [static] |
Definition at line 225 of file glue_matrix_generic.cpp.
References as_vector().
static bool mmx::GLUE_30 | ( | const algebraic_real & | arg_1, | |
const rational & | arg_2 | |||
) | [static] |
Definition at line 208 of file glue_algebraic_number.cpp.
Referenced by glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_p_adic_modular_integer(), glue_polynomial_generic(), glue_polynomial_integer(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_generic(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static integer mmx::GLUE_31 | ( | const vector< integer > & | arg_1, | |
const vector< integer > & | arg_2 | |||
) | [static] |
static int mmx::GLUE_31 | ( | const vector< int > & | arg_1, | |
const vector< int > & | arg_2 | |||
) | [static] |
Definition at line 214 of file glue_series_rational.cpp.
References xderive().
static bool mmx::GLUE_31 | ( | const integer & | arg_1, | |
const series< integer > & | arg_2 | |||
) | [static] |
Definition at line 206 of file glue_series_integer.cpp.
static series<generic> mmx::GLUE_31 | ( | const series< generic > & | arg_1, | |
const series< generic > & | arg_2 | |||
) | [static] |
static rational mmx::GLUE_31 | ( | const polynomial< rational > & | arg_1, | |
const rational & | arg_2 | |||
) | [static] |
Definition at line 206 of file glue_polynomial_rational.cpp.
References evaluate().
static series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> mmx::GLUE_31 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1, | |
const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_2 | |||
) | [static] |
Definition at line 220 of file glue_polynomial_p_adic_modular_integer.cpp.
References evaluate().
static integer mmx::GLUE_31 | ( | const polynomial< integer > & | arg_1, | |
const integer & | arg_2 | |||
) | [static] |
Definition at line 197 of file glue_polynomial_integer.cpp.
References evaluate().
static bool mmx::GLUE_31 | ( | const generic & | arg_1 | ) | [static] |
Definition at line 196 of file glue_polynomial_generic.cpp.
References arg_1.
00196 { 00197 return generic_is_string (arg_1); 00198 }
static bool mmx::GLUE_31 | ( | const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_1, | |
const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_2 | |||
) | [static] |
Definition at line 189 of file glue_p_adic_modular_integer.cpp.
static bool mmx::GLUE_31 | ( | const matrix< rational > & | arg_1, | |
const matrix< rational > & | arg_2 | |||
) | [static] |
Definition at line 233 of file glue_matrix_rational.cpp.
static bool mmx::GLUE_31 | ( | const matrix< integer > & | arg_1, | |
const matrix< integer > & | arg_2 | |||
) | [static] |
Definition at line 230 of file glue_matrix_integer.cpp.
static matrix<generic> mmx::GLUE_31 | ( | const tuple< generic > & | arg_1 | ) | [static] |
Definition at line 230 of file glue_matrix_generic.cpp.
References as_vector(), and matrix_new().
00230 { 00231 return matrix_new (as_vector (arg_1)); 00232 }
static bool mmx::GLUE_31 | ( | const algebraic_real & | arg_1, | |
const rational & | arg_2 | |||
) | [static] |
Definition at line 213 of file glue_algebraic_number.cpp.
Referenced by glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_p_adic_modular_integer(), glue_polynomial_generic(), glue_polynomial_integer(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static bool mmx::GLUE_32 | ( | const vector< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 180 of file glue_vector_rational.cpp.
References arg_1.
00180 { 00181 return is_nil (arg_1); 00182 }
static integer mmx::GLUE_32 | ( | const vector< integer > & | arg_1 | ) | [static] |
Definition at line 175 of file glue_vector_integer.cpp.
References big_mul().
static int mmx::GLUE_32 | ( | const vector< int > & | arg_1 | ) | [static] |
Definition at line 169 of file glue_vector_int.cpp.
References big_mul().
Definition at line 211 of file glue_series_integer.cpp.
References derive().
static series<generic> mmx::GLUE_32 | ( | const series< generic > & | arg_1 | ) | [static] |
Definition at line 211 of file glue_series_generic.cpp.
References reverse().
static rational mmx::GLUE_32 | ( | const polynomial< rational > & | arg_1, | |
const rational & | arg_2 | |||
) | [static] |
Definition at line 211 of file glue_polynomial_rational.cpp.
References evaluate().
static series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> mmx::GLUE_32 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1, | |
const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_2 | |||
) | [static] |
Definition at line 225 of file glue_polynomial_p_adic_modular_integer.cpp.
References evaluate().
static integer mmx::GLUE_32 | ( | const polynomial< integer > & | arg_1, | |
const integer & | arg_2 | |||
) | [static] |
Definition at line 202 of file glue_polynomial_integer.cpp.
References evaluate().
static int mmx::GLUE_32 | ( | const string & | arg_1 | ) | [static] |
Definition at line 201 of file glue_polynomial_generic.cpp.
References N().
static bool mmx::GLUE_32 | ( | const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_1, | |
const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_2 | |||
) | [static] |
Definition at line 194 of file glue_p_adic_modular_integer.cpp.
static bool mmx::GLUE_32 | ( | const matrix< rational > & | arg_1, | |
const rational & | arg_2 | |||
) | [static] |
Definition at line 238 of file glue_matrix_rational.cpp.
static bool mmx::GLUE_32 | ( | const matrix< integer > & | arg_1, | |
const matrix< integer > & | arg_2 | |||
) | [static] |
Definition at line 235 of file glue_matrix_integer.cpp.
static matrix<generic> mmx::GLUE_32 | ( | const tuple< row_tuple< generic > > & | arg_1 | ) | [static] |
Definition at line 235 of file glue_matrix_generic.cpp.
References arg_1, as_vector(), and matrix_new().
00235 { 00236 return matrix_new (as_vector (arg_1)); 00237 }
static bool mmx::GLUE_32 | ( | const algebraic_real & | arg_1, | |
const rational & | arg_2 | |||
) | [static] |
Definition at line 218 of file glue_algebraic_number.cpp.
Referenced by glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_p_adic_modular_integer(), glue_polynomial_generic(), glue_polynomial_integer(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static bool mmx::GLUE_33 | ( | const vector< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 185 of file glue_vector_rational.cpp.
References arg_1.
00185 { 00186 return is_atom (arg_1); 00187 }
static integer mmx::GLUE_33 | ( | const vector< integer > & | arg_1 | ) | [static] |
Definition at line 180 of file glue_vector_integer.cpp.
References big_add().
static int mmx::GLUE_33 | ( | const vector< int > & | arg_1 | ) | [static] |
Definition at line 174 of file glue_vector_int.cpp.
References big_add().
Definition at line 216 of file glue_series_integer.cpp.
References xderive().
static series<generic> mmx::GLUE_33 | ( | const series< generic > & | arg_1, | |
const generic & | arg_2 | |||
) | [static] |
Definition at line 216 of file glue_series_generic.cpp.
References arg_2, and q_difference().
00216 { 00217 return q_difference (arg_1, arg_2); 00218 }
static polynomial<rational> mmx::GLUE_33 | ( | const polynomial< rational > & | arg_1, | |
const rational & | arg_2 | |||
) | [static] |
Definition at line 216 of file glue_polynomial_rational.cpp.
static polynomial<series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> > mmx::GLUE_33 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1, | |
const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_2 | |||
) | [static] |
Definition at line 230 of file glue_polynomial_p_adic_modular_integer.cpp.
static polynomial<generic> mmx::GLUE_33 | ( | const polynomial< integer > & | arg_1 | ) | [static] |
Definition at line 207 of file glue_polynomial_integer.cpp.
00207 { 00208 return as<polynomial<generic> > (arg_1); 00209 }
static string mmx::GLUE_33 | ( | const string & | arg_1, | |
const int & | arg_2, | |||
const int & | arg_3 | |||
) | [static] |
Definition at line 206 of file glue_polynomial_generic.cpp.
References arg_1.
static bool mmx::GLUE_33 | ( | const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_1, | |
const mmx_modular(integer)& | arg_2 | |||
) | [static] |
Definition at line 199 of file glue_p_adic_modular_integer.cpp.
static bool mmx::GLUE_33 | ( | const matrix< rational > & | arg_1, | |
const rational & | arg_2 | |||
) | [static] |
Definition at line 243 of file glue_matrix_rational.cpp.
static bool mmx::GLUE_33 | ( | const matrix< integer > & | arg_1, | |
const integer & | arg_2 | |||
) | [static] |
Definition at line 240 of file glue_matrix_integer.cpp.
static matrix<generic> mmx::GLUE_33 | ( | const tuple< row_tuple< generic > > & | arg_1 | ) | [static] |
Definition at line 240 of file glue_matrix_generic.cpp.
References arg_1, as_vector(), and matrix_new().
00240 { 00241 return matrix_new (as_vector (arg_1)); 00242 }
static bool mmx::GLUE_33 | ( | const algebraic_real & | arg_1, | |
const rational & | arg_2 | |||
) | [static] |
Definition at line 223 of file glue_algebraic_number.cpp.
Referenced by glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_p_adic_modular_integer(), glue_polynomial_generic(), glue_polynomial_integer(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static vector<complex<rational> > mmx::GLUE_34 | ( | const vector< complex< rational > > & | arg_1, | |
const complex< rational > & | arg_2 | |||
) | [static] |
Definition at line 190 of file glue_vector_rational.cpp.
References arg_1.
static bool mmx::GLUE_34 | ( | const vector< integer > & | arg_1, | |
const vector< integer > & | arg_2 | |||
) | [static] |
Definition at line 185 of file glue_vector_integer.cpp.
static bool mmx::GLUE_34 | ( | const vector< int > & | arg_1, | |
const vector< int > & | arg_2 | |||
) | [static] |
Definition at line 179 of file glue_vector_int.cpp.
static series<generic> mmx::GLUE_34 | ( | const series< generic > & | arg_1, | |
const generic & | arg_2 | |||
) | [static] |
Definition at line 221 of file glue_series_generic.cpp.
References arg_2, and series_shift_default().
00221 { 00222 return series_shift_default (arg_1, arg_2); 00223 }
static polynomial<rational> mmx::GLUE_34 | ( | const polynomial< rational > & | arg_1, | |
const polynomial< rational > & | arg_2 | |||
) | [static] |
Definition at line 221 of file glue_polynomial_rational.cpp.
static polynomial<series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> > mmx::GLUE_34 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1, | |
const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_2 | |||
) | [static] |
Definition at line 235 of file glue_polynomial_p_adic_modular_integer.cpp.
References arg_2.
static vector<integer> mmx::GLUE_34 | ( | const polynomial< integer > & | arg_1, | |
const vector< integer > & | arg_2 | |||
) | [static] |
Definition at line 212 of file glue_polynomial_integer.cpp.
References evaluate().
static string mmx::GLUE_34 | ( | const string & | arg_1, | |
const string & | arg_2 | |||
) | [static] |
Definition at line 211 of file glue_polynomial_generic.cpp.
static bool mmx::GLUE_34 | ( | const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_1, | |
const mmx_modular(integer)& | arg_2 | |||
) | [static] |
Definition at line 204 of file glue_p_adic_modular_integer.cpp.
static bool mmx::GLUE_34 | ( | const rational & | arg_1, | |
const matrix< rational > & | arg_2 | |||
) | [static] |
Definition at line 248 of file glue_matrix_rational.cpp.
static bool mmx::GLUE_34 | ( | const matrix< integer > & | arg_1, | |
const integer & | arg_2 | |||
) | [static] |
Definition at line 245 of file glue_matrix_integer.cpp.
static int mmx::GLUE_34 | ( | const matrix< generic > & | arg_1 | ) | [static] |
Definition at line 245 of file glue_matrix_generic.cpp.
References N().
static bool mmx::GLUE_34 | ( | const algebraic_real & | arg_1, | |
const rational & | arg_2 | |||
) | [static] |
Definition at line 228 of file glue_algebraic_number.cpp.
Referenced by glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_p_adic_modular_integer(), glue_polynomial_generic(), glue_polynomial_integer(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static int mmx::GLUE_35 | ( | const vector< complex< rational > > & | arg_1, | |
const complex< rational > & | arg_2 | |||
) | [static] |
Definition at line 195 of file glue_vector_rational.cpp.
References arg_1.
static bool mmx::GLUE_35 | ( | const vector< integer > & | arg_1, | |
const vector< integer > & | arg_2 | |||
) | [static] |
Definition at line 190 of file glue_vector_integer.cpp.
static bool mmx::GLUE_35 | ( | const vector< int > & | arg_1, | |
const vector< int > & | arg_2 | |||
) | [static] |
Definition at line 184 of file glue_vector_int.cpp.
Definition at line 234 of file glue_series_rational.cpp.
References invert().
static series<generic> mmx::GLUE_35 | ( | const series< generic > & | arg_1, | |
const generic & | arg_2, | |||
const int & | arg_3 | |||
) | [static] |
static polynomial<rational> mmx::GLUE_35 | ( | const polynomial< rational > & | arg_1, | |
const polynomial< rational > & | arg_2 | |||
) | [static] |
static polynomial<series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> > mmx::GLUE_35 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1, | |
const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_2 | |||
) | [static] |
static vector<integer> mmx::GLUE_35 | ( | const polynomial< integer > & | arg_1, | |
const vector< integer > & | arg_2 | |||
) | [static] |
Definition at line 217 of file glue_polynomial_integer.cpp.
References evaluate().
static string mmx::GLUE_35 | ( | const string & | arg_1, | |
const string & | arg_2 | |||
) | [static] |
Definition at line 216 of file glue_polynomial_generic.cpp.
static bool mmx::GLUE_35 | ( | const mmx_modular(integer)& | arg_1, | |
const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_2 | |||
) | [static] |
Definition at line 209 of file glue_p_adic_modular_integer.cpp.
static bool mmx::GLUE_35 | ( | const rational & | arg_1, | |
const matrix< rational > & | arg_2 | |||
) | [static] |
Definition at line 253 of file glue_matrix_rational.cpp.
static bool mmx::GLUE_35 | ( | const integer & | arg_1, | |
const matrix< integer > & | arg_2 | |||
) | [static] |
Definition at line 250 of file glue_matrix_integer.cpp.
static int mmx::GLUE_35 | ( | const matrix< generic > & | arg_1 | ) | [static] |
Definition at line 250 of file glue_matrix_generic.cpp.
References rows().
static bool mmx::GLUE_35 | ( | const algebraic_real & | arg_1, | |
const rational & | arg_2 | |||
) | [static] |
Definition at line 233 of file glue_algebraic_number.cpp.
Referenced by glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_p_adic_modular_integer(), glue_polynomial_generic(), glue_polynomial_integer(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static bool mmx::GLUE_36 | ( | const vector< complex< rational > > & | arg_1, | |
const complex< rational > & | arg_2 | |||
) | [static] |
Definition at line 200 of file glue_vector_rational.cpp.
References arg_1.
static bool mmx::GLUE_36 | ( | const vector< integer > & | arg_1, | |
const integer & | arg_2 | |||
) | [static] |
Definition at line 195 of file glue_vector_integer.cpp.
static bool mmx::GLUE_36 | ( | const vector< int > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
Definition at line 189 of file glue_vector_int.cpp.
static series<rational> mmx::GLUE_36 | ( | const series< rational > & | arg_1, | |
const series< rational > & | arg_2 | |||
) | [static] |
Definition at line 239 of file glue_series_rational.cpp.
static series<generic> mmx::GLUE_36 | ( | const series< generic > & | arg_1, | |
const series< generic > & | arg_2 | |||
) | [static] |
static polynomial<rational> mmx::GLUE_36 | ( | const polynomial< rational > & | arg_1, | |
const polynomial< rational > & | arg_2 | |||
) | [static] |
static polynomial<series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> > mmx::GLUE_36 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1, | |
const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_2 | |||
) | [static] |
static alias<string> mmx::GLUE_36 | ( | const alias< string > & | arg_1, | |
const string & | arg_2 | |||
) | [static] |
Definition at line 221 of file glue_polynomial_generic.cpp.
static bool mmx::GLUE_36 | ( | const mmx_modular(integer)& | arg_1, | |
const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_2 | |||
) | [static] |
Definition at line 214 of file glue_p_adic_modular_integer.cpp.
static matrix<rational> mmx::GLUE_36 | ( | const rational & | arg_1, | |
const matrix< rational > & | arg_2 | |||
) | [static] |
Definition at line 258 of file glue_matrix_rational.cpp.
static bool mmx::GLUE_36 | ( | const integer & | arg_1, | |
const matrix< integer > & | arg_2 | |||
) | [static] |
Definition at line 255 of file glue_matrix_integer.cpp.
static int mmx::GLUE_36 | ( | const matrix< generic > & | arg_1 | ) | [static] |
Definition at line 255 of file glue_matrix_generic.cpp.
References cols().
static bool mmx::GLUE_36 | ( | const rational & | arg_1, | |
const algebraic_real & | arg_2 | |||
) | [static] |
Definition at line 238 of file glue_algebraic_number.cpp.
Referenced by glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_p_adic_modular_integer(), glue_polynomial_generic(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static vector<rational> mmx::GLUE_37 | ( | const vector< integer > & | arg_1 | ) | [static] |
Definition at line 205 of file glue_vector_rational.cpp.
00205 { 00206 return as<vector<rational> > (arg_1); 00207 }
static bool mmx::GLUE_37 | ( | const vector< integer > & | arg_1, | |
const integer & | arg_2 | |||
) | [static] |
Definition at line 200 of file glue_vector_integer.cpp.
static bool mmx::GLUE_37 | ( | const vector< int > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
Definition at line 194 of file glue_vector_int.cpp.
static series<rational> mmx::GLUE_37 | ( | const rational & | arg_1, | |
const series< rational > & | arg_2 | |||
) | [static] |
Definition at line 244 of file glue_series_rational.cpp.
static bool mmx::GLUE_37 | ( | const series< integer > & | arg_1, | |
const series< integer > & | arg_2 | |||
) | [static] |
Definition at line 236 of file glue_series_integer.cpp.
static series<generic> mmx::GLUE_37 | ( | const series< generic > & | arg_1 | ) | [static] |
Definition at line 236 of file glue_series_generic.cpp.
References sqrt().
static bool mmx::GLUE_37 | ( | const polynomial< rational > & | arg_1, | |
const polynomial< rational > & | arg_2 | |||
) | [static] |
static bool mmx::GLUE_37 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1, | |
const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_2 | |||
) | [static] |
static bool mmx::GLUE_37 | ( | const string & | arg_1, | |
const string & | arg_2 | |||
) | [static] |
Definition at line 226 of file glue_polynomial_generic.cpp.
static matrix<rational> mmx::GLUE_37 | ( | const matrix< rational > & | arg_1, | |
const rational & | arg_2 | |||
) | [static] |
Definition at line 263 of file glue_matrix_rational.cpp.
static row_tuple<generic> mmx::GLUE_37 | ( | const row_tuple< integer > & | arg_1 | ) | [static] |
Definition at line 260 of file glue_matrix_integer.cpp.
00260 { 00261 return as<row_tuple<generic> > (arg_1); 00262 }
static generic mmx::GLUE_37 | ( | const matrix< generic > & | arg_1, | |
const int & | arg_2, | |||
const int & | arg_3 | |||
) | [static] |
Definition at line 260 of file glue_matrix_generic.cpp.
References arg_1.
static bool mmx::GLUE_37 | ( | const rational & | arg_1, | |
const algebraic_real & | arg_2 | |||
) | [static] |
Definition at line 243 of file glue_algebraic_number.cpp.
Referenced by glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
Definition at line 210 of file glue_vector_rational.cpp.
00210 { 00211 return as<vector<complex<rational> > > (arg_1); 00212 }
static bool mmx::GLUE_38 | ( | const integer & | arg_1, | |
const vector< integer > & | arg_2 | |||
) | [static] |
Definition at line 205 of file glue_vector_integer.cpp.
static bool mmx::GLUE_38 | ( | const int & | arg_1, | |
const vector< int > & | arg_2 | |||
) | [static] |
Definition at line 199 of file glue_vector_int.cpp.
static series<rational> mmx::GLUE_38 | ( | const series< rational > & | arg_1, | |
const rational & | arg_2 | |||
) | [static] |
Definition at line 249 of file glue_series_rational.cpp.
static bool mmx::GLUE_38 | ( | const series< integer > & | arg_1, | |
const series< integer > & | arg_2 | |||
) | [static] |
Definition at line 241 of file glue_series_integer.cpp.
static series<generic> mmx::GLUE_38 | ( | const series< generic > & | arg_1 | ) | [static] |
Definition at line 241 of file glue_series_generic.cpp.
References exp().
static polynomial<rational> mmx::GLUE_38 | ( | const polynomial< rational > & | arg_1, | |
const polynomial< rational > & | arg_2, | |||
const int & | arg_3 | |||
) | [static] |
Definition at line 241 of file glue_polynomial_rational.cpp.
References subresultant().
00241 { 00242 return subresultant (arg_1, arg_2, arg_3); 00243 }
static polynomial<series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> > mmx::GLUE_38 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1, | |
const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_2, | |||
const int & | arg_3 | |||
) | [static] |
Definition at line 255 of file glue_polynomial_p_adic_modular_integer.cpp.
References arg_2, and subresultant().
00255 { 00256 return subresultant (arg_1, arg_2, arg_3); 00257 }
static bool mmx::GLUE_38 | ( | const string & | arg_1, | |
const string & | arg_2 | |||
) | [static] |
Definition at line 231 of file glue_polynomial_generic.cpp.
static matrix<generic> mmx::GLUE_38 | ( | const matrix< integer > & | arg_1 | ) | [static] |
Definition at line 265 of file glue_matrix_integer.cpp.
00265 { 00266 return as<matrix<generic> > (arg_1); 00267 }
static alias<generic> mmx::GLUE_38 | ( | const alias< matrix< generic > > & | arg_1, | |
const int & | arg_2, | |||
const int & | arg_3 | |||
) | [static] |
Definition at line 265 of file glue_matrix_generic.cpp.
References arg_1.
static bool mmx::GLUE_38 | ( | const rational & | arg_1, | |
const algebraic_real & | arg_2 | |||
) | [static] |
Definition at line 248 of file glue_algebraic_number.cpp.
Referenced by glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static vector<generic> mmx::GLUE_39 | ( | const vector< rational > & | arg_1 | ) | [static] |
Definition at line 215 of file glue_vector_rational.cpp.
00215 { 00216 return as<vector<generic> > (arg_1); 00217 }
static bool mmx::GLUE_39 | ( | const integer & | arg_1, | |
const vector< integer > & | arg_2 | |||
) | [static] |
Definition at line 210 of file glue_vector_integer.cpp.
static bool mmx::GLUE_39 | ( | const int & | arg_1, | |
const vector< int > & | arg_2 | |||
) | [static] |
Definition at line 204 of file glue_vector_int.cpp.
static series<rational> mmx::GLUE_39 | ( | const series< rational > & | arg_1, | |
const series< rational > & | arg_2 | |||
) | [static] |
Definition at line 254 of file glue_series_rational.cpp.
static bool mmx::GLUE_39 | ( | const series< integer > & | arg_1, | |
const series< integer > & | arg_2 | |||
) | [static] |
Definition at line 246 of file glue_series_integer.cpp.
static series<generic> mmx::GLUE_39 | ( | const series< generic > & | arg_1 | ) | [static] |
Definition at line 246 of file glue_series_generic.cpp.
References log().
static vector<generic> mmx::GLUE_39 | ( | const polynomial< rational > & | arg_1, | |
const polynomial< rational > & | arg_2 | |||
) | [static] |
Definition at line 246 of file glue_polynomial_rational.cpp.
References wrap_subresultants().
00246 { 00247 return wrap_subresultants (arg_1, arg_2); 00248 }
static vector<generic> mmx::GLUE_39 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1, | |
const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_2 | |||
) | [static] |
Definition at line 260 of file glue_polynomial_p_adic_modular_integer.cpp.
References arg_2, and wrap_subresultants().
00260 { 00261 return wrap_subresultants (arg_1, arg_2); 00262 }
static bool mmx::GLUE_39 | ( | const string & | arg_1, | |
const string & | arg_2 | |||
) | [static] |
Definition at line 236 of file glue_polynomial_generic.cpp.
static rational mmx::GLUE_39 | ( | const matrix< rational > & | arg_1 | ) | [static] |
Definition at line 273 of file glue_matrix_rational.cpp.
References det().
static vector<integer> mmx::GLUE_39 | ( | const vector< int > & | arg_1 | ) | [static] |
Definition at line 270 of file glue_matrix_integer.cpp.
00270 { 00271 return as<vector<integer> > (arg_1); 00272 }
static matrix<generic> mmx::GLUE_39 | ( | const matrix< generic > & | arg_1, | |
const int & | arg_2, | |||
const int & | arg_3, | |||
const int & | arg_4, | |||
const int & | arg_5 | |||
) | [static] |
static bool mmx::GLUE_39 | ( | const rational & | arg_1, | |
const algebraic_real & | arg_2 | |||
) | [static] |
Definition at line 253 of file glue_algebraic_number.cpp.
Referenced by glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static int mmx::GLUE_4 | ( | const vector< rational > & | arg_1 | ) | [static] |
Definition at line 40 of file glue_vector_rational.cpp.
References N().
static int mmx::GLUE_4 | ( | const vector< mmx_modular(integer) > & | arg_1 | ) | [static] |
static int mmx::GLUE_4 | ( | const vector< integer > & | arg_1 | ) | [static] |
Definition at line 35 of file glue_vector_integer.cpp.
References N().
static int mmx::GLUE_4 | ( | const vector< int > & | arg_1 | ) | [static] |
Definition at line 29 of file glue_vector_int.cpp.
References N().
static void mmx::GLUE_4 | ( | const series< rational > & | arg_1, | |
const bool & | arg_2 | |||
) | [static] |
Definition at line 79 of file glue_series_rational.cpp.
References set_formula_output().
00079 { 00080 set_formula_output (arg_1, arg_2); 00081 }
static void mmx::GLUE_4 | ( | const series< mmx_modular(integer) > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
Definition at line 75 of file glue_series_modular_integer.cpp.
References arg_1, and set_output_order().
00075 { 00076 set_output_order (arg_1, arg_2); 00077 }
static void mmx::GLUE_4 | ( | const series< integer > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
Definition at line 71 of file glue_series_integer.cpp.
References set_output_order().
00071 { 00072 set_output_order (arg_1, arg_2); 00073 }
static void mmx::GLUE_4 | ( | const series< generic > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
Definition at line 71 of file glue_series_generic.cpp.
References set_cancel_order().
00071 { 00072 set_cancel_order (arg_1, arg_2); 00073 }
static quotient< polynomial<rational> , polynomial<rational> > mmx::GLUE_4 | ( | const polynomial< rational > & | arg_1 | ) | [static] |
Definition at line 72 of file glue_quotient_polynomial_rational.cpp.
References simple_quotient.
00072 { 00073 return (simple_quotient(polynomial<rational> ) (arg_1)); 00074 }
static polynomial<rational> mmx::GLUE_4 | ( | const rational & | arg_1 | ) | [static] |
Definition at line 71 of file glue_polynomial_rational.cpp.
00071 { 00072 return polynomial<rational > (arg_1); 00073 }
static polynomial<series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> > mmx::GLUE_4 | ( | const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_1 | ) | [static] |
Definition at line 85 of file glue_polynomial_p_adic_modular_integer.cpp.
00085 { 00086 return polynomial<simple_p_adic(mmx_modular(integer) ) > (arg_1); 00087 }
static polynomial<mmx_modular(integer) > mmx::GLUE_4 | ( | const mmx_modular(integer)& | arg_1 | ) | [static] |
Definition at line 67 of file glue_polynomial_modular_integer.cpp.
00067 { 00068 return polynomial<mmx_modular(integer) > (arg_1); 00069 }
static polynomial<integer> mmx::GLUE_4 | ( | const integer & | arg_1 | ) | [static] |
Definition at line 62 of file glue_polynomial_integer.cpp.
00062 { 00063 return polynomial<integer > (arg_1); 00064 }
static vector<generic> mmx::GLUE_4 | ( | const vector< generic > & | arg_1, | |
const vector< generic > & | arg_2 | |||
) | [static] |
Definition at line 27 of file glue_vector_generic.cpp.
static permutation mmx::GLUE_4 | ( | const int & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
static int mmx::GLUE_4 | ( | const polynomial< mmx_modular(integer), polynomial_carry_variant_helper< mmx_modular(integer) >::PV > & | arg_1 | ) | [static] |
Definition at line 50 of file glue_p_expansion_modular_integer.cpp.
References N().
static void mmx::GLUE_4 | ( | const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_1, | |
const bool & | arg_2 | |||
) | [static] |
Definition at line 54 of file glue_p_adic_modular_integer.cpp.
References set_formula_output().
00054 { 00055 set_formula_output (arg_1, arg_2); 00056 }
Definition at line 98 of file glue_matrix_rational.cpp.
References arg_1, as_vector(), and matrix_new().
00098 { 00099 return matrix_new (as_vector (arg_1)); 00100 }
static matrix<mmx_modular(integer) > mmx::GLUE_4 | ( | const tuple< mmx_modular(integer) > & | arg_1 | ) | [static] |
Definition at line 96 of file glue_matrix_modular_integer.cpp.
References arg_1, as_vector(), and matrix_new().
00096 { 00097 return matrix_new (as_vector (arg_1)); 00098 }
Definition at line 95 of file glue_matrix_integer.cpp.
References as_vector(), and matrix_new().
00095 { 00096 return matrix_new (as_vector (arg_1)); 00097 }
static string mmx::GLUE_4 | ( | const string & | arg_1, | |
const string & | arg_2 | |||
) | [static] |
Definition at line 95 of file glue_matrix_generic.cpp.
static algebraic_real mmx::GLUE_4 | ( | const algebraic_real & | arg_1, | |
const algebraic_real & | arg_2 | |||
) | [static] |
static algebraic<generic> mmx::GLUE_4 | ( | const algebraic< generic > & | arg_1, | |
const algebraic< generic > & | arg_2 | |||
) | [static] |
Definition at line 60 of file glue_algebraic_generic.cpp.
References rcommon().
Referenced by glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_p_adic_modular_integer(), glue_p_expansion_modular_integer(), glue_permutation(), glue_polynomial_generic(), glue_polynomial_integer(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_quotient_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_generic(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static vector<generic> mmx::GLUE_40 | ( | const vector< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 220 of file glue_vector_rational.cpp.
References arg_1.
00220 { 00221 return as<vector<generic> > (arg_1); 00222 }
static bool mmx::GLUE_40 | ( | const vector< integer > & | arg_1, | |
const vector< integer > & | arg_2 | |||
) | [static] |
Definition at line 215 of file glue_vector_integer.cpp.
static bool mmx::GLUE_40 | ( | const vector< int > & | arg_1, | |
const vector< int > & | arg_2 | |||
) | [static] |
Definition at line 209 of file glue_vector_int.cpp.
static bool mmx::GLUE_40 | ( | const series< rational > & | arg_1, | |
const series< rational > & | arg_2 | |||
) | [static] |
static bool mmx::GLUE_40 | ( | const series< integer > & | arg_1, | |
const series< integer > & | arg_2 | |||
) | [static] |
Definition at line 251 of file glue_series_integer.cpp.
static series<generic> mmx::GLUE_40 | ( | const series< generic > & | arg_1 | ) | [static] |
Definition at line 251 of file glue_series_generic.cpp.
References cos().
static rational mmx::GLUE_40 | ( | const polynomial< rational > & | arg_1, | |
const polynomial< rational > & | arg_2 | |||
) | [static] |
Definition at line 251 of file glue_polynomial_rational.cpp.
References resultant().
static series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> mmx::GLUE_40 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1, | |
const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_2 | |||
) | [static] |
Definition at line 265 of file glue_polynomial_p_adic_modular_integer.cpp.
References resultant().
static bool mmx::GLUE_40 | ( | const string & | arg_1, | |
const string & | arg_2 | |||
) | [static] |
Definition at line 241 of file glue_polynomial_generic.cpp.
Definition at line 278 of file glue_matrix_rational.cpp.
References row_echelon().
00278 { 00279 return row_echelon (arg_1); 00280 }
static vector<int> mmx::GLUE_40 | ( | const vector< integer > & | arg_1 | ) | [static] |
Definition at line 275 of file glue_matrix_integer.cpp.
00275 { 00276 return as<vector<int> > (arg_1); 00277 }
static vector<generic> mmx::GLUE_40 | ( | const matrix< generic > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
static bool mmx::GLUE_40 | ( | const rational & | arg_1, | |
const algebraic_real & | arg_2 | |||
) | [static] |
Definition at line 258 of file glue_algebraic_number.cpp.
Referenced by glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static vector<rational> mmx::GLUE_41 | ( | const vector< rational > & | arg_1 | ) | [static] |
Definition at line 225 of file glue_vector_rational.cpp.
00225 { 00226 return -arg_1; 00227 }
static bool mmx::GLUE_41 | ( | const vector< integer > & | arg_1, | |
const vector< integer > & | arg_2 | |||
) | [static] |
Definition at line 220 of file glue_vector_integer.cpp.
static bool mmx::GLUE_41 | ( | const vector< int > & | arg_1, | |
const vector< int > & | arg_2 | |||
) | [static] |
Definition at line 214 of file glue_vector_int.cpp.
static bool mmx::GLUE_41 | ( | const series< integer > & | arg_1, | |
const integer & | arg_2 | |||
) | [static] |
Definition at line 256 of file glue_series_integer.cpp.
static series<generic> mmx::GLUE_41 | ( | const series< generic > & | arg_1 | ) | [static] |
Definition at line 256 of file glue_series_generic.cpp.
References sin().
static rational mmx::GLUE_41 | ( | const polynomial< rational > & | arg_1 | ) | [static] |
Definition at line 256 of file glue_polynomial_rational.cpp.
References discriminant().
00256 { 00257 return discriminant (arg_1); 00258 }
static series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> mmx::GLUE_41 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1 | ) | [static] |
Definition at line 270 of file glue_polynomial_p_adic_modular_integer.cpp.
References discriminant().
00270 { 00271 return discriminant (arg_1); 00272 }
static bool mmx::GLUE_41 | ( | const string & | arg_1, | |
const string & | arg_2 | |||
) | [static] |
Definition at line 246 of file glue_polynomial_generic.cpp.
Definition at line 283 of file glue_matrix_rational.cpp.
References column_echelon().
00283 { 00284 return column_echelon (arg_1); 00285 }
static vector<integer> mmx::GLUE_41 | ( | const matrix< integer > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
static vector<generic> mmx::GLUE_41 | ( | const matrix< generic > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
static bool mmx::GLUE_41 | ( | const rational & | arg_1, | |
const algebraic_real & | arg_2 | |||
) | [static] |
Definition at line 263 of file glue_algebraic_number.cpp.
Referenced by glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static vector<rational> mmx::GLUE_42 | ( | const vector< rational > & | arg_1 | ) | [static] |
Definition at line 230 of file glue_vector_rational.cpp.
References square().
static bool mmx::GLUE_42 | ( | const vector< integer > & | arg_1, | |
const vector< integer > & | arg_2 | |||
) | [static] |
Definition at line 225 of file glue_vector_integer.cpp.
static bool mmx::GLUE_42 | ( | const vector< int > & | arg_1, | |
const vector< int > & | arg_2 | |||
) | [static] |
Definition at line 219 of file glue_vector_int.cpp.
static bool mmx::GLUE_42 | ( | const series< integer > & | arg_1, | |
const integer & | arg_2 | |||
) | [static] |
Definition at line 261 of file glue_series_integer.cpp.
static series<generic> mmx::GLUE_42 | ( | const series< generic > & | arg_1 | ) | [static] |
Definition at line 261 of file glue_series_generic.cpp.
References tan().
static polynomial<rational> mmx::GLUE_42 | ( | const polynomial< rational > & | arg_1 | ) | [static] |
Definition at line 261 of file glue_polynomial_rational.cpp.
References integrate().
static polynomial<series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> > mmx::GLUE_42 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1 | ) | [static] |
Definition at line 275 of file glue_polynomial_p_adic_modular_integer.cpp.
References integrate().
static bool mmx::GLUE_42 | ( | const string & | arg_1, | |
const string & | arg_2 | |||
) | [static] |
Definition at line 251 of file glue_polynomial_generic.cpp.
Definition at line 288 of file glue_matrix_rational.cpp.
References row_reduced_echelon().
00288 { 00289 return row_reduced_echelon (arg_1); 00290 }
static vector<integer> mmx::GLUE_42 | ( | const matrix< integer > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
static matrix<generic> mmx::GLUE_42 | ( | const matrix< generic > & | arg_1 | ) | [static] |
Definition at line 285 of file glue_matrix_generic.cpp.
References transpose().
static algebraic_number mmx::GLUE_42 | ( | const rational & | arg_1 | ) | [static] |
Definition at line 268 of file glue_algebraic_number.cpp.
Referenced by glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
00268 { 00269 return algebraic_number (arg_1); 00270 }
static vector<rational> mmx::GLUE_43 | ( | const vector< rational > & | arg_1, | |
const vector< rational > & | arg_2 | |||
) | [static] |
Definition at line 235 of file glue_vector_rational.cpp.
static bool mmx::GLUE_43 | ( | const vector< integer > & | arg_1, | |
const vector< integer > & | arg_2 | |||
) | [static] |
Definition at line 230 of file glue_vector_integer.cpp.
static bool mmx::GLUE_43 | ( | const vector< int > & | arg_1, | |
const vector< int > & | arg_2 | |||
) | [static] |
Definition at line 224 of file glue_vector_int.cpp.
Definition at line 274 of file glue_series_rational.cpp.
References integrate().
static bool mmx::GLUE_43 | ( | const series< integer > & | arg_1, | |
const integer & | arg_2 | |||
) | [static] |
Definition at line 266 of file glue_series_integer.cpp.
static series<generic> mmx::GLUE_43 | ( | const series< generic > & | arg_1 | ) | [static] |
Definition at line 266 of file glue_series_generic.cpp.
References acos().
static polynomial<rational> mmx::GLUE_43 | ( | const polynomial< rational > & | arg_1, | |
const polynomial< rational > & | arg_2 | |||
) | [static] |
static polynomial<series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> > mmx::GLUE_43 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1, | |
const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_2 | |||
) | [static] |
static string mmx::GLUE_43 | ( | const string & | arg_1, | |
const string & | arg_2, | |||
const string & | arg_3 | |||
) | [static] |
Definition at line 256 of file glue_polynomial_generic.cpp.
Definition at line 293 of file glue_matrix_rational.cpp.
References column_reduced_echelon().
00293 { 00294 return column_reduced_echelon (arg_1); 00295 }
Definition at line 290 of file glue_matrix_integer.cpp.
References toeplitz_matrix().
00290 { 00291 return toeplitz_matrix (arg_1); 00292 }
static matrix<generic> mmx::GLUE_43 | ( | const matrix< generic > & | arg_1, | |
const matrix< generic > & | arg_2 | |||
) | [static] |
Definition at line 290 of file glue_matrix_generic.cpp.
References horizontal_join().
00290 { 00291 return horizontal_join (arg_1, arg_2); 00292 }
static algebraic_number mmx::GLUE_43 | ( | const algebraic_real & | arg_1 | ) | [static] |
Definition at line 273 of file glue_algebraic_number.cpp.
Referenced by glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
00273 { 00274 return algebraic_number (arg_1); 00275 }
static vector<rational> mmx::GLUE_44 | ( | const vector< rational > & | arg_1, | |
const vector< rational > & | arg_2 | |||
) | [static] |
Definition at line 240 of file glue_vector_rational.cpp.
static bool mmx::GLUE_44 | ( | const vector< integer > & | arg_1, | |
const integer & | arg_2 | |||
) | [static] |
Definition at line 235 of file glue_vector_integer.cpp.
static bool mmx::GLUE_44 | ( | const vector< int > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
Definition at line 229 of file glue_vector_int.cpp.
static bool mmx::GLUE_44 | ( | const series< integer > & | arg_1, | |
const integer & | arg_2 | |||
) | [static] |
Definition at line 271 of file glue_series_integer.cpp.
static series<generic> mmx::GLUE_44 | ( | const series< generic > & | arg_1 | ) | [static] |
Definition at line 271 of file glue_series_generic.cpp.
References asin().
static polynomial<rational> mmx::GLUE_44 | ( | const polynomial< rational > & | arg_1, | |
const rational & | arg_2 | |||
) | [static] |
Definition at line 271 of file glue_polynomial_rational.cpp.
References q_difference().
00271 { 00272 return q_difference (arg_1, arg_2); 00273 }
static polynomial<series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> > mmx::GLUE_44 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1, | |
const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_2 | |||
) | [static] |
Definition at line 285 of file glue_polynomial_p_adic_modular_integer.cpp.
References q_difference().
00285 { 00286 return q_difference (arg_1, arg_2); 00287 }
static int mmx::GLUE_44 | ( | const string & | arg_1, | |
const string & | arg_2, | |||
const int & | arg_3 | |||
) | [static] |
Definition at line 261 of file glue_polynomial_generic.cpp.
static vector<generic> mmx::GLUE_44 | ( | const matrix< rational > & | arg_1 | ) | [static] |
Definition at line 298 of file glue_matrix_rational.cpp.
References wrap_row_reduced_echelon_with_transform().
00298 { 00299 return wrap_row_reduced_echelon_with_transform (arg_1); 00300 }
Definition at line 295 of file glue_matrix_integer.cpp.
References hankel_matrix().
00295 { 00296 return hankel_matrix (arg_1); 00297 }
static matrix<generic> mmx::GLUE_44 | ( | const matrix< generic > & | arg_1, | |
const matrix< generic > & | arg_2 | |||
) | [static] |
Definition at line 295 of file glue_matrix_generic.cpp.
References vertical_join().
00295 { 00296 return vertical_join (arg_1, arg_2); 00297 }
static complex<mmx_floating> mmx::GLUE_44 | ( | const algebraic_number & | arg_1 | ) | [static] |
Definition at line 278 of file glue_algebraic_number.cpp.
References as_floating().
Referenced by glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
00278 { 00279 return as_floating (arg_1); 00280 }
static vector<rational> mmx::GLUE_45 | ( | const vector< rational > & | arg_1, | |
const vector< rational > & | arg_2 | |||
) | [static] |
Definition at line 245 of file glue_vector_rational.cpp.
static bool mmx::GLUE_45 | ( | const vector< integer > & | arg_1, | |
const integer & | arg_2 | |||
) | [static] |
Definition at line 240 of file glue_vector_integer.cpp.
static bool mmx::GLUE_45 | ( | const vector< int > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
Definition at line 234 of file glue_vector_int.cpp.
Definition at line 284 of file glue_series_rational.cpp.
References reverse().
static bool mmx::GLUE_45 | ( | const integer & | arg_1, | |
const series< integer > & | arg_2 | |||
) | [static] |
Definition at line 276 of file glue_series_integer.cpp.
static series<generic> mmx::GLUE_45 | ( | const series< generic > & | arg_1 | ) | [static] |
Definition at line 276 of file glue_series_generic.cpp.
References atan().
static polynomial<rational> mmx::GLUE_45 | ( | const polynomial< rational > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
static polynomial<series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> > mmx::GLUE_45 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
static int mmx::GLUE_45 | ( | const string & | arg_1, | |
const string & | arg_2, | |||
const int & | arg_3 | |||
) | [static] |
Definition at line 266 of file glue_polynomial_generic.cpp.
static vector<generic> mmx::GLUE_45 | ( | const matrix< rational > & | arg_1 | ) | [static] |
Definition at line 303 of file glue_matrix_rational.cpp.
References wrap_column_reduced_echelon_with_transform().
00303 { 00304 return wrap_column_reduced_echelon_with_transform (arg_1); 00305 }
static matrix<integer> mmx::GLUE_45 | ( | const vector< integer > & | arg_1, | |
const vector< integer > & | arg_2 | |||
) | [static] |
Definition at line 300 of file glue_matrix_integer.cpp.
References tensor_matrix().
00300 { 00301 return tensor_matrix (arg_1, arg_2); 00302 }
static matrix<generic> mmx::GLUE_45 | ( | const matrix< generic > & | arg_1, | |
const permutation & | arg_2 | |||
) | [static] |
Definition at line 300 of file glue_matrix_generic.cpp.
static algebraic_number mmx::GLUE_45 | ( | const algebraic_number & | arg_1, | |
const algebraic_number & | arg_2 | |||
) | [static] |
Definition at line 283 of file glue_algebraic_number.cpp.
References lcommon().
Referenced by glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static vector<rational> mmx::GLUE_46 | ( | const rational & | arg_1, | |
const vector< rational > & | arg_2 | |||
) | [static] |
Definition at line 250 of file glue_vector_rational.cpp.
static bool mmx::GLUE_46 | ( | const vector< integer > & | arg_1, | |
const integer & | arg_2 | |||
) | [static] |
Definition at line 245 of file glue_vector_integer.cpp.
static bool mmx::GLUE_46 | ( | const vector< int > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
Definition at line 239 of file glue_vector_int.cpp.
static series<rational> mmx::GLUE_46 | ( | const series< rational > & | arg_1, | |
const rational & | arg_2 | |||
) | [static] |
Definition at line 289 of file glue_series_rational.cpp.
References q_difference().
00289 { 00290 return q_difference (arg_1, arg_2); 00291 }
static bool mmx::GLUE_46 | ( | const integer & | arg_1, | |
const series< integer > & | arg_2 | |||
) | [static] |
Definition at line 281 of file glue_series_integer.cpp.
static bool mmx::GLUE_46 | ( | const series< generic > & | arg_1, | |
const series< generic > & | arg_2 | |||
) | [static] |
Definition at line 281 of file glue_series_generic.cpp.
static polynomial<rational> mmx::GLUE_46 | ( | const polynomial< rational > & | arg_1, | |
const rational & | arg_2 | |||
) | [static] |
static polynomial<series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> > mmx::GLUE_46 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1, | |
const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_2 | |||
) | [static] |
static string mmx::GLUE_46 | ( | const string & | arg_1 | ) | [static] |
Definition at line 271 of file glue_polynomial_generic.cpp.
00271 { 00272 return upcase (arg_1); 00273 }
static vector<generic> mmx::GLUE_46 | ( | const matrix< rational > & | arg_1 | ) | [static] |
Definition at line 308 of file glue_matrix_rational.cpp.
References wrap_column_reduced_echelon_with_permutation().
00308 { 00309 return wrap_column_reduced_echelon_with_permutation (arg_1); 00310 }
Definition at line 305 of file glue_matrix_integer.cpp.
References vandermonde().
00305 { 00306 return vandermonde (arg_1); 00307 }
static matrix<generic> mmx::GLUE_46 | ( | const permutation & | arg_1, | |
const matrix< generic > & | arg_2 | |||
) | [static] |
Definition at line 305 of file glue_matrix_generic.cpp.
static algebraic_number mmx::GLUE_46 | ( | const algebraic_number & | arg_1, | |
const algebraic_number & | arg_2 | |||
) | [static] |
Definition at line 288 of file glue_algebraic_number.cpp.
References rcommon().
Referenced by glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static vector<rational> mmx::GLUE_47 | ( | const vector< rational > & | arg_1, | |
const rational & | arg_2 | |||
) | [static] |
Definition at line 255 of file glue_vector_rational.cpp.
static bool mmx::GLUE_47 | ( | const vector< integer > & | arg_1, | |
const integer & | arg_2 | |||
) | [static] |
Definition at line 250 of file glue_vector_integer.cpp.
static bool mmx::GLUE_47 | ( | const vector< int > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
Definition at line 244 of file glue_vector_int.cpp.
static series<rational> mmx::GLUE_47 | ( | const series< rational > & | arg_1, | |
const rational & | arg_2 | |||
) | [static] |
Definition at line 294 of file glue_series_rational.cpp.
References series_shift_default().
00294 { 00295 return series_shift_default (arg_1, arg_2); 00296 }
static bool mmx::GLUE_47 | ( | const integer & | arg_1, | |
const series< integer > & | arg_2 | |||
) | [static] |
Definition at line 286 of file glue_series_integer.cpp.
static bool mmx::GLUE_47 | ( | const series< generic > & | arg_1, | |
const series< generic > & | arg_2 | |||
) | [static] |
Definition at line 286 of file glue_series_generic.cpp.
static polynomial<rational> mmx::GLUE_47 | ( | const polynomial< rational > & | arg_1 | ) | [static] |
Definition at line 286 of file glue_polynomial_rational.cpp.
References graeffe().
static polynomial<series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> > mmx::GLUE_47 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1 | ) | [static] |
Definition at line 300 of file glue_polynomial_p_adic_modular_integer.cpp.
References graeffe().
static string mmx::GLUE_47 | ( | const string & | arg_1 | ) | [static] |
Definition at line 276 of file glue_polynomial_generic.cpp.
00276 { 00277 return locase (arg_1); 00278 }
Definition at line 313 of file glue_matrix_rational.cpp.
References kernel().
static vector<integer> mmx::GLUE_47 | ( | const matrix< integer > & | arg_1, | |
const vector< integer > & | arg_2 | |||
) | [static] |
Definition at line 310 of file glue_matrix_integer.cpp.
static matrix<generic> mmx::GLUE_47 | ( | const generic & | arg_1, | |
const int & | arg_2, | |||
const int & | arg_3 | |||
) | [static] |
Definition at line 310 of file glue_matrix_generic.cpp.
References arg_1, and fill_matrix().
00310 { 00311 return fill_matrix (arg_1, arg_2, arg_3); 00312 }
static polynomial<rational> mmx::GLUE_47 | ( | const algebraic_number & | arg_1 | ) | [static] |
Definition at line 293 of file glue_algebraic_number.cpp.
References annihilator().
Referenced by glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
00293 { 00294 return annihilator (arg_1); 00295 }
static vector<rational> mmx::GLUE_48 | ( | const rational & | arg_1, | |
const vector< rational > & | arg_2 | |||
) | [static] |
Definition at line 260 of file glue_vector_rational.cpp.
static bool mmx::GLUE_48 | ( | const integer & | arg_1, | |
const vector< integer > & | arg_2 | |||
) | [static] |
Definition at line 255 of file glue_vector_integer.cpp.
static bool mmx::GLUE_48 | ( | const int & | arg_1, | |
const vector< int > & | arg_2 | |||
) | [static] |
Definition at line 249 of file glue_vector_int.cpp.
static bool mmx::GLUE_48 | ( | const integer & | arg_1, | |
const series< integer > & | arg_2 | |||
) | [static] |
Definition at line 291 of file glue_series_integer.cpp.
static bool mmx::GLUE_48 | ( | const series< generic > & | arg_1, | |
const series< generic > & | arg_2 | |||
) | [static] |
Definition at line 291 of file glue_series_generic.cpp.
static rational mmx::GLUE_48 | ( | const polynomial< rational > & | arg_1 | ) | [static] |
Definition at line 291 of file glue_polynomial_rational.cpp.
References contents().
static polynomial<series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> > mmx::GLUE_48 | ( | const polynomial< mmx_modular(integer) > & | arg_1 | ) | [static] |
Definition at line 305 of file glue_polynomial_p_adic_modular_integer.cpp.
00305 { 00306 return as<polynomial<simple_p_adic(mmx_modular(integer) ) > > (arg_1); 00307 }
static string mmx::GLUE_48 | ( | const string & | arg_1 | ) | [static] |
Definition at line 281 of file glue_polynomial_generic.cpp.
00281 { 00282 return upcase_first (arg_1); 00283 }
Definition at line 318 of file glue_matrix_rational.cpp.
References image().
static vector<integer> mmx::GLUE_48 | ( | const vector< integer > & | arg_1, | |
const matrix< integer > & | arg_2 | |||
) | [static] |
Definition at line 315 of file glue_matrix_integer.cpp.
static matrix<generic> mmx::GLUE_48 | ( | const generic & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
Definition at line 315 of file glue_matrix_generic.cpp.
References arg_1, and jordan_matrix().
00315 { 00316 return jordan_matrix (arg_1, arg_2); 00317 }
static algebraic_number mmx::GLUE_48 | ( | const algebraic_number & | arg_1 | ) | [static] |
Definition at line 298 of file glue_algebraic_number.cpp.
References normalize().
Referenced by glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static vector<rational> mmx::GLUE_49 | ( | const vector< rational > & | arg_1, | |
const rational & | arg_2 | |||
) | [static] |
Definition at line 265 of file glue_vector_rational.cpp.
static bool mmx::GLUE_49 | ( | const integer & | arg_1, | |
const vector< integer > & | arg_2 | |||
) | [static] |
Definition at line 260 of file glue_vector_integer.cpp.
static bool mmx::GLUE_49 | ( | const int & | arg_1, | |
const vector< int > & | arg_2 | |||
) | [static] |
Definition at line 254 of file glue_vector_int.cpp.
static bool mmx::GLUE_49 | ( | const series< rational > & | arg_1, | |
const series< rational > & | arg_2 | |||
) | [static] |
Definition at line 304 of file glue_series_rational.cpp.
static series<generic> mmx::GLUE_49 | ( | const series< integer > & | arg_1 | ) | [static] |
Definition at line 296 of file glue_series_integer.cpp.
00296 { 00297 return as<series<generic> > (arg_1); 00298 }
static bool mmx::GLUE_49 | ( | const series< generic > & | arg_1, | |
const series< generic > & | arg_2 | |||
) | [static] |
Definition at line 296 of file glue_series_generic.cpp.
static polynomial<rational> mmx::GLUE_49 | ( | const polynomial< rational > & | arg_1 | ) | [static] |
Definition at line 296 of file glue_polynomial_rational.cpp.
References primitive_part().
00296 { 00297 return primitive_part (arg_1); 00298 }
static polynomial<generic> mmx::GLUE_49 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1 | ) | [static] |
Definition at line 310 of file glue_polynomial_p_adic_modular_integer.cpp.
00310 { 00311 return as<polynomial<generic> > (arg_1); 00312 }
static string mmx::GLUE_49 | ( | const string & | arg_1 | ) | [static] |
Definition at line 286 of file glue_polynomial_generic.cpp.
00286 { 00287 return locase_first (arg_1); 00288 }
static int mmx::GLUE_49 | ( | const matrix< rational > & | arg_1 | ) | [static] |
Definition at line 323 of file glue_matrix_rational.cpp.
References rank().
static matrix<generic> mmx::GLUE_49 | ( | const vector< generic > & | arg_1 | ) | [static] |
Definition at line 320 of file glue_matrix_generic.cpp.
References toeplitz_matrix().
00320 { 00321 return toeplitz_matrix (arg_1); 00322 }
static algebraic_number mmx::GLUE_49 | ( | const algebraic_number & | arg_1 | ) | [static] |
Definition at line 303 of file glue_algebraic_number.cpp.
Referenced by glue_matrix_generic(), glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
00303 { 00304 return -arg_1; 00305 }
static rational mmx::GLUE_5 | ( | const vector< rational > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
Definition at line 45 of file glue_vector_rational.cpp.
static integer mmx::GLUE_5 | ( | const vector< integer > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
Definition at line 40 of file glue_vector_integer.cpp.
static int mmx::GLUE_5 | ( | const vector< int > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
Definition at line 34 of file glue_vector_int.cpp.
Definition at line 84 of file glue_series_rational.cpp.
References as_vector().
static void mmx::GLUE_5 | ( | const series< mmx_modular(integer) > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
Definition at line 80 of file glue_series_modular_integer.cpp.
References arg_1, and set_cancel_order().
00080 { 00081 set_cancel_order (arg_1, arg_2); 00082 }
static void mmx::GLUE_5 | ( | const series< integer > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
Definition at line 76 of file glue_series_integer.cpp.
References set_cancel_order().
00076 { 00077 set_cancel_order (arg_1, arg_2); 00078 }
static void mmx::GLUE_5 | ( | const series< generic > & | arg_1, | |
const bool & | arg_2 | |||
) | [static] |
Definition at line 76 of file glue_series_generic.cpp.
References set_formula_output().
00076 { 00077 set_formula_output (arg_1, arg_2); 00078 }
static polynomial<rational> mmx::GLUE_5 | ( | const quotient< polynomial< rational >, polynomial< rational > > & | arg_1 | ) | [static] |
Definition at line 77 of file glue_quotient_polynomial_rational.cpp.
References numerator().
static iterator<generic> mmx::GLUE_5 | ( | const polynomial< rational > & | arg_1 | ) | [static] |
Definition at line 76 of file glue_polynomial_rational.cpp.
References iterate().
static iterator<generic> mmx::GLUE_5 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1 | ) | [static] |
static iterator<generic> mmx::GLUE_5 | ( | const polynomial< mmx_modular(integer) > & | arg_1 | ) | [static] |
static iterator<generic> mmx::GLUE_5 | ( | const polynomial< integer > & | arg_1 | ) | [static] |
Definition at line 67 of file glue_polynomial_integer.cpp.
References iterate().
static vector<generic> mmx::GLUE_5 | ( | const vector< generic > & | arg_1, | |
const vector< generic > & | arg_2 | |||
) | [static] |
Definition at line 32 of file glue_vector_generic.cpp.
static vector<int> mmx::GLUE_5 | ( | const permutation & | arg_1 | ) | [static] |
Definition at line 34 of file glue_permutation.cpp.
00034 { 00035 return as_vector_int (arg_1); 00036 }
static int mmx::GLUE_5 | ( | const polynomial< mmx_modular(integer), polynomial_carry_variant_helper< mmx_modular(integer) >::PV > & | arg_1 | ) | [static] |
Definition at line 55 of file glue_p_expansion_modular_integer.cpp.
References deg().
static series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> mmx::GLUE_5 | ( | const tuple< mmx_modular(integer) > & | arg_1 | ) | [static] |
Definition at line 59 of file glue_p_adic_modular_integer.cpp.
References as_vector(), mmx_modular(), and simple_p_adic.
00059 { 00060 return (simple_p_adic(mmx_modular(integer) ) (as_vector (arg_1))); 00061 }
Definition at line 103 of file glue_matrix_rational.cpp.
References arg_1, as_vector(), and matrix_new().
00103 { 00104 return matrix_new (as_vector (arg_1)); 00105 }
static matrix<mmx_modular(integer) > mmx::GLUE_5 | ( | const tuple< row_tuple< mmx_modular(integer) > > & | arg_1 | ) | [static] |
Definition at line 101 of file glue_matrix_modular_integer.cpp.
References arg_1, as_vector(), and matrix_new().
00101 { 00102 return matrix_new (as_vector (arg_1)); 00103 }
Definition at line 100 of file glue_matrix_integer.cpp.
References arg_1, as_vector(), and matrix_new().
00100 { 00101 return matrix_new (as_vector (arg_1)); 00102 }
static string mmx::GLUE_5 | ( | const string & | arg_1, | |
const string & | arg_2 | |||
) | [static] |
Definition at line 100 of file glue_matrix_generic.cpp.
static polynomial<rational> mmx::GLUE_5 | ( | const algebraic_real & | arg_1 | ) | [static] |
Definition at line 83 of file glue_algebraic_number.cpp.
References annihilator().
00083 { 00084 return annihilator (arg_1); 00085 }
static polynomial<generic> mmx::GLUE_5 | ( | const algebraic< generic > & | arg_1 | ) | [static] |
Definition at line 65 of file glue_algebraic_generic.cpp.
References annihilator().
Referenced by glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_p_adic_modular_integer(), glue_p_expansion_modular_integer(), glue_permutation(), glue_polynomial_generic(), glue_polynomial_integer(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_quotient_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_generic(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
00065 { 00066 return annihilator (arg_1); 00067 }
static vector<rational> mmx::GLUE_50 | ( | const rational & | arg_1, | |
const vector< rational > & | arg_2 | |||
) | [static] |
Definition at line 270 of file glue_vector_rational.cpp.
static bool mmx::GLUE_50 | ( | const integer & | arg_1, | |
const vector< integer > & | arg_2 | |||
) | [static] |
Definition at line 265 of file glue_vector_integer.cpp.
static bool mmx::GLUE_50 | ( | const int & | arg_1, | |
const vector< int > & | arg_2 | |||
) | [static] |
Definition at line 259 of file glue_vector_int.cpp.
static bool mmx::GLUE_50 | ( | const series< rational > & | arg_1, | |
const series< rational > & | arg_2 | |||
) | [static] |
Definition at line 309 of file glue_series_rational.cpp.
static series<generic> mmx::GLUE_50 | ( | const routine & | arg_1, | |
const generic & | arg_2 | |||
) | [static] |
Definition at line 301 of file glue_series_generic.cpp.
References arg_2, and fixed_point_series().
00301 { 00302 return fixed_point_series (arg_1, arg_2); 00303 }
static polynomial<rational> mmx::GLUE_50 | ( | const polynomial< rational > & | arg_1, | |
const polynomial< rational > & | arg_2 | |||
) | [static] |
static string mmx::GLUE_50 | ( | const string & | arg_1 | ) | [static] |
Definition at line 291 of file glue_polynomial_generic.cpp.
00291 { 00292 return quote (arg_1); 00293 }
Definition at line 328 of file glue_matrix_rational.cpp.
References invert().
static matrix<generic> mmx::GLUE_50 | ( | const vector< generic > & | arg_1 | ) | [static] |
Definition at line 325 of file glue_matrix_generic.cpp.
References hankel_matrix().
00325 { 00326 return hankel_matrix (arg_1); 00327 }
static algebraic_number mmx::GLUE_50 | ( | const algebraic_number & | arg_1 | ) | [static] |
Definition at line 308 of file glue_algebraic_number.cpp.
References square().
Referenced by glue_matrix_generic(), glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_rational(), glue_series_generic(), glue_series_rational(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static vector<rational> mmx::GLUE_51 | ( | const vector< rational > & | arg_1, | |
const rational & | arg_2 | |||
) | [static] |
Definition at line 275 of file glue_vector_rational.cpp.
static bool mmx::GLUE_51 | ( | const integer & | arg_1, | |
const vector< integer > & | arg_2 | |||
) | [static] |
Definition at line 270 of file glue_vector_integer.cpp.
static bool mmx::GLUE_51 | ( | const int & | arg_1, | |
const vector< int > & | arg_2 | |||
) | [static] |
Definition at line 264 of file glue_vector_int.cpp.
static bool mmx::GLUE_51 | ( | const series< rational > & | arg_1, | |
const series< rational > & | arg_2 | |||
) | [static] |
Definition at line 314 of file glue_series_rational.cpp.
static vector<generic> mmx::GLUE_51 | ( | const routine & | arg_1, | |
const vector< generic > & | arg_2 | |||
) | [static] |
Definition at line 306 of file glue_series_generic.cpp.
References gen_fixed_point_vector_series().
00306 { 00307 return gen_fixed_point_vector_series (arg_1, arg_2); 00308 }
static polynomial<rational> mmx::GLUE_51 | ( | const polynomial< rational > & | arg_1, | |
const polynomial< rational > & | arg_2 | |||
) | [static] |
static string mmx::GLUE_51 | ( | const string & | arg_1 | ) | [static] |
Definition at line 296 of file glue_polynomial_generic.cpp.
00296 { 00297 return unquote (arg_1); 00298 }
static row_tuple<rational> mmx::GLUE_51 | ( | const row_tuple< integer > & | arg_1 | ) | [static] |
Definition at line 333 of file glue_matrix_rational.cpp.
00333 { 00334 return as<row_tuple<rational> > (arg_1); 00335 }
static matrix<generic> mmx::GLUE_51 | ( | const vector< generic > & | arg_1, | |
const vector< generic > & | arg_2 | |||
) | [static] |
Definition at line 330 of file glue_matrix_generic.cpp.
References tensor_matrix().
00330 { 00331 return tensor_matrix (arg_1, arg_2); 00332 }
static algebraic_number mmx::GLUE_51 | ( | const algebraic_number & | arg_1, | |
const algebraic_number & | arg_2 | |||
) | [static] |
Definition at line 313 of file glue_algebraic_number.cpp.
Referenced by glue_matrix_generic(), glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_rational(), glue_series_generic(), glue_series_rational(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static rational mmx::GLUE_52 | ( | const vector< rational > & | arg_1, | |
const vector< rational > & | arg_2 | |||
) | [static] |
static vector<integer> mmx::GLUE_52 | ( | const vector< integer > & | arg_1, | |
const vector< integer > & | arg_2 | |||
) | [static] |
Definition at line 275 of file glue_vector_integer.cpp.
static vector<int> mmx::GLUE_52 | ( | const vector< int > & | arg_1, | |
const vector< int > & | arg_2 | |||
) | [static] |
Definition at line 269 of file glue_vector_int.cpp.
static bool mmx::GLUE_52 | ( | const series< rational > & | arg_1, | |
const series< rational > & | arg_2 | |||
) | [static] |
Definition at line 319 of file glue_series_rational.cpp.
static series<generic> mmx::GLUE_52 | ( | const routine & | arg_1, | |
const generic & | arg_2 | |||
) | [static] |
Definition at line 311 of file glue_series_generic.cpp.
References arg_2, and integrate_series().
00311 { 00312 return integrate_series (arg_1, arg_2); 00313 }
static polynomial<rational> mmx::GLUE_52 | ( | const polynomial< integer > & | arg_1 | ) | [static] |
Definition at line 311 of file glue_polynomial_rational.cpp.
00311 { 00312 return as<polynomial<rational> > (arg_1); 00313 }
static string mmx::GLUE_52 | ( | const int & | arg_1 | ) | [static] |
Definition at line 301 of file glue_polynomial_generic.cpp.
00301 { 00302 return charcode_as_string (arg_1); 00303 }
Definition at line 338 of file glue_matrix_rational.cpp.
00338 { 00339 return as<matrix<rational> > (arg_1); 00340 }
static matrix<generic> mmx::GLUE_52 | ( | const vector< generic > & | arg_1 | ) | [static] |
Definition at line 335 of file glue_matrix_generic.cpp.
References vandermonde().
00335 { 00336 return vandermonde (arg_1); 00337 }
static algebraic_number mmx::GLUE_52 | ( | const algebraic_number & | arg_1, | |
const algebraic_number & | arg_2 | |||
) | [static] |
Definition at line 318 of file glue_algebraic_number.cpp.
Referenced by glue_matrix_generic(), glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_rational(), glue_series_generic(), glue_series_rational(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static rational mmx::GLUE_53 | ( | const vector< rational > & | arg_1 | ) | [static] |
Definition at line 285 of file glue_vector_rational.cpp.
References big_mul().
static vector<integer> mmx::GLUE_53 | ( | const vector< integer > & | arg_1, | |
const vector< integer > & | arg_2 | |||
) | [static] |
Definition at line 280 of file glue_vector_integer.cpp.
static vector<int> mmx::GLUE_53 | ( | const vector< int > & | arg_1, | |
const vector< int > & | arg_2 | |||
) | [static] |
Definition at line 274 of file glue_vector_int.cpp.
static bool mmx::GLUE_53 | ( | const series< rational > & | arg_1, | |
const rational & | arg_2 | |||
) | [static] |
Definition at line 324 of file glue_series_rational.cpp.
static vector<generic> mmx::GLUE_53 | ( | const routine & | arg_1, | |
const vector< generic > & | arg_2 | |||
) | [static] |
Definition at line 316 of file glue_series_generic.cpp.
References gen_integrate_vector_series().
00316 { 00317 return gen_integrate_vector_series (arg_1, arg_2); 00318 }
static polynomial<generic> mmx::GLUE_53 | ( | const polynomial< rational > & | arg_1 | ) | [static] |
Definition at line 316 of file glue_polynomial_rational.cpp.
00316 { 00317 return as<polynomial<generic> > (arg_1); 00318 }
static int mmx::GLUE_53 | ( | const string & | arg_1 | ) | [static] |
Definition at line 306 of file glue_polynomial_generic.cpp.
00306 { 00307 return string_as_charcode (arg_1); 00308 }
Definition at line 343 of file glue_matrix_rational.cpp.
00343 { 00344 return as<row_tuple<complex<rational> > > (arg_1); 00345 }
static matrix<generic> mmx::GLUE_53 | ( | const matrix< generic > & | arg_1 | ) | [static] |
Definition at line 340 of file glue_matrix_generic.cpp.
00340 { 00341 return -arg_1; 00342 }
static algebraic_number mmx::GLUE_53 | ( | const algebraic_number & | arg_1, | |
const algebraic_number & | arg_2 | |||
) | [static] |
Definition at line 323 of file glue_algebraic_number.cpp.
Referenced by glue_matrix_generic(), glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_rational(), glue_series_generic(), glue_series_rational(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static rational mmx::GLUE_54 | ( | const vector< rational > & | arg_1 | ) | [static] |
Definition at line 290 of file glue_vector_rational.cpp.
References big_add().
static bool mmx::GLUE_54 | ( | const series< rational > & | arg_1, | |
const rational & | arg_2 | |||
) | [static] |
Definition at line 329 of file glue_series_rational.cpp.
static series<generic> mmx::GLUE_54 | ( | const routine & | arg_1, | |
const generic & | arg_2 | |||
) | [static] |
Definition at line 321 of file glue_series_generic.cpp.
References arg_2, and implicit_series().
00321 { 00322 return implicit_series (arg_1, arg_2); 00323 }
static vector<rational> mmx::GLUE_54 | ( | const polynomial< rational > & | arg_1, | |
const vector< rational > & | arg_2 | |||
) | [static] |
Definition at line 321 of file glue_polynomial_rational.cpp.
References evaluate().
static bool mmx::GLUE_54 | ( | const generic & | arg_1 | ) | [static] |
Definition at line 311 of file glue_polynomial_generic.cpp.
References arg_1, and is_generic_literal.
00311 { 00312 return is_generic_literal (arg_1); 00313 }
Definition at line 348 of file glue_matrix_rational.cpp.
00348 { 00349 return as<matrix<complex<rational> > > (arg_1); 00350 }
static matrix<generic> mmx::GLUE_54 | ( | const matrix< generic > & | arg_1 | ) | [static] |
Definition at line 345 of file glue_matrix_generic.cpp.
References square().
static algebraic_number mmx::GLUE_54 | ( | const algebraic_number & | arg_1, | |
const algebraic_number & | arg_2 | |||
) | [static] |
Definition at line 328 of file glue_algebraic_number.cpp.
Referenced by glue_matrix_generic(), glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_rational(), glue_series_generic(), glue_series_rational(), and glue_vector_rational().
static bool mmx::GLUE_55 | ( | const vector< rational > & | arg_1, | |
const vector< rational > & | arg_2 | |||
) | [static] |
Definition at line 295 of file glue_vector_rational.cpp.
static bool mmx::GLUE_55 | ( | const series< rational > & | arg_1, | |
const rational & | arg_2 | |||
) | [static] |
Definition at line 334 of file glue_series_rational.cpp.
static vector<generic> mmx::GLUE_55 | ( | const routine & | arg_1, | |
const vector< generic > & | arg_2 | |||
) | [static] |
Definition at line 326 of file glue_series_generic.cpp.
References gen_implicit_vector_series().
00326 { 00327 return gen_implicit_vector_series (arg_1, arg_2); 00328 }
static vector<rational> mmx::GLUE_55 | ( | const polynomial< rational > & | arg_1, | |
const vector< rational > & | arg_2 | |||
) | [static] |
Definition at line 326 of file glue_polynomial_rational.cpp.
References evaluate().
static generic mmx::GLUE_55 | ( | const literal & | arg_1, | |
const tuple< generic > & | arg_2 | |||
) | [static] |
Definition at line 316 of file glue_polynomial_generic.cpp.
References as_vector(), and gen_literal_apply.
00316 { 00317 return gen_literal_apply (arg_1, as_vector (arg_2)); 00318 }
static row_tuple<generic> mmx::GLUE_55 | ( | const row_tuple< rational > & | arg_1 | ) | [static] |
Definition at line 353 of file glue_matrix_rational.cpp.
00353 { 00354 return as<row_tuple<generic> > (arg_1); 00355 }
static matrix<generic> mmx::GLUE_55 | ( | const matrix< generic > & | arg_1, | |
const matrix< generic > & | arg_2 | |||
) | [static] |
Definition at line 350 of file glue_matrix_generic.cpp.
static algebraic_number mmx::GLUE_55 | ( | const rational & | arg_1, | |
const algebraic_number & | arg_2 | |||
) | [static] |
Definition at line 333 of file glue_algebraic_number.cpp.
Referenced by glue_matrix_generic(), glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_rational(), glue_series_generic(), glue_series_rational(), and glue_vector_rational().
static bool mmx::GLUE_56 | ( | const vector< rational > & | arg_1, | |
const vector< rational > & | arg_2 | |||
) | [static] |
Definition at line 300 of file glue_vector_rational.cpp.
static bool mmx::GLUE_56 | ( | const series< rational > & | arg_1, | |
const rational & | arg_2 | |||
) | [static] |
Definition at line 339 of file glue_series_rational.cpp.
static polynomial<complex<rational> > mmx::GLUE_56 | ( | const tuple< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 331 of file glue_polynomial_rational.cpp.
References as_vector(), and polynomial_reverse().
00331 { 00332 return polynomial_reverse (as_vector (arg_1)); 00333 }
static generic mmx::GLUE_56 | ( | const literal & | arg_1, | |
const tuple< generic > & | arg_2 | |||
) | [static] |
Definition at line 321 of file glue_polynomial_generic.cpp.
References as_vector(), and gen_literal_access.
00321 { 00322 return gen_literal_access (arg_1, as_vector (arg_2)); 00323 }
static matrix<generic> mmx::GLUE_56 | ( | const matrix< rational > & | arg_1 | ) | [static] |
Definition at line 358 of file glue_matrix_rational.cpp.
00358 { 00359 return as<matrix<generic> > (arg_1); 00360 }
static matrix<generic> mmx::GLUE_56 | ( | const matrix< generic > & | arg_1, | |
const matrix< generic > & | arg_2 | |||
) | [static] |
Definition at line 355 of file glue_matrix_generic.cpp.
static algebraic_number mmx::GLUE_56 | ( | const algebraic_number & | arg_1, | |
const rational & | arg_2 | |||
) | [static] |
Definition at line 338 of file glue_algebraic_number.cpp.
Referenced by glue_matrix_generic(), glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
static bool mmx::GLUE_57 | ( | const vector< rational > & | arg_1, | |
const rational & | arg_2 | |||
) | [static] |
Definition at line 305 of file glue_vector_rational.cpp.
static bool mmx::GLUE_57 | ( | const rational & | arg_1, | |
const series< rational > & | arg_2 | |||
) | [static] |
Definition at line 344 of file glue_series_rational.cpp.
static polynomial<complex<rational> > mmx::GLUE_57 | ( | const tuple< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 336 of file glue_polynomial_rational.cpp.
References as_vector().
static literal mmx::GLUE_57 | ( | const string & | arg_1 | ) | [static] |
Definition at line 326 of file glue_polynomial_generic.cpp.
00326 { 00327 return literal (arg_1); 00328 }
static row_tuple<generic> mmx::GLUE_57 | ( | const row_tuple< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 363 of file glue_matrix_rational.cpp.
References arg_1.
00363 { 00364 return as<row_tuple<generic> > (arg_1); 00365 }
static matrix<generic> mmx::GLUE_57 | ( | const matrix< generic > & | arg_1, | |
const matrix< generic > & | arg_2 | |||
) | [static] |
Definition at line 360 of file glue_matrix_generic.cpp.
static algebraic_number mmx::GLUE_57 | ( | const rational & | arg_1, | |
const algebraic_number & | arg_2 | |||
) | [static] |
Definition at line 343 of file glue_algebraic_number.cpp.
Referenced by glue_matrix_generic(), glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
static bool mmx::GLUE_58 | ( | const vector< rational > & | arg_1, | |
const rational & | arg_2 | |||
) | [static] |
Definition at line 310 of file glue_vector_rational.cpp.
static bool mmx::GLUE_58 | ( | const rational & | arg_1, | |
const series< rational > & | arg_2 | |||
) | [static] |
Definition at line 349 of file glue_series_rational.cpp.
static void mmx::GLUE_58 | ( | const polynomial< complex< rational > > & | arg_1, | |
const generic & | arg_2 | |||
) | [static] |
Definition at line 341 of file glue_polynomial_rational.cpp.
References arg_2, and set_variable_name().
00341 { 00342 set_variable_name (arg_1, arg_2); 00343 }
static string mmx::GLUE_58 | ( | const literal & | arg_1 | ) | [static] |
Definition at line 331 of file glue_polynomial_generic.cpp.
00331 { 00332 return *arg_1; 00333 }
static matrix<generic> mmx::GLUE_58 | ( | const matrix< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 368 of file glue_matrix_rational.cpp.
References arg_1.
00368 { 00369 return as<matrix<generic> > (arg_1); 00370 }
static vector<generic> mmx::GLUE_58 | ( | const matrix< generic > & | arg_1, | |
const vector< generic > & | arg_2 | |||
) | [static] |
Definition at line 365 of file glue_matrix_generic.cpp.
static algebraic_number mmx::GLUE_58 | ( | const algebraic_number & | arg_1, | |
const rational & | arg_2 | |||
) | [static] |
Definition at line 348 of file glue_algebraic_number.cpp.
Referenced by glue_matrix_generic(), glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
static bool mmx::GLUE_59 | ( | const rational & | arg_1, | |
const vector< rational > & | arg_2 | |||
) | [static] |
Definition at line 315 of file glue_vector_rational.cpp.
static bool mmx::GLUE_59 | ( | const rational & | arg_1, | |
const series< rational > & | arg_2 | |||
) | [static] |
Definition at line 354 of file glue_series_rational.cpp.
static polynomial<complex<rational> > mmx::GLUE_59 | ( | const complex< rational > & | arg_1 | ) | [static] |
Definition at line 346 of file glue_polynomial_rational.cpp.
00346 { 00347 return polynomial<complex<rational> > (arg_1); 00348 }
static bool mmx::GLUE_59 | ( | const generic & | arg_1 | ) | [static] |
Definition at line 336 of file glue_polynomial_generic.cpp.
References arg_1, and is_generic_compound.
00336 { 00337 return is_generic_compound (arg_1); 00338 }
static vector<rational> mmx::GLUE_59 | ( | const vector< int > & | arg_1 | ) | [static] |
Definition at line 373 of file glue_matrix_rational.cpp.
00373 { 00374 return as<vector<rational> > (arg_1); 00375 }
static vector<generic> mmx::GLUE_59 | ( | const vector< generic > & | arg_1, | |
const matrix< generic > & | arg_2 | |||
) | [static] |
Definition at line 370 of file glue_matrix_generic.cpp.
static algebraic_number mmx::GLUE_59 | ( | const rational & | arg_1, | |
const algebraic_number & | arg_2 | |||
) | [static] |
Definition at line 353 of file glue_algebraic_number.cpp.
Referenced by glue_matrix_generic(), glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
static alias<rational> mmx::GLUE_6 | ( | const alias< vector< rational > > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
Definition at line 50 of file glue_vector_rational.cpp.
References arg_1.
static alias<integer> mmx::GLUE_6 | ( | const alias< vector< integer > > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
Definition at line 45 of file glue_vector_integer.cpp.
References arg_1.
static alias<int> mmx::GLUE_6 | ( | const alias< vector< int > > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
Definition at line 39 of file glue_vector_int.cpp.
References arg_1.
Definition at line 89 of file glue_series_rational.cpp.
00089 { 00090 return series<rational > (arg_1); 00091 }
static void mmx::GLUE_6 | ( | const series< mmx_modular(integer) > & | arg_1, | |
const bool & | arg_2 | |||
) | [static] |
Definition at line 85 of file glue_series_modular_integer.cpp.
References arg_1, and set_formula_output().
00085 { 00086 set_formula_output (arg_1, arg_2); 00087 }
static void mmx::GLUE_6 | ( | const series< integer > & | arg_1, | |
const bool & | arg_2 | |||
) | [static] |
Definition at line 81 of file glue_series_integer.cpp.
References set_formula_output().
00081 { 00082 set_formula_output (arg_1, arg_2); 00083 }
static series<generic> mmx::GLUE_6 | ( | const tuple< generic > & | arg_1 | ) | [static] |
Definition at line 81 of file glue_series_generic.cpp.
References as_vector().
static polynomial<rational> mmx::GLUE_6 | ( | const quotient< polynomial< rational >, polynomial< rational > > & | arg_1 | ) | [static] |
Definition at line 82 of file glue_quotient_polynomial_rational.cpp.
References denominator().
00082 { 00083 return denominator (arg_1); 00084 }
static int mmx::GLUE_6 | ( | const polynomial< rational > & | arg_1 | ) | [static] |
Definition at line 81 of file glue_polynomial_rational.cpp.
References N().
static int mmx::GLUE_6 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1 | ) | [static] |
static int mmx::GLUE_6 | ( | const polynomial< mmx_modular(integer) > & | arg_1 | ) | [static] |
static int mmx::GLUE_6 | ( | const polynomial< integer > & | arg_1 | ) | [static] |
Definition at line 72 of file glue_polynomial_integer.cpp.
References N().
static generic mmx::GLUE_6 | ( | const vector< generic > & | arg_1, | |
const vector< generic > & | arg_2 | |||
) | [static] |
static iterator<generic> mmx::GLUE_6 | ( | const permutation & | arg_1 | ) | [static] |
Definition at line 39 of file glue_permutation.cpp.
References iterate_int().
00039 { 00040 return as<iterator<generic> > (iterate_int (arg_1)); 00041 }
static series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> mmx::GLUE_6 | ( | const mmx_modular(integer)& | arg_1 | ) | [static] |
Definition at line 64 of file glue_p_adic_modular_integer.cpp.
References mmx_modular(), and simple_p_adic.
00064 { 00065 return (simple_p_adic(mmx_modular(integer) ) (arg_1)); 00066 }
static int mmx::GLUE_6 | ( | const matrix< rational > & | arg_1 | ) | [static] |
Definition at line 108 of file glue_matrix_rational.cpp.
References N().
static matrix<mmx_modular(integer) > mmx::GLUE_6 | ( | const tuple< row_tuple< mmx_modular(integer) > > & | arg_1 | ) | [static] |
Definition at line 106 of file glue_matrix_modular_integer.cpp.
References arg_1, as_vector(), and matrix_new().
00106 { 00107 return matrix_new (as_vector (arg_1)); 00108 }
Definition at line 105 of file glue_matrix_integer.cpp.
References arg_1, as_vector(), and matrix_new().
00105 { 00106 return matrix_new (as_vector (arg_1)); 00107 }
static alias<string> mmx::GLUE_6 | ( | const alias< string > & | arg_1, | |
const string & | arg_2 | |||
) | [static] |
Definition at line 105 of file glue_matrix_generic.cpp.
static algebraic_real mmx::GLUE_6 | ( | const algebraic_real & | arg_1 | ) | [static] |
Definition at line 88 of file glue_algebraic_number.cpp.
References normalize().
static algebraic<generic> mmx::GLUE_6 | ( | const algebraic< generic > & | arg_1 | ) | [static] |
Definition at line 70 of file glue_algebraic_generic.cpp.
References normalize().
Referenced by glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_p_adic_modular_integer(), glue_p_expansion_modular_integer(), glue_permutation(), glue_polynomial_generic(), glue_polynomial_integer(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_quotient_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_generic(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static bool mmx::GLUE_60 | ( | const rational & | arg_1, | |
const vector< rational > & | arg_2 | |||
) | [static] |
Definition at line 320 of file glue_vector_rational.cpp.
static bool mmx::GLUE_60 | ( | const rational & | arg_1, | |
const series< rational > & | arg_2 | |||
) | [static] |
Definition at line 359 of file glue_series_rational.cpp.
static iterator<generic> mmx::GLUE_60 | ( | const polynomial< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 351 of file glue_polynomial_rational.cpp.
References iterate().
static generic mmx::GLUE_60 | ( | const compound & | arg_1, | |
const tuple< generic > & | arg_2 | |||
) | [static] |
Definition at line 341 of file glue_polynomial_generic.cpp.
References as_vector(), and gen_compound_apply.
00341 { 00342 return gen_compound_apply (arg_1, as_vector (arg_2)); 00343 }
Definition at line 378 of file glue_matrix_rational.cpp.
00378 { 00379 return as<vector<complex<rational> > > (arg_1); 00380 }
static bool mmx::GLUE_60 | ( | const matrix< generic > & | arg_1, | |
const matrix< generic > & | arg_2 | |||
) | [static] |
Definition at line 375 of file glue_matrix_generic.cpp.
static algebraic_number mmx::GLUE_60 | ( | const algebraic_number & | arg_1, | |
const rational & | arg_2 | |||
) | [static] |
Definition at line 358 of file glue_algebraic_number.cpp.
Referenced by glue_matrix_generic(), glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
static vector<complex<rational> > mmx::GLUE_61 | ( | const vector< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 325 of file glue_vector_rational.cpp.
References arg_1.
00325 { 00326 return -arg_1; 00327 }
Definition at line 364 of file glue_series_rational.cpp.
00364 { 00365 return as<series<rational> > (arg_1); 00366 }
static int mmx::GLUE_61 | ( | const polynomial< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 356 of file glue_polynomial_rational.cpp.
References N().
static compound mmx::GLUE_61 | ( | const tuple< generic > & | arg_1 | ) | [static] |
Definition at line 346 of file glue_polynomial_generic.cpp.
References as_vector().
static vector<rational> mmx::GLUE_61 | ( | const matrix< rational > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
static bool mmx::GLUE_61 | ( | const matrix< generic > & | arg_1, | |
const matrix< generic > & | arg_2 | |||
) | [static] |
Definition at line 380 of file glue_matrix_generic.cpp.
static algebraic_number mmx::GLUE_61 | ( | const rational & | arg_1, | |
const algebraic_number & | arg_2 | |||
) | [static] |
Definition at line 363 of file glue_algebraic_number.cpp.
Referenced by glue_matrix_generic(), glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
static series<generic> mmx::GLUE_62 | ( | const series< rational > & | arg_1 | ) | [static] |
Definition at line 369 of file glue_series_rational.cpp.
00369 { 00370 return as<series<generic> > (arg_1); 00371 }
static int mmx::GLUE_62 | ( | const polynomial< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 361 of file glue_polynomial_rational.cpp.
References deg().
static compound mmx::GLUE_62 | ( | const vector< generic > & | arg_1 | ) | [static] |
Definition at line 351 of file glue_polynomial_generic.cpp.
00351 { 00352 return compound (arg_1); 00353 }
static vector<rational> mmx::GLUE_62 | ( | const matrix< rational > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
static matrix<generic> mmx::GLUE_62 | ( | const matrix< generic > & | arg_1, | |
const matrix< generic > & | arg_2 | |||
) | [static] |
static algebraic_number mmx::GLUE_62 | ( | const algebraic_number & | arg_1, | |
const rational & | arg_2 | |||
) | [static] |
Definition at line 368 of file glue_algebraic_number.cpp.
Referenced by glue_matrix_generic(), glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
static complex<rational> mmx::GLUE_63 | ( | const polynomial< complex< rational > > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
Definition at line 366 of file glue_polynomial_rational.cpp.
static vector<generic> mmx::GLUE_63 | ( | const compound & | arg_1 | ) | [static] |
Definition at line 356 of file glue_polynomial_generic.cpp.
References as_vector().
static row_tuple<complex<rational> > mmx::GLUE_63 | ( | const tuple< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 393 of file glue_matrix_rational.cpp.
References arg_1, and as_vector().
static generic mmx::GLUE_63 | ( | const matrix< generic > & | arg_1 | ) | [static] |
Definition at line 390 of file glue_matrix_generic.cpp.
References det().
static algebraic_number mmx::GLUE_63 | ( | const algebraic_number & | arg_1 | ) | [static] |
Definition at line 373 of file glue_algebraic_number.cpp.
References sqrt().
Referenced by glue_matrix_generic(), glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
Definition at line 379 of file glue_series_rational.cpp.
References sqrt().
static polynomial<complex<rational> > mmx::GLUE_64 | ( | const polynomial< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 371 of file glue_polynomial_rational.cpp.
00371 { 00372 return -arg_1; 00373 }
static int mmx::GLUE_64 | ( | const compound & | arg_1 | ) | [static] |
Definition at line 361 of file glue_polynomial_generic.cpp.
References N().
static matrix<complex<rational> > mmx::GLUE_64 | ( | const tuple< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 398 of file glue_matrix_rational.cpp.
References arg_1, as_vector(), and matrix_new().
00398 { 00399 return matrix_new (as_vector (arg_1)); 00400 }
static matrix<generic> mmx::GLUE_64 | ( | const matrix< generic > & | arg_1 | ) | [static] |
Definition at line 395 of file glue_matrix_generic.cpp.
References row_echelon().
00395 { 00396 return row_echelon (arg_1); 00397 }
static algebraic_number mmx::GLUE_64 | ( | const algebraic_number & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
Definition at line 378 of file glue_algebraic_number.cpp.
References root().
Referenced by glue_matrix_generic(), glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
Definition at line 384 of file glue_series_rational.cpp.
References exp().
static polynomial<complex<rational> > mmx::GLUE_65 | ( | const polynomial< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 376 of file glue_polynomial_rational.cpp.
References square().
static generic mmx::GLUE_65 | ( | const compound & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
Definition at line 366 of file glue_polynomial_generic.cpp.
static matrix<complex<rational> > mmx::GLUE_65 | ( | const tuple< row_tuple< complex< rational > > > & | arg_1 | ) | [static] |
Definition at line 403 of file glue_matrix_rational.cpp.
References arg_1, as_vector(), and matrix_new().
00403 { 00404 return matrix_new (as_vector (arg_1)); 00405 }
static matrix<generic> mmx::GLUE_65 | ( | const matrix< generic > & | arg_1 | ) | [static] |
Definition at line 400 of file glue_matrix_generic.cpp.
References column_echelon().
00400 { 00401 return column_echelon (arg_1); 00402 }
static bool mmx::GLUE_65 | ( | const algebraic_number & | arg_1, | |
const algebraic_number & | arg_2 | |||
) | [static] |
Definition at line 383 of file glue_algebraic_number.cpp.
Referenced by glue_matrix_generic(), glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
static vector<complex<rational> > mmx::GLUE_66 | ( | const complex< rational > & | arg_1, | |
const vector< complex< rational > > & | arg_2 | |||
) | [static] |
Definition at line 350 of file glue_vector_rational.cpp.
References arg_2.
Definition at line 389 of file glue_series_rational.cpp.
References log().
static polynomial<complex<rational> > mmx::GLUE_66 | ( | const polynomial< complex< rational > > & | arg_1, | |
const polynomial< complex< rational > > & | arg_2 | |||
) | [static] |
Definition at line 381 of file glue_polynomial_rational.cpp.
References arg_2.
static vector<generic> mmx::GLUE_66 | ( | const compound & | arg_1 | ) | [static] |
Definition at line 371 of file glue_polynomial_generic.cpp.
References as_vector().
static matrix<complex<rational> > mmx::GLUE_66 | ( | const tuple< row_tuple< complex< rational > > > & | arg_1 | ) | [static] |
Definition at line 408 of file glue_matrix_rational.cpp.
References arg_1, as_vector(), and matrix_new().
00408 { 00409 return matrix_new (as_vector (arg_1)); 00410 }
static matrix<generic> mmx::GLUE_66 | ( | const matrix< generic > & | arg_1 | ) | [static] |
Definition at line 405 of file glue_matrix_generic.cpp.
References row_reduced_echelon().
00405 { 00406 return row_reduced_echelon (arg_1); 00407 }
static bool mmx::GLUE_66 | ( | const algebraic_number & | arg_1, | |
const algebraic_number & | arg_2 | |||
) | [static] |
Definition at line 388 of file glue_algebraic_number.cpp.
Referenced by glue_matrix_generic(), glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
static vector<complex<rational> > mmx::GLUE_67 | ( | const vector< complex< rational > > & | arg_1, | |
const complex< rational > & | arg_2 | |||
) | [static] |
Definition at line 355 of file glue_vector_rational.cpp.
References arg_1.
Definition at line 394 of file glue_series_rational.cpp.
References cos().
static polynomial<complex<rational> > mmx::GLUE_67 | ( | const polynomial< complex< rational > > & | arg_1, | |
const polynomial< complex< rational > > & | arg_2 | |||
) | [static] |
Definition at line 386 of file glue_polynomial_rational.cpp.
References arg_2.
static vector<generic> mmx::GLUE_67 | ( | const compound & | arg_1 | ) | [static] |
Definition at line 376 of file glue_polynomial_generic.cpp.
References compound_arguments.
00376 { 00377 return compound_arguments (arg_1); 00378 }
static int mmx::GLUE_67 | ( | const matrix< complex< rational > > & | arg_1 | ) | [static] |
static matrix<generic> mmx::GLUE_67 | ( | const matrix< generic > & | arg_1 | ) | [static] |
Definition at line 410 of file glue_matrix_generic.cpp.
References column_reduced_echelon().
00410 { 00411 return column_reduced_echelon (arg_1); 00412 }
static bool mmx::GLUE_67 | ( | const algebraic_number & | arg_1, | |
const rational & | arg_2 | |||
) | [static] |
Definition at line 393 of file glue_algebraic_number.cpp.
Referenced by glue_matrix_generic(), glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
static vector<complex<rational> > mmx::GLUE_68 | ( | const complex< rational > & | arg_1, | |
const vector< complex< rational > > & | arg_2 | |||
) | [static] |
Definition at line 360 of file glue_vector_rational.cpp.
References arg_2.
Definition at line 399 of file glue_series_rational.cpp.
References sin().
static polynomial<complex<rational> > mmx::GLUE_68 | ( | const polynomial< complex< rational > > & | arg_1, | |
const polynomial< complex< rational > > & | arg_2 | |||
) | [static] |
Definition at line 391 of file glue_polynomial_rational.cpp.
References arg_2.
static bool mmx::GLUE_68 | ( | const generic & | arg_1 | ) | [static] |
Definition at line 381 of file glue_polynomial_generic.cpp.
References arg_1.
00381 { 00382 return generic_is_boolean (arg_1); 00383 }
static int mmx::GLUE_68 | ( | const matrix< complex< rational > > & | arg_1 | ) | [static] |
static vector<generic> mmx::GLUE_68 | ( | const matrix< generic > & | arg_1 | ) | [static] |
Definition at line 415 of file glue_matrix_generic.cpp.
References wrap_row_reduced_echelon_with_transform().
00415 { 00416 return wrap_row_reduced_echelon_with_transform (arg_1); 00417 }
static bool mmx::GLUE_68 | ( | const algebraic_number & | arg_1, | |
const rational & | arg_2 | |||
) | [static] |
Definition at line 398 of file glue_algebraic_number.cpp.
Referenced by glue_matrix_generic(), glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
static vector<complex<rational> > mmx::GLUE_69 | ( | const vector< complex< rational > > & | arg_1, | |
const complex< rational > & | arg_2 | |||
) | [static] |
Definition at line 365 of file glue_vector_rational.cpp.
References arg_1.
Definition at line 404 of file glue_series_rational.cpp.
References tan().
static polynomial<complex<rational> > mmx::GLUE_69 | ( | const complex< rational > & | arg_1, | |
const polynomial< complex< rational > > & | arg_2 | |||
) | [static] |
Definition at line 396 of file glue_polynomial_rational.cpp.
References arg_2.
static bool mmx::GLUE_69 | ( | const generic & | arg_1 | ) | [static] |
Definition at line 386 of file glue_polynomial_generic.cpp.
References arg_1.
00386 { 00387 return generic_is_int (arg_1); 00388 }
static int mmx::GLUE_69 | ( | const matrix< complex< rational > > & | arg_1 | ) | [static] |
static vector<generic> mmx::GLUE_69 | ( | const matrix< generic > & | arg_1 | ) | [static] |
Definition at line 420 of file glue_matrix_generic.cpp.
References wrap_column_reduced_echelon_with_transform().
00420 { 00421 return wrap_column_reduced_echelon_with_transform (arg_1); 00422 }
static bool mmx::GLUE_69 | ( | const rational & | arg_1, | |
const algebraic_number & | arg_2 | |||
) | [static] |
Definition at line 403 of file glue_algebraic_number.cpp.
Referenced by glue_matrix_generic(), glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
static vector<rational> mmx::GLUE_7 | ( | const vector< rational > & | arg_1, | |
const int & | arg_2, | |||
const int & | arg_3 | |||
) | [static] |
static vector<integer> mmx::GLUE_7 | ( | const vector< integer > & | arg_1, | |
const int & | arg_2, | |||
const int & | arg_3 | |||
) | [static] |
static vector<int> mmx::GLUE_7 | ( | const vector< int > & | arg_1, | |
const int & | arg_2, | |||
const int & | arg_3 | |||
) | [static] |
static series<mmx_modular(integer) > mmx::GLUE_7 | ( | const tuple< mmx_modular(integer) > & | arg_1 | ) | [static] |
Definition at line 90 of file glue_series_modular_integer.cpp.
References arg_1, and as_vector().
Definition at line 86 of file glue_series_integer.cpp.
References as_vector().
static series<generic> mmx::GLUE_7 | ( | const polynomial< generic > & | arg_1 | ) | [static] |
Definition at line 86 of file glue_series_generic.cpp.
00086 { 00087 return series<generic > (arg_1); 00088 }
static quotient< polynomial<rational> , polynomial<rational> > mmx::GLUE_7 | ( | const quotient< polynomial< rational >, polynomial< rational > > & | arg_1 | ) | [static] |
Definition at line 87 of file glue_quotient_polynomial_rational.cpp.
00087 { 00088 return -arg_1; 00089 }
static int mmx::GLUE_7 | ( | const polynomial< rational > & | arg_1 | ) | [static] |
Definition at line 94 of file glue_series_rational.cpp.
00094 { 00095 return series<rational > (arg_1); 00096 }
static int mmx::GLUE_7 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1 | ) | [static] |
static int mmx::GLUE_7 | ( | const polynomial< mmx_modular(integer) > & | arg_1 | ) | [static] |
static int mmx::GLUE_7 | ( | const polynomial< integer > & | arg_1 | ) | [static] |
Definition at line 77 of file glue_polynomial_integer.cpp.
References deg().
static generic mmx::GLUE_7 | ( | const vector< generic > & | arg_1 | ) | [static] |
Definition at line 42 of file glue_vector_generic.cpp.
References big_mul().
static int mmx::GLUE_7 | ( | const permutation & | arg_1 | ) | [static] |
Definition at line 44 of file glue_permutation.cpp.
References N().
static iterator<generic> mmx::GLUE_7 | ( | const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_1 | ) | [static] |
Definition at line 69 of file glue_p_adic_modular_integer.cpp.
References iterate().
static int mmx::GLUE_7 | ( | const matrix< rational > & | arg_1 | ) | [static] |
Definition at line 113 of file glue_matrix_rational.cpp.
References rows().
static int mmx::GLUE_7 | ( | const matrix< mmx_modular(integer) > & | arg_1 | ) | [static] |
static int mmx::GLUE_7 | ( | const matrix< integer > & | arg_1 | ) | [static] |
Definition at line 110 of file glue_matrix_integer.cpp.
References N().
static bool mmx::GLUE_7 | ( | const string & | arg_1, | |
const string & | arg_2 | |||
) | [static] |
Definition at line 110 of file glue_matrix_generic.cpp.
static algebraic_real mmx::GLUE_7 | ( | const algebraic_real & | arg_1 | ) | [static] |
Definition at line 93 of file glue_algebraic_number.cpp.
00093 { 00094 return -arg_1; 00095 }
static algebraic<generic> mmx::GLUE_7 | ( | const algebraic< generic > & | arg_1 | ) | [static] |
Definition at line 75 of file glue_algebraic_generic.cpp.
Referenced by glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_p_adic_modular_integer(), glue_p_expansion_modular_integer(), glue_permutation(), glue_polynomial_generic(), glue_polynomial_integer(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_quotient_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_generic(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
00075 { 00076 return -arg_1; 00077 }
static vector<complex<rational> > mmx::GLUE_70 | ( | const complex< rational > & | arg_1, | |
const vector< complex< rational > > & | arg_2 | |||
) | [static] |
Definition at line 370 of file glue_vector_rational.cpp.
References arg_2.
Definition at line 409 of file glue_series_rational.cpp.
References acos().
static polynomial<complex<rational> > mmx::GLUE_70 | ( | const polynomial< complex< rational > > & | arg_1, | |
const complex< rational > & | arg_2 | |||
) | [static] |
Definition at line 401 of file glue_polynomial_rational.cpp.
static bool mmx::GLUE_70 | ( | const generic & | arg_1 | ) | [static] |
Definition at line 391 of file glue_polynomial_generic.cpp.
References arg_1.
00391 { 00392 return generic_is_double (arg_1); 00393 }
static complex<rational> mmx::GLUE_70 | ( | const matrix< complex< rational > > & | arg_1, | |
const int & | arg_2, | |||
const int & | arg_3 | |||
) | [static] |
Definition at line 428 of file glue_matrix_rational.cpp.
References arg_1.
static vector<generic> mmx::GLUE_70 | ( | const matrix< generic > & | arg_1 | ) | [static] |
Definition at line 425 of file glue_matrix_generic.cpp.
References wrap_column_reduced_echelon_with_permutation().
00425 { 00426 return wrap_column_reduced_echelon_with_permutation (arg_1); 00427 }
static bool mmx::GLUE_70 | ( | const rational & | arg_1, | |
const algebraic_number & | arg_2 | |||
) | [static] |
Definition at line 408 of file glue_algebraic_number.cpp.
Referenced by glue_matrix_generic(), glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
static vector<complex<rational> > mmx::GLUE_71 | ( | const vector< complex< rational > > & | arg_1, | |
const complex< rational > & | arg_2 | |||
) | [static] |
Definition at line 375 of file glue_vector_rational.cpp.
References arg_1.
Definition at line 414 of file glue_series_rational.cpp.
References asin().
static polynomial<complex<rational> > mmx::GLUE_71 | ( | const complex< rational > & | arg_1, | |
const polynomial< complex< rational > > & | arg_2 | |||
) | [static] |
Definition at line 406 of file glue_polynomial_rational.cpp.
References arg_2.
static generic mmx::GLUE_71 | ( | const string & | arg_1, | |
const bool & | arg_2 | |||
) | [static] |
Definition at line 396 of file glue_polynomial_generic.cpp.
static alias<complex<rational> > mmx::GLUE_71 | ( | const alias< matrix< complex< rational > > > & | arg_1, | |
const int & | arg_2, | |||
const int & | arg_3 | |||
) | [static] |
Definition at line 433 of file glue_matrix_rational.cpp.
References arg_1.
static matrix<generic> mmx::GLUE_71 | ( | const matrix< generic > & | arg_1 | ) | [static] |
Definition at line 430 of file glue_matrix_generic.cpp.
References kernel().
static algebraic_number mmx::GLUE_71 | ( | const algebraic_real & | arg_1, | |
const algebraic_real & | arg_2 | |||
) | [static] |
Definition at line 413 of file glue_algebraic_number.cpp.
References gaussian().
Referenced by glue_matrix_generic(), glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
Definition at line 419 of file glue_series_rational.cpp.
References atan().
static polynomial<complex<rational> > mmx::GLUE_72 | ( | const polynomial< complex< rational > > & | arg_1, | |
const complex< rational > & | arg_2 | |||
) | [static] |
Definition at line 411 of file glue_polynomial_rational.cpp.
static string mmx::GLUE_72 | ( | const generic & | arg_1, | |
const bool & | arg_2 | |||
) | [static] |
Definition at line 401 of file glue_polynomial_generic.cpp.
References arg_1.
static matrix<generic> mmx::GLUE_72 | ( | const matrix< generic > & | arg_1 | ) | [static] |
Definition at line 435 of file glue_matrix_generic.cpp.
References image().
static algebraic_real mmx::GLUE_72 | ( | const algebraic_number & | arg_1 | ) | [static] |
Definition at line 418 of file glue_algebraic_number.cpp.
References abs().
Referenced by glue_matrix_generic(), glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
Definition at line 424 of file glue_series_rational.cpp.
00424 { 00425 return unknown<rational > (arg_1); 00426 }
static polynomial<complex<rational> > mmx::GLUE_73 | ( | const complex< rational > & | arg_1, | |
const polynomial< complex< rational > > & | arg_2 | |||
) | [static] |
Definition at line 416 of file glue_polynomial_rational.cpp.
References arg_2.
static string mmx::GLUE_73 | ( | const generic & | arg_1 | ) | [static] |
Definition at line 406 of file glue_polynomial_generic.cpp.
References arg_1.
00406 { 00407 return flatten_as_mmx (arg_1); 00408 }
static int mmx::GLUE_73 | ( | const matrix< generic > & | arg_1 | ) | [static] |
Definition at line 440 of file glue_matrix_generic.cpp.
References rank().
static algebraic_real mmx::GLUE_73 | ( | const algebraic_number & | arg_1 | ) | [static] |
Definition at line 423 of file glue_algebraic_number.cpp.
References Re().
Referenced by glue_matrix_generic(), glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
Definition at line 429 of file glue_series_rational.cpp.
00429 { 00430 return -arg_1; 00431 }
static polynomial<complex<rational> > mmx::GLUE_74 | ( | const polynomial< complex< rational > > & | arg_1, | |
const complex< rational > & | arg_2 | |||
) | [static] |
Definition at line 421 of file glue_polynomial_rational.cpp.
static string mmx::GLUE_74 | ( | const generic & | arg_1 | ) | [static] |
Definition at line 411 of file glue_polynomial_generic.cpp.
References arg_1.
00411 { 00412 return flatten_as_cpp (arg_1); 00413 }
static matrix<generic> mmx::GLUE_74 | ( | const matrix< generic > & | arg_1 | ) | [static] |
Definition at line 445 of file glue_matrix_generic.cpp.
References invert().
static algebraic_real mmx::GLUE_74 | ( | const algebraic_number & | arg_1 | ) | [static] |
Definition at line 428 of file glue_algebraic_number.cpp.
References Im().
Referenced by glue_matrix_generic(), glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
static bool mmx::GLUE_75 | ( | const vector< complex< rational > > & | arg_1, | |
const vector< complex< rational > > & | arg_2 | |||
) | [static] |
Definition at line 434 of file glue_series_rational.cpp.
References square().
static polynomial<complex<rational> > mmx::GLUE_75 | ( | const polynomial< complex< rational > > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
static bool mmx::GLUE_75 | ( | const bool & | arg_1 | ) | [static] |
Definition at line 416 of file glue_polynomial_generic.cpp.
00416 { 00417 return set_frac_flag (arg_1); 00418 }
static matrix<complex<rational> > mmx::GLUE_75 | ( | const matrix< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 453 of file glue_matrix_rational.cpp.
References arg_1, and transpose().
static matrix<generic> mmx::GLUE_75 | ( | const matrix< generic > & | arg_1 | ) | [static] |
Definition at line 450 of file glue_matrix_generic.cpp.
References derive().
static algebraic_number mmx::GLUE_75 | ( | const algebraic_number & | arg_1 | ) | [static] |
Definition at line 433 of file glue_algebraic_number.cpp.
References conj().
Referenced by glue_matrix_generic(), glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
static bool mmx::GLUE_76 | ( | const vector< complex< rational > > & | arg_1, | |
const vector< complex< rational > > & | arg_2 | |||
) | [static] |
static unknown<rational> mmx::GLUE_76 | ( | const unknown< rational > & | arg_1, | |
const unknown< rational > & | arg_2 | |||
) | [static] |
Definition at line 439 of file glue_series_rational.cpp.
static polynomial<complex<rational> > mmx::GLUE_76 | ( | const polynomial< complex< rational > > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
static polynomial<generic> mmx::GLUE_76 | ( | const tuple< generic > & | arg_1 | ) | [static] |
Definition at line 421 of file glue_polynomial_generic.cpp.
References as_vector(), and polynomial_reverse().
00421 { 00422 return polynomial_reverse (as_vector (arg_1)); 00423 }
static matrix<complex<rational> > mmx::GLUE_76 | ( | const matrix< complex< rational > > & | arg_1, | |
const matrix< complex< rational > > & | arg_2 | |||
) | [static] |
Definition at line 458 of file glue_matrix_rational.cpp.
References arg_1, arg_2, and horizontal_join().
00458 { 00459 return horizontal_join (arg_1, arg_2); 00460 }
static matrix<generic> mmx::GLUE_76 | ( | const matrix< generic > & | arg_1 | ) | [static] |
Definition at line 455 of file glue_matrix_generic.cpp.
References integrate().
static algebraic_number mmx::GLUE_76 | ( | const algebraic_number & | arg_1 | ) | [static] |
Definition at line 438 of file glue_algebraic_number.cpp.
References times_i().
Referenced by glue_matrix_generic(), glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
static bool mmx::GLUE_77 | ( | const vector< complex< rational > > & | arg_1, | |
const complex< rational > & | arg_2 | |||
) | [static] |
Definition at line 405 of file glue_vector_rational.cpp.
References arg_1.
static unknown<rational> mmx::GLUE_77 | ( | const unknown< rational > & | arg_1, | |
const unknown< rational > & | arg_2 | |||
) | [static] |
Definition at line 444 of file glue_series_rational.cpp.
static polynomial<complex<rational> > mmx::GLUE_77 | ( | const polynomial< complex< rational > > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
static polynomial<generic> mmx::GLUE_77 | ( | const tuple< generic > & | arg_1 | ) | [static] |
Definition at line 426 of file glue_polynomial_generic.cpp.
References as_vector().
static matrix<complex<rational> > mmx::GLUE_77 | ( | const matrix< complex< rational > > & | arg_1, | |
const matrix< complex< rational > > & | arg_2 | |||
) | [static] |
Definition at line 463 of file glue_matrix_rational.cpp.
References arg_1, arg_2, and vertical_join().
00463 { 00464 return vertical_join (arg_1, arg_2); 00465 }
static algebraic_number mmx::GLUE_77 | ( | const algebraic_number & | arg_1 | ) | [static] |
Definition at line 443 of file glue_algebraic_number.cpp.
References over_i().
Referenced by glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
static bool mmx::GLUE_78 | ( | const vector< complex< rational > > & | arg_1, | |
const complex< rational > & | arg_2 | |||
) | [static] |
Definition at line 410 of file glue_vector_rational.cpp.
References arg_1.
static unknown<rational> mmx::GLUE_78 | ( | const rational & | arg_1, | |
const unknown< rational > & | arg_2 | |||
) | [static] |
Definition at line 449 of file glue_series_rational.cpp.
static bool mmx::GLUE_78 | ( | const polynomial< complex< rational > > & | arg_1, | |
const polynomial< complex< rational > > & | arg_2 | |||
) | [static] |
Definition at line 441 of file glue_polynomial_rational.cpp.
References arg_2.
static void mmx::GLUE_78 | ( | const polynomial< generic > & | arg_1, | |
const generic & | arg_2 | |||
) | [static] |
Definition at line 431 of file glue_polynomial_generic.cpp.
References arg_2, and set_variable_name().
00431 { 00432 set_variable_name (arg_1, arg_2); 00433 }
static matrix<complex<rational> > mmx::GLUE_78 | ( | const matrix< complex< rational > > & | arg_1, | |
const permutation & | arg_2 | |||
) | [static] |
Definition at line 468 of file glue_matrix_rational.cpp.
References arg_1.
static algebraic_real mmx::GLUE_78 | ( | const polynomial< rational > & | arg_1, | |
const mmx_ball(mmx_floating, mmx_floating)& | arg_2 | |||
) | [static] |
Definition at line 448 of file glue_algebraic_number.cpp.
Referenced by glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
00448 { 00449 return algebraic_real (arg_1, arg_2); 00450 }
static bool mmx::GLUE_79 | ( | const complex< rational > & | arg_1, | |
const vector< complex< rational > > & | arg_2 | |||
) | [static] |
Definition at line 415 of file glue_vector_rational.cpp.
References arg_2.
static unknown<rational> mmx::GLUE_79 | ( | const unknown< rational > & | arg_1, | |
const rational & | arg_2 | |||
) | [static] |
Definition at line 454 of file glue_series_rational.cpp.
static bool mmx::GLUE_79 | ( | const polynomial< complex< rational > > & | arg_1, | |
const polynomial< complex< rational > > & | arg_2 | |||
) | [static] |
Definition at line 446 of file glue_polynomial_rational.cpp.
References arg_2.
static iterator<generic> mmx::GLUE_79 | ( | const polynomial< generic > & | arg_1 | ) | [static] |
Definition at line 436 of file glue_polynomial_generic.cpp.
References iterate().
static matrix<complex<rational> > mmx::GLUE_79 | ( | const permutation & | arg_1, | |
const matrix< complex< rational > > & | arg_2 | |||
) | [static] |
Definition at line 473 of file glue_matrix_rational.cpp.
References arg_2.
static algebraic_real mmx::GLUE_79 | ( | const polynomial< rational > & | arg_1, | |
const polynomial< rational > & | arg_2, | |||
const mmx_ball(mmx_floating, mmx_floating)& | arg_3 | |||
) | [static] |
Definition at line 453 of file glue_algebraic_number.cpp.
Referenced by glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
00453 { 00454 return algebraic_real (arg_1, arg_2, arg_3); 00455 }
static vector<rational> mmx::GLUE_8 | ( | const vector< rational > & | arg_1 | ) | [static] |
Definition at line 60 of file glue_vector_rational.cpp.
References reverse().
static vector<integer> mmx::GLUE_8 | ( | const vector< integer > & | arg_1 | ) | [static] |
Definition at line 55 of file glue_vector_integer.cpp.
References reverse().
static vector<int> mmx::GLUE_8 | ( | const vector< int > & | arg_1 | ) | [static] |
Definition at line 49 of file glue_vector_int.cpp.
References reverse().
static iterator<generic> mmx::GLUE_8 | ( | const series< rational > & | arg_1 | ) | [static] |
Definition at line 99 of file glue_series_rational.cpp.
References iterate().
Definition at line 95 of file glue_series_modular_integer.cpp.
00095 { 00096 return series<mmx_modular(integer) > (arg_1); 00097 }
Definition at line 91 of file glue_series_integer.cpp.
00091 { 00092 return series<integer > (arg_1); 00093 }
static iterator<generic> mmx::GLUE_8 | ( | const series< generic > & | arg_1 | ) | [static] |
Definition at line 91 of file glue_series_generic.cpp.
References iterate().
static quotient< polynomial<rational> , polynomial<rational> > mmx::GLUE_8 | ( | const quotient< polynomial< rational >, polynomial< rational > > & | arg_1 | ) | [static] |
Definition at line 92 of file glue_quotient_polynomial_rational.cpp.
References square().
static rational mmx::GLUE_8 | ( | const polynomial< rational > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
Definition at line 91 of file glue_polynomial_rational.cpp.
static series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> mmx::GLUE_8 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
Definition at line 105 of file glue_polynomial_p_adic_modular_integer.cpp.
static integer mmx::GLUE_8 | ( | const polynomial< integer > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
Definition at line 82 of file glue_polynomial_integer.cpp.
static generic mmx::GLUE_8 | ( | const vector< generic > & | arg_1 | ) | [static] |
Definition at line 47 of file glue_vector_generic.cpp.
References big_add().
static int mmx::GLUE_8 | ( | const permutation & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
Definition at line 49 of file glue_permutation.cpp.
References arg_1.
polynomial_carry_variant_helper< mmx_modular(integer) >::PV mmx::GLUE_8 | ( | const integer & | arg_1, | |
const modulus< integer > & | arg_2 | |||
) |
Definition at line 70 of file glue_p_expansion_modular_integer.cpp.
References integer_as_p_expansion().
00070 { 00071 return integer_as_p_expansion (arg_1, arg_2); 00072 }
static int mmx::GLUE_8 | ( | const matrix< rational > & | arg_1 | ) | [static] |
Definition at line 118 of file glue_matrix_rational.cpp.
References cols().
static int mmx::GLUE_8 | ( | const matrix< mmx_modular(integer) > & | arg_1 | ) | [static] |
static int mmx::GLUE_8 | ( | const matrix< integer > & | arg_1 | ) | [static] |
Definition at line 115 of file glue_matrix_integer.cpp.
References rows().
static bool mmx::GLUE_8 | ( | const string & | arg_1, | |
const string & | arg_2 | |||
) | [static] |
Definition at line 115 of file glue_matrix_generic.cpp.
static algebraic_real mmx::GLUE_8 | ( | const algebraic_real & | arg_1 | ) | [static] |
Definition at line 98 of file glue_algebraic_number.cpp.
References square().
static algebraic<generic> mmx::GLUE_8 | ( | const algebraic< generic > & | arg_1 | ) | [static] |
Definition at line 80 of file glue_algebraic_generic.cpp.
References square().
Referenced by glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_p_adic_modular_integer(), glue_p_expansion_modular_integer(), glue_permutation(), glue_polynomial_generic(), glue_polynomial_integer(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_quotient_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_generic(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static bool mmx::GLUE_80 | ( | const complex< rational > & | arg_1, | |
const vector< complex< rational > > & | arg_2 | |||
) | [static] |
Definition at line 420 of file glue_vector_rational.cpp.
References arg_2.
static unknown<rational> mmx::GLUE_80 | ( | const unknown< rational > & | arg_1, | |
const unknown< rational > & | arg_2 | |||
) | [static] |
Definition at line 459 of file glue_series_rational.cpp.
static bool mmx::GLUE_80 | ( | const polynomial< complex< rational > > & | arg_1, | |
const complex< rational > & | arg_2 | |||
) | [static] |
Definition at line 451 of file glue_polynomial_rational.cpp.
static int mmx::GLUE_80 | ( | const polynomial< generic > & | arg_1 | ) | [static] |
Definition at line 441 of file glue_polynomial_generic.cpp.
References N().
Definition at line 478 of file glue_matrix_rational.cpp.
References toeplitz_matrix().
Referenced by glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
00478 { 00479 return toeplitz_matrix (arg_1); 00480 }
Definition at line 464 of file glue_series_rational.cpp.
References fixed_point_series().
00464 { 00465 return fixed_point_series (arg_1, arg_2); 00466 }
static bool mmx::GLUE_81 | ( | const polynomial< complex< rational > > & | arg_1, | |
const complex< rational > & | arg_2 | |||
) | [static] |
Definition at line 456 of file glue_polynomial_rational.cpp.
static int mmx::GLUE_81 | ( | const polynomial< generic > & | arg_1 | ) | [static] |
Definition at line 446 of file glue_polynomial_generic.cpp.
References deg().
Definition at line 425 of file glue_vector_rational.cpp.
References invert().
static algebraic_number mmx::GLUE_81 | ( | const polynomial< rational > & | arg_1, | |
const mmx_ball(mmx_floating, complex< mmx_floating >)& | arg_2 | |||
) | [static] |
Definition at line 463 of file glue_algebraic_number.cpp.
Referenced by glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
00463 { 00464 return algebraic_number (arg_1, arg_2); 00465 }
Definition at line 469 of file glue_series_rational.cpp.
References integrate_series().
00469 { 00470 return integrate_series (arg_1, arg_2); 00471 }
static bool mmx::GLUE_82 | ( | const complex< rational > & | arg_1, | |
const polynomial< complex< rational > > & | arg_2 | |||
) | [static] |
Definition at line 461 of file glue_polynomial_rational.cpp.
References arg_2.
static generic mmx::GLUE_82 | ( | const polynomial< generic > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
Definition at line 451 of file glue_polynomial_generic.cpp.
static matrix<rational> mmx::GLUE_82 | ( | const vector< rational > & | arg_1, | |
const vector< rational > & | arg_2 | |||
) | [static] |
Definition at line 430 of file glue_vector_rational.cpp.
static algebraic_number mmx::GLUE_82 | ( | const polynomial< rational > & | arg_1, | |
const polynomial< rational > & | arg_2, | |||
const mmx_ball(mmx_floating, complex< mmx_floating >)& | arg_3 | |||
) | [static] |
Definition at line 468 of file glue_algebraic_number.cpp.
Referenced by glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
00468 { 00469 return algebraic_number (arg_1, arg_2, arg_3); 00470 }
static vector<rational> mmx::GLUE_83 | ( | const rational & | arg_1, | |
const vector< rational > & | arg_2 | |||
) | [static] |
Definition at line 435 of file glue_vector_rational.cpp.
Definition at line 474 of file glue_series_rational.cpp.
References implicit_series().
00474 { 00475 return implicit_series (arg_1, arg_2); 00476 }
static bool mmx::GLUE_83 | ( | const complex< rational > & | arg_1, | |
const polynomial< complex< rational > > & | arg_2 | |||
) | [static] |
Definition at line 466 of file glue_polynomial_rational.cpp.
References arg_2.
static polynomial<generic> mmx::GLUE_83 | ( | const polynomial< generic > & | arg_1 | ) | [static] |
Definition at line 456 of file glue_polynomial_generic.cpp.
00456 { 00457 return -arg_1; 00458 }
Definition at line 493 of file glue_matrix_rational.cpp.
References vandermonde().
Referenced by glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
00493 { 00494 return vandermonde (arg_1); 00495 }
static vector<rational> mmx::GLUE_84 | ( | const vector< rational > & | arg_1, | |
const rational & | arg_2 | |||
) | [static] |
Definition at line 440 of file glue_vector_rational.cpp.
static void mmx::GLUE_84 | ( | const series< complex< rational > > & | arg_1, | |
const generic & | arg_2 | |||
) | [static] |
Definition at line 479 of file glue_series_rational.cpp.
References arg_1, arg_2, and set_variable_name().
00479 { 00480 set_variable_name (arg_1, arg_2); 00481 }
static polynomial<complex<rational> > mmx::GLUE_84 | ( | const polynomial< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 471 of file glue_polynomial_rational.cpp.
References derive().
static polynomial<generic> mmx::GLUE_84 | ( | const polynomial< generic > & | arg_1 | ) | [static] |
Definition at line 461 of file glue_polynomial_generic.cpp.
References square().
static vector<rational> mmx::GLUE_84 | ( | const matrix< rational > & | arg_1, | |
const vector< rational > & | arg_2 | |||
) | [static] |
Definition at line 498 of file glue_matrix_rational.cpp.
Referenced by glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
static void mmx::GLUE_85 | ( | const series< complex< rational > > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
Definition at line 484 of file glue_series_rational.cpp.
References arg_1, and set_output_order().
00484 { 00485 set_output_order (arg_1, arg_2); 00486 }
static polynomial<complex<rational> > mmx::GLUE_85 | ( | const polynomial< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 476 of file glue_polynomial_rational.cpp.
References xderive().
static polynomial<generic> mmx::GLUE_85 | ( | const polynomial< generic > & | arg_1, | |
const polynomial< generic > & | arg_2 | |||
) | [static] |
Definition at line 466 of file glue_polynomial_generic.cpp.
static vector<rational> mmx::GLUE_85 | ( | const vector< rational > & | arg_1, | |
const matrix< rational > & | arg_2 | |||
) | [static] |
Definition at line 503 of file glue_matrix_rational.cpp.
Referenced by glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
static void mmx::GLUE_86 | ( | const series< complex< rational > > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
Definition at line 489 of file glue_series_rational.cpp.
References arg_1, and set_cancel_order().
00489 { 00490 set_cancel_order (arg_1, arg_2); 00491 }
static complex<rational> mmx::GLUE_86 | ( | const polynomial< complex< rational > > & | arg_1, | |
const complex< rational > & | arg_2 | |||
) | [static] |
Definition at line 481 of file glue_polynomial_rational.cpp.
References evaluate().
static polynomial<generic> mmx::GLUE_86 | ( | const polynomial< generic > & | arg_1, | |
const polynomial< generic > & | arg_2 | |||
) | [static] |
Definition at line 471 of file glue_polynomial_generic.cpp.
static matrix<complex<rational> > mmx::GLUE_86 | ( | const complex< rational > & | arg_1, | |
const int & | arg_2, | |||
const int & | arg_3 | |||
) | [static] |
Definition at line 508 of file glue_matrix_rational.cpp.
References fill_matrix().
Referenced by glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
00508 { 00509 return fill_matrix (arg_1, arg_2, arg_3); 00510 }
static vector<complex<rational> > mmx::GLUE_87 | ( | const complex< rational > & | arg_1, | |
const vector< complex< rational > > & | arg_2 | |||
) | [static] |
Definition at line 455 of file glue_vector_rational.cpp.
References arg_2.
static void mmx::GLUE_87 | ( | const series< complex< rational > > & | arg_1, | |
const bool & | arg_2 | |||
) | [static] |
Definition at line 494 of file glue_series_rational.cpp.
References arg_1, and set_formula_output().
00494 { 00495 set_formula_output (arg_1, arg_2); 00496 }
static vector<complex<rational> > mmx::GLUE_87 | ( | const polynomial< complex< rational > > & | arg_1, | |
const vector< complex< rational > > & | arg_2 | |||
) | [static] |
Definition at line 486 of file glue_polynomial_rational.cpp.
References arg_2, and evaluate().
static polynomial<generic> mmx::GLUE_87 | ( | const polynomial< generic > & | arg_1, | |
const polynomial< generic > & | arg_2 | |||
) | [static] |
Definition at line 476 of file glue_polynomial_generic.cpp.
static matrix<complex<rational> > mmx::GLUE_87 | ( | const complex< rational > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
Definition at line 513 of file glue_matrix_rational.cpp.
References jordan_matrix().
Referenced by glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
00513 { 00514 return jordan_matrix (arg_1, arg_2); 00515 }
static vector<complex<rational> > mmx::GLUE_88 | ( | const vector< complex< rational > > & | arg_1, | |
const complex< rational > & | arg_2 | |||
) | [static] |
Definition at line 460 of file glue_vector_rational.cpp.
References arg_1.
static series<complex<rational> > mmx::GLUE_88 | ( | const tuple< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 499 of file glue_series_rational.cpp.
References arg_1, and as_vector().
static complex<rational> mmx::GLUE_88 | ( | const polynomial< complex< rational > > & | arg_1, | |
const complex< rational > & | arg_2 | |||
) | [static] |
Definition at line 491 of file glue_polynomial_rational.cpp.
References evaluate().
static polynomial<generic> mmx::GLUE_88 | ( | const polynomial< generic > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
static matrix<complex<rational> > mmx::GLUE_88 | ( | const vector< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 518 of file glue_matrix_rational.cpp.
References arg_1, and toeplitz_matrix().
Referenced by glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
00518 { 00519 return toeplitz_matrix (arg_1); 00520 }
static bool mmx::GLUE_89 | ( | const vector< rational > & | arg_1, | |
const vector< rational > & | arg_2 | |||
) | [static] |
Definition at line 465 of file glue_vector_rational.cpp.
Definition at line 504 of file glue_series_rational.cpp.
00504 { 00505 return series<complex<rational> > (arg_1); 00506 }
static vector<complex<rational> > mmx::GLUE_89 | ( | const polynomial< complex< rational > > & | arg_1, | |
const vector< complex< rational > > & | arg_2 | |||
) | [static] |
Definition at line 496 of file glue_polynomial_rational.cpp.
References arg_2, and evaluate().
static polynomial<generic> mmx::GLUE_89 | ( | const polynomial< generic > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
static matrix<complex<rational> > mmx::GLUE_89 | ( | const vector< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 523 of file glue_matrix_rational.cpp.
References arg_1, and hankel_matrix().
Referenced by glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
00523 { 00524 return hankel_matrix (arg_1); 00525 }
static vector<rational> mmx::GLUE_9 | ( | const vector< rational > & | arg_1, | |
const vector< rational > & | arg_2 | |||
) | [static] |
Definition at line 65 of file glue_vector_rational.cpp.
static vector<integer> mmx::GLUE_9 | ( | const vector< integer > & | arg_1, | |
const vector< integer > & | arg_2 | |||
) | [static] |
Definition at line 60 of file glue_vector_integer.cpp.
static vector<int> mmx::GLUE_9 | ( | const vector< int > & | arg_1, | |
const vector< int > & | arg_2 | |||
) | [static] |
Definition at line 54 of file glue_vector_int.cpp.
static rational mmx::GLUE_9 | ( | const series< rational > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
Definition at line 104 of file glue_series_rational.cpp.
static series<mmx_modular(integer) > mmx::GLUE_9 | ( | const polynomial< mmx_modular(integer) > & | arg_1 | ) | [static] |
Definition at line 100 of file glue_series_modular_integer.cpp.
References arg_1.
00100 { 00101 return series<mmx_modular(integer) > (arg_1); 00102 }
static generic mmx::GLUE_9 | ( | const series< generic > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
Definition at line 96 of file glue_series_generic.cpp.
static quotient< polynomial<rational> , polynomial<rational> > mmx::GLUE_9 | ( | const quotient< polynomial< rational >, polynomial< rational > > & | arg_1, | |
const quotient< polynomial< rational >, polynomial< rational > > & | arg_2 | |||
) | [static] |
Definition at line 97 of file glue_quotient_polynomial_rational.cpp.
static polynomial<rational> mmx::GLUE_9 | ( | const polynomial< rational > & | arg_1 | ) | [static] |
Definition at line 96 of file glue_polynomial_rational.cpp.
00096 { 00097 return -arg_1; 00098 }
static polynomial<series< mmx_modular(integer) , series_carry_variant_helper< mmx_modular(integer) >::SV> > mmx::GLUE_9 | ( | const polynomial< series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > > & | arg_1 | ) | [static] |
Definition at line 110 of file glue_polynomial_p_adic_modular_integer.cpp.
References arg_1.
00110 { 00111 return -arg_1; 00112 }
static polynomial<integer> mmx::GLUE_9 | ( | const polynomial< integer > & | arg_1 | ) | [static] |
Definition at line 96 of file glue_series_integer.cpp.
00096 { 00097 return series<integer > (arg_1); 00098 }
static bool mmx::GLUE_9 | ( | const vector< generic > & | arg_1, | |
const vector< generic > & | arg_2 | |||
) | [static] |
Definition at line 52 of file glue_vector_generic.cpp.
static int mmx::GLUE_9 | ( | const permutation & | arg_1 | ) | [static] |
Definition at line 54 of file glue_permutation.cpp.
References nr_transpositions().
00054 { 00055 return nr_transpositions (arg_1); 00056 }
polynomial_carry_variant_helper< mmx_modular(integer) >::PV mmx::GLUE_9 | ( | const series< mmx_modular(integer), series_carry_variant_helper< mmx_modular(integer) >::SV > & | arg_1, | |
const int & | arg_2, | |||
const int & | arg_3 | |||
) |
static rational mmx::GLUE_9 | ( | const matrix< rational > & | arg_1, | |
const int & | arg_2, | |||
const int & | arg_3 | |||
) | [static] |
Definition at line 123 of file glue_matrix_rational.cpp.
References arg_1.
static int mmx::GLUE_9 | ( | const matrix< mmx_modular(integer) > & | arg_1 | ) | [static] |
static int mmx::GLUE_9 | ( | const matrix< integer > & | arg_1 | ) | [static] |
Definition at line 120 of file glue_matrix_integer.cpp.
References cols().
static bool mmx::GLUE_9 | ( | const string & | arg_1, | |
const string & | arg_2 | |||
) | [static] |
Definition at line 120 of file glue_matrix_generic.cpp.
static algebraic_real mmx::GLUE_9 | ( | const algebraic_real & | arg_1, | |
const algebraic_real & | arg_2 | |||
) | [static] |
Definition at line 103 of file glue_algebraic_number.cpp.
static algebraic<generic> mmx::GLUE_9 | ( | const algebraic< generic > & | arg_1, | |
const algebraic< generic > & | arg_2 | |||
) | [static] |
Definition at line 85 of file glue_algebraic_generic.cpp.
Referenced by glue_matrix_generic(), glue_matrix_integer(), glue_matrix_rational(), glue_p_adic_modular_integer(), glue_permutation(), glue_polynomial_generic(), glue_polynomial_integer(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_quotient_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_rational(), glue_vector_generic(), glue_vector_int(), glue_vector_integer(), and glue_vector_rational().
static bool mmx::GLUE_90 | ( | const vector< rational > & | arg_1, | |
const vector< rational > & | arg_2 | |||
) | [static] |
Definition at line 470 of file glue_vector_rational.cpp.
static series<complex<rational> > mmx::GLUE_90 | ( | const polynomial< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 509 of file glue_series_rational.cpp.
References arg_1.
00509 { 00510 return series<complex<rational> > (arg_1); 00511 }
static polynomial<rational> mmx::GLUE_90 | ( | const vector< rational > & | arg_1 | ) | [static] |
Definition at line 501 of file glue_polynomial_rational.cpp.
References annulator().
static polynomial<generic> mmx::GLUE_90 | ( | const polynomial< generic > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
static matrix<complex<rational> > mmx::GLUE_90 | ( | const vector< complex< rational > > & | arg_1, | |
const vector< complex< rational > > & | arg_2 | |||
) | [static] |
Definition at line 528 of file glue_matrix_rational.cpp.
References arg_1, arg_2, and tensor_matrix().
Referenced by glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
00528 { 00529 return tensor_matrix (arg_1, arg_2); 00530 }
static iterator<generic> mmx::GLUE_91 | ( | const series< complex< rational > > & | arg_1 | ) | [static] |
static polynomial<rational> mmx::GLUE_91 | ( | const vector< rational > & | arg_1, | |
const vector< rational > & | arg_2 | |||
) | [static] |
Definition at line 475 of file glue_vector_rational.cpp.
static bool mmx::GLUE_91 | ( | const polynomial< generic > & | arg_1, | |
const polynomial< generic > & | arg_2 | |||
) | [static] |
Definition at line 496 of file glue_polynomial_generic.cpp.
static matrix<complex<rational> > mmx::GLUE_91 | ( | const vector< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 533 of file glue_matrix_rational.cpp.
References arg_1, and vandermonde().
Referenced by glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
00533 { 00534 return vandermonde (arg_1); 00535 }
static bool mmx::GLUE_92 | ( | const vector< rational > & | arg_1, | |
const vector< rational > & | arg_2 | |||
) | [static] |
Definition at line 480 of file glue_vector_rational.cpp.
static complex<rational> mmx::GLUE_92 | ( | const series< complex< rational > > & | arg_1, | |
const int & | arg_2 | |||
) | [static] |
Definition at line 519 of file glue_series_rational.cpp.
References arg_1.
static polynomial<complex<rational> > mmx::GLUE_92 | ( | const polynomial< complex< rational > > & | arg_1, | |
const complex< rational > & | arg_2 | |||
) | [static] |
Definition at line 511 of file glue_polynomial_rational.cpp.
static bool mmx::GLUE_92 | ( | const polynomial< generic > & | arg_1, | |
const polynomial< generic > & | arg_2 | |||
) | [static] |
Definition at line 501 of file glue_polynomial_generic.cpp.
static matrix<complex<rational> > mmx::GLUE_92 | ( | const matrix< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 538 of file glue_matrix_rational.cpp.
References arg_1.
Referenced by glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
00538 { 00539 return -arg_1; 00540 }
static bool mmx::GLUE_93 | ( | const vector< rational > & | arg_1, | |
const rational & | arg_2 | |||
) | [static] |
Definition at line 485 of file glue_vector_rational.cpp.
static polynomial<complex<rational> > mmx::GLUE_93 | ( | const series< complex< rational > > & | arg_1, | |
const int & | arg_2, | |||
const int & | arg_3 | |||
) | [static] |
static polynomial<complex<rational> > mmx::GLUE_93 | ( | const polynomial< complex< rational > > & | arg_1, | |
const polynomial< complex< rational > > & | arg_2 | |||
) | [static] |
Definition at line 516 of file glue_polynomial_rational.cpp.
References arg_2.
static polynomial<generic> mmx::GLUE_93 | ( | const polynomial< generic > & | arg_1 | ) | [static] |
Definition at line 506 of file glue_polynomial_generic.cpp.
References derive().
static matrix<complex<rational> > mmx::GLUE_93 | ( | const matrix< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 543 of file glue_matrix_rational.cpp.
References arg_1, and square().
Referenced by glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
static bool mmx::GLUE_94 | ( | const vector< rational > & | arg_1, | |
const rational & | arg_2 | |||
) | [static] |
Definition at line 490 of file glue_vector_rational.cpp.
static series<complex<rational> > mmx::GLUE_94 | ( | const series< complex< rational > > & | arg_1 | ) | [static] |
Definition at line 529 of file glue_series_rational.cpp.
References arg_1.
00529 { 00530 return -arg_1; 00531 }
static polynomial<complex<rational> > mmx::GLUE_94 | ( | const polynomial< complex< rational > > & | arg_1, | |
const polynomial< complex< rational > > & | arg_2 | |||
) | [static] |
static polynomial<generic> mmx::GLUE_94 | ( | const polynomial< generic > & | arg_1 | ) | [static] |
Definition at line 511 of file glue_polynomial_generic.cpp.
References xderive().
static matrix<complex<rational> > mmx::GLUE_94 | ( | const matrix< complex< rational > > & | arg_1, | |
const matrix< complex< rational > > & | arg_2 | |||
) | [static] |
Definition at line 548 of file glue_matrix_rational.cpp.
Referenced by glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
static bool mmx::GLUE_95 | ( | const vector< rational > & | arg_1, | |
const rational & | arg_2 | |||
) | [static] |
Definition at line 495 of file glue_vector_rational.cpp.
static polynomial<complex<rational> > mmx::GLUE_95 | ( | const polynomial< complex< rational > > & | arg_1, | |
const polynomial< complex< rational > > & | arg_2 | |||
) | [static] |
static generic mmx::GLUE_95 | ( | const polynomial< generic > & | arg_1, | |
const generic & | arg_2 | |||
) | [static] |
Definition at line 516 of file glue_polynomial_generic.cpp.
References arg_2, and evaluate().
static matrix<complex<rational> > mmx::GLUE_95 | ( | const matrix< complex< rational > > & | arg_1, | |
const matrix< complex< rational > > & | arg_2 | |||
) | [static] |
Definition at line 553 of file glue_matrix_rational.cpp.
Referenced by glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
static bool mmx::GLUE_96 | ( | const vector< rational > & | arg_1, | |
const rational & | arg_2 | |||
) | [static] |
Definition at line 500 of file glue_vector_rational.cpp.
static bool mmx::GLUE_96 | ( | const polynomial< complex< rational > > & | arg_1, | |
const polynomial< complex< rational > > & | arg_2 | |||
) | [static] |
static vector<generic> mmx::GLUE_96 | ( | const polynomial< generic > & | arg_1, | |
const vector< generic > & | arg_2 | |||
) | [static] |
Definition at line 521 of file glue_polynomial_generic.cpp.
References evaluate().
static matrix<complex<rational> > mmx::GLUE_96 | ( | const matrix< complex< rational > > & | arg_1, | |
const matrix< complex< rational > > & | arg_2 | |||
) | [static] |
Definition at line 558 of file glue_matrix_rational.cpp.
Referenced by glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
static bool mmx::GLUE_97 | ( | const rational & | arg_1, | |
const vector< rational > & | arg_2 | |||
) | [static] |
Definition at line 505 of file glue_vector_rational.cpp.
static polynomial<complex<rational> > mmx::GLUE_97 | ( | const polynomial< complex< rational > > & | arg_1, | |
const polynomial< complex< rational > > & | arg_2, | |||
const int & | arg_3 | |||
) | [static] |
Definition at line 536 of file glue_polynomial_rational.cpp.
References arg_2, and subresultant().
00536 { 00537 return subresultant (arg_1, arg_2, arg_3); 00538 }
static generic mmx::GLUE_97 | ( | const polynomial< generic > & | arg_1, | |
const generic & | arg_2 | |||
) | [static] |
Definition at line 526 of file glue_polynomial_generic.cpp.
References arg_2, and evaluate().
static matrix<complex<rational> > mmx::GLUE_97 | ( | const complex< rational > & | arg_1, | |
const matrix< complex< rational > > & | arg_2 | |||
) | [static] |
Definition at line 563 of file glue_matrix_rational.cpp.
References arg_2.
Referenced by glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
static bool mmx::GLUE_98 | ( | const rational & | arg_1, | |
const vector< rational > & | arg_2 | |||
) | [static] |
Definition at line 510 of file glue_vector_rational.cpp.
static vector<generic> mmx::GLUE_98 | ( | const polynomial< complex< rational > > & | arg_1, | |
const polynomial< complex< rational > > & | arg_2 | |||
) | [static] |
Definition at line 541 of file glue_polynomial_rational.cpp.
References arg_2, and wrap_subresultants().
00541 { 00542 return wrap_subresultants (arg_1, arg_2); 00543 }
static vector<generic> mmx::GLUE_98 | ( | const polynomial< generic > & | arg_1, | |
const vector< generic > & | arg_2 | |||
) | [static] |
Definition at line 531 of file glue_polynomial_generic.cpp.
References evaluate().
static matrix<complex<rational> > mmx::GLUE_98 | ( | const matrix< complex< rational > > & | arg_1, | |
const complex< rational > & | arg_2 | |||
) | [static] |
Definition at line 568 of file glue_matrix_rational.cpp.
References arg_1.
Referenced by glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
static bool mmx::GLUE_99 | ( | const rational & | arg_1, | |
const vector< rational > & | arg_2 | |||
) | [static] |
Definition at line 515 of file glue_vector_rational.cpp.
static series<complex<rational> > mmx::GLUE_99 | ( | const complex< rational > & | arg_1, | |
const series< complex< rational > > & | arg_2 | |||
) | [static] |
Definition at line 554 of file glue_series_rational.cpp.
References arg_2.
static complex<rational> mmx::GLUE_99 | ( | const polynomial< complex< rational > > & | arg_1, | |
const polynomial< complex< rational > > & | arg_2 | |||
) | [static] |
Definition at line 546 of file glue_polynomial_rational.cpp.
References arg_2, and resultant().
static polynomial<generic> mmx::GLUE_99 | ( | const polynomial< generic > & | arg_1, | |
const polynomial< generic > & | arg_2 | |||
) | [static] |
Definition at line 536 of file glue_polynomial_generic.cpp.
static matrix<complex<rational> > mmx::GLUE_99 | ( | const complex< rational > & | arg_1, | |
const matrix< complex< rational > > & | arg_2 | |||
) | [static] |
Definition at line 573 of file glue_matrix_rational.cpp.
References arg_2.
Referenced by glue_matrix_rational(), glue_polynomial_generic(), glue_polynomial_rational(), glue_series_rational(), and glue_vector_rational().
void glue_algebraic_generic | ( | ) |
Referenced by glue_algebramix().
void glue_algebraic_number | ( | ) |
Referenced by glue_algebramix().
void mmx::glue_algebramix | ( | ) |
Definition at line 34 of file glue_algebramix.cpp.
References glue_algebraic_generic(), glue_algebraic_number(), glue_matrix_generic(), glue_matrix_integer(), glue_matrix_modular_integer(), glue_matrix_rational(), glue_p_adic_modular_integer(), glue_p_expansion_modular_integer(), glue_permutation(), glue_polynomial_generic(), glue_polynomial_integer(), glue_polynomial_modular_integer(), glue_polynomial_p_adic_modular_integer(), glue_polynomial_rational(), glue_quotient_generic(), glue_quotient_polynomial_rational(), glue_series_generic(), glue_series_integer(), glue_series_modular_integer(), glue_series_rational(), glue_table_generic(), glue_vector_generic(), glue_vector_int(), glue_vector_integer(), glue_vector_modular_integer(), and glue_vector_rational().
00034 { 00035 static bool done = false; 00036 if (done) return; 00037 done = true; 00038 register_glue (string ("glue_algebraic_generic"), (& (glue_algebraic_generic))); 00039 register_glue (string ("glue_algebraic_number"), (& (glue_algebraic_number))); 00040 register_glue (string ("glue_matrix_generic"), (& (glue_matrix_generic))); 00041 register_glue (string ("glue_matrix_integer"), (& (glue_matrix_integer))); 00042 register_glue (string ("glue_matrix_modular_integer"), (& (glue_matrix_modular_integer))); 00043 register_glue (string ("glue_matrix_rational"), (& (glue_matrix_rational))); 00044 register_glue (string ("glue_p_adic_modular_integer"), (& (glue_p_adic_modular_integer))); 00045 register_glue (string ("glue_p_expansion_modular_integer"), (& (glue_p_expansion_modular_integer))); 00046 register_glue (string ("glue_permutation"), (& (glue_permutation))); 00047 register_glue (string ("glue_polynomial_generic"), (& (glue_polynomial_generic))); 00048 register_glue (string ("glue_polynomial_integer"), (& (glue_polynomial_integer))); 00049 register_glue (string ("glue_polynomial_modular_integer"), (& (glue_polynomial_modular_integer))); 00050 register_glue (string ("glue_polynomial_p_adic_modular_integer"), (& (glue_polynomial_p_adic_modular_integer))); 00051 register_glue (string ("glue_polynomial_rational"), (& (glue_polynomial_rational))); 00052 register_glue (string ("glue_quotient_generic"), (& (glue_quotient_generic))); 00053 register_glue (string ("glue_quotient_polynomial_rational"), (& (glue_quotient_polynomial_rational))); 00054 register_glue (string ("glue_series_generic"), (& (glue_series_generic))); 00055 register_glue (string ("glue_series_integer"), (& (glue_series_integer))); 00056 register_glue (string ("glue_series_modular_integer"), (& (glue_series_modular_integer))); 00057 register_glue (string ("glue_series_rational"), (& (glue_series_rational))); 00058 register_glue (string ("glue_table_generic"), (& (glue_table_generic))); 00059 register_glue (string ("glue_vector_generic"), (& (glue_vector_generic))); 00060 register_glue (string ("glue_vector_int"), (& (glue_vector_int))); 00061 register_glue (string ("glue_vector_integer"), (& (glue_vector_integer))); 00062 register_glue (string ("glue_vector_modular_integer"), (& (glue_vector_modular_integer))); 00063 register_glue (string ("glue_vector_rational"), (& (glue_vector_rational))); 00064 register_glue (string ("glue_algebramix"), (& (glue_algebramix))); 00065 dl_link ("numerix"); 00066 glue_algebraic_generic (); 00067 glue_algebraic_number (); 00068 glue_matrix_generic (); 00069 glue_matrix_integer (); 00070 glue_matrix_modular_integer (); 00071 glue_matrix_rational (); 00072 glue_p_adic_modular_integer (); 00073 glue_p_expansion_modular_integer (); 00074 glue_permutation (); 00075 glue_polynomial_generic (); 00076 glue_polynomial_integer (); 00077 glue_polynomial_modular_integer (); 00078 glue_polynomial_p_adic_modular_integer (); 00079 glue_polynomial_rational (); 00080 glue_quotient_generic (); 00081 glue_quotient_polynomial_rational (); 00082 glue_series_generic (); 00083 glue_series_integer (); 00084 glue_series_modular_integer (); 00085 glue_series_rational (); 00086 glue_table_generic (); 00087 glue_vector_generic (); 00088 glue_vector_int (); 00089 glue_vector_integer (); 00090 glue_vector_modular_integer (); 00091 glue_vector_rational (); 00092 }
void glue_matrix_generic | ( | ) |
Definition at line 460 of file glue_matrix_generic.cpp.
References GLUE_1(), GLUE_10(), GLUE_11(), GLUE_12(), GLUE_13(), GLUE_14(), GLUE_15(), GLUE_16(), GLUE_17(), GLUE_18(), GLUE_19(), GLUE_2(), GLUE_20(), GLUE_21(), GLUE_22(), GLUE_23(), GLUE_24(), GLUE_25(), GLUE_26(), GLUE_27(), GLUE_28(), GLUE_29(), GLUE_3(), GLUE_30(), GLUE_31(), GLUE_32(), GLUE_33(), GLUE_34(), GLUE_35(), GLUE_36(), GLUE_37(), GLUE_38(), GLUE_39(), GLUE_4(), GLUE_40(), GLUE_41(), GLUE_42(), GLUE_43(), GLUE_44(), GLUE_45(), GLUE_46(), GLUE_47(), GLUE_48(), GLUE_49(), GLUE_5(), GLUE_50(), GLUE_51(), GLUE_52(), GLUE_53(), GLUE_54(), GLUE_55(), GLUE_56(), GLUE_57(), GLUE_58(), GLUE_59(), GLUE_6(), GLUE_60(), GLUE_61(), GLUE_62(), GLUE_63(), GLUE_64(), GLUE_65(), GLUE_66(), GLUE_67(), GLUE_68(), GLUE_69(), GLUE_7(), GLUE_70(), GLUE_71(), GLUE_72(), GLUE_73(), GLUE_74(), GLUE_75(), GLUE_76(), GLUE_8(), and GLUE_9().
Referenced by glue_algebramix().
00460 { 00461 static bool done = false; 00462 if (done) return; 00463 done = true; 00464 call_glue (string ("glue_basix_vector_generic")); 00465 call_glue (string ("glue_vector_int")); 00466 call_glue (string ("glue_permutation")); 00467 define ("string?", GLUE_1); 00468 define ("#", GLUE_2); 00469 define (".[]", GLUE_3); 00470 define ("*", GLUE_4); 00471 define ("><", GLUE_5); 00472 define ("<<", GLUE_6); 00473 define ("<", GLUE_7); 00474 define ("<=", GLUE_8); 00475 define (">", GLUE_9); 00476 define (">=", GLUE_10); 00477 define ("starts?", GLUE_11); 00478 define ("ends?", GLUE_12); 00479 define ("replace", GLUE_13); 00480 define ("search_forwards", GLUE_14); 00481 define ("search_backwards", GLUE_15); 00482 define ("upcase", GLUE_16); 00483 define ("locase", GLUE_17); 00484 define ("upcase_first", GLUE_18); 00485 define ("locase_first", GLUE_19); 00486 define ("quote", GLUE_20); 00487 define ("unquote", GLUE_21); 00488 define ("ascii", GLUE_22); 00489 define ("ascii_code", GLUE_23); 00490 define ("literal?", GLUE_24); 00491 define (".()", GLUE_25); 00492 define (".[]", GLUE_26); 00493 define ("as_literal", GLUE_27); 00494 define ("as_string", GLUE_28); 00495 define_constructor<int > (GLUE_29); 00496 define_type<row_tuple<generic> > (gen (lit ("Row"), lit ("Generic"))); 00497 define_type<matrix<generic> > (gen (lit ("Matrix"), lit ("Generic"))); 00498 define ("(.)", GLUE_30); 00499 define ("matrix", GLUE_31); 00500 define ("matrix", GLUE_32); 00501 define ("[]", GLUE_33); 00502 define ("#", GLUE_34); 00503 define ("rows", GLUE_35); 00504 define ("columns", GLUE_36); 00505 define (".[]", GLUE_37); 00506 define (".[]", GLUE_38); 00507 define (".[]", GLUE_39); 00508 define ("row", GLUE_40); 00509 define ("column", GLUE_41); 00510 define ("transpose", GLUE_42); 00511 define ("horizontal_join", GLUE_43); 00512 define ("vertical_join", GLUE_44); 00513 define ("*", GLUE_45); 00514 define ("*", GLUE_46); 00515 define ("fill_matrix", GLUE_47); 00516 define ("jordan_matrix", GLUE_48); 00517 define ("toeplitz_matrix", GLUE_49); 00518 define ("hankel_matrix", GLUE_50); 00519 define ("tensor_matrix", GLUE_51); 00520 define ("vandermonde", GLUE_52); 00521 define ("-", GLUE_53); 00522 define ("square", GLUE_54); 00523 define ("+", GLUE_55); 00524 define ("-", GLUE_56); 00525 define ("*", GLUE_57); 00526 define ("*", GLUE_58); 00527 define ("*", GLUE_59); 00528 define ("=", GLUE_60); 00529 define ("!=", GLUE_61); 00530 define ("krylov", GLUE_62); 00531 define ("det", GLUE_63); 00532 define ("row_echelon", GLUE_64); 00533 define ("column_echelon", GLUE_65); 00534 define ("row_reduced_echelon", GLUE_66); 00535 define ("column_reduced_echelon", GLUE_67); 00536 define ("row_reduced_echelon_with_transform", GLUE_68); 00537 define ("column_reduced_echelon_with_transform", GLUE_69); 00538 define ("column_reduced_echelon_with_permutation", GLUE_70); 00539 define ("ker", GLUE_71); 00540 define ("im", GLUE_72); 00541 define ("rank", GLUE_73); 00542 define ("invert", GLUE_74); 00543 define ("derive", GLUE_75); 00544 define ("integrate", GLUE_76); 00545 }
void glue_matrix_integer | ( | ) |
Definition at line 320 of file glue_matrix_integer.cpp.
References GLUE_1(), GLUE_10(), GLUE_11(), GLUE_12(), GLUE_13(), GLUE_14(), GLUE_15(), GLUE_16(), GLUE_17(), GLUE_18(), GLUE_19(), GLUE_2(), GLUE_20(), GLUE_21(), GLUE_22(), GLUE_23(), GLUE_24(), GLUE_25(), GLUE_26(), GLUE_27(), GLUE_28(), GLUE_29(), GLUE_3(), GLUE_30(), GLUE_31(), GLUE_32(), GLUE_33(), GLUE_34(), GLUE_35(), GLUE_36(), GLUE_37(), GLUE_38(), GLUE_39(), GLUE_4(), GLUE_40(), GLUE_41(), GLUE_42(), GLUE_43(), GLUE_44(), GLUE_45(), GLUE_46(), GLUE_47(), GLUE_48(), GLUE_5(), GLUE_6(), GLUE_7(), GLUE_8(), and GLUE_9().
Referenced by glue_algebramix().
00320 { 00321 static bool done = false; 00322 if (done) return; 00323 done = true; 00324 call_glue (string ("glue_vector_integer")); 00325 call_glue (string ("glue_matrix_generic")); 00326 define ("^", GLUE_1); 00327 define_type<row_tuple<integer> > (gen (lit ("Row"), lit ("Integer"))); 00328 define_type<matrix<integer> > (gen (lit ("Matrix"), lit ("Integer"))); 00329 define ("identity_matrix", GLUE_2); 00330 define ("(.)", GLUE_3); 00331 define ("matrix", GLUE_4); 00332 define ("matrix", GLUE_5); 00333 define ("[]", GLUE_6); 00334 define ("#", GLUE_7); 00335 define ("rows", GLUE_8); 00336 define ("columns", GLUE_9); 00337 define (".[]", GLUE_10); 00338 define (".[]", GLUE_11); 00339 define (".[]", GLUE_12); 00340 define ("transpose", GLUE_13); 00341 define ("horizontal_join", GLUE_14); 00342 define ("vertical_join", GLUE_15); 00343 define ("*", GLUE_16); 00344 define ("*", GLUE_17); 00345 define ("fill_matrix", GLUE_18); 00346 define ("jordan_matrix", GLUE_19); 00347 define ("-", GLUE_20); 00348 define ("square", GLUE_21); 00349 define ("+", GLUE_22); 00350 define ("-", GLUE_23); 00351 define ("*", GLUE_24); 00352 define ("+", GLUE_25); 00353 define ("+", GLUE_26); 00354 define ("-", GLUE_27); 00355 define ("-", GLUE_28); 00356 define ("*", GLUE_29); 00357 define ("*", GLUE_30); 00358 define ("=", GLUE_31); 00359 define ("!=", GLUE_32); 00360 define ("=", GLUE_33); 00361 define ("!=", GLUE_34); 00362 define ("=", GLUE_35); 00363 define ("!=", GLUE_36); 00364 define_converter (":>", GLUE_37, PENALTY_PROMOTE_GENERIC); 00365 define_converter (":>", GLUE_38, PENALTY_PROMOTE_GENERIC); 00366 define_converter (":>", GLUE_39, PENALTY_INCLUSION); 00367 define_converter (":>", GLUE_40, PENALTY_INCLUSION); 00368 define ("row", GLUE_41); 00369 define ("column", GLUE_42); 00370 define ("toeplitz_matrix", GLUE_43); 00371 define ("hankel_matrix", GLUE_44); 00372 define ("tensor_matrix", GLUE_45); 00373 define ("vandermonde", GLUE_46); 00374 define ("*", GLUE_47); 00375 define ("*", GLUE_48); 00376 }
void mmx::glue_matrix_modular_integer | ( | ) |
Referenced by glue_algebramix().
void glue_matrix_rational | ( | ) |
Definition at line 723 of file glue_matrix_rational.cpp.
References GLUE_1(), GLUE_10(), GLUE_100(), GLUE_101(), GLUE_102(), GLUE_103(), GLUE_104(), GLUE_105(), GLUE_106(), GLUE_107(), GLUE_108(), GLUE_109(), GLUE_11(), GLUE_110(), GLUE_111(), GLUE_112(), GLUE_113(), GLUE_114(), GLUE_115(), GLUE_116(), GLUE_117(), GLUE_118(), GLUE_119(), GLUE_12(), GLUE_120(), GLUE_121(), GLUE_122(), GLUE_123(), GLUE_124(), GLUE_125(), GLUE_126(), GLUE_127(), GLUE_128(), GLUE_13(), GLUE_14(), GLUE_15(), GLUE_16(), GLUE_17(), GLUE_18(), GLUE_19(), GLUE_2(), GLUE_20(), GLUE_21(), GLUE_22(), GLUE_23(), GLUE_24(), GLUE_25(), GLUE_26(), GLUE_27(), GLUE_28(), GLUE_29(), GLUE_3(), GLUE_30(), GLUE_31(), GLUE_32(), GLUE_33(), GLUE_34(), GLUE_35(), GLUE_36(), GLUE_37(), GLUE_38(), GLUE_39(), GLUE_4(), GLUE_40(), GLUE_41(), GLUE_42(), GLUE_43(), GLUE_44(), GLUE_45(), GLUE_46(), GLUE_47(), GLUE_48(), GLUE_49(), GLUE_5(), GLUE_50(), GLUE_51(), GLUE_52(), GLUE_53(), GLUE_54(), GLUE_55(), GLUE_56(), GLUE_57(), GLUE_58(), GLUE_59(), GLUE_6(), GLUE_60(), GLUE_61(), GLUE_62(), GLUE_63(), GLUE_64(), GLUE_65(), GLUE_66(), GLUE_67(), GLUE_68(), GLUE_69(), GLUE_7(), GLUE_70(), GLUE_71(), GLUE_72(), GLUE_73(), GLUE_74(), GLUE_75(), GLUE_76(), GLUE_77(), GLUE_78(), GLUE_79(), GLUE_8(), GLUE_80(), GLUE_81(), GLUE_82(), GLUE_83(), GLUE_84(), GLUE_85(), GLUE_86(), GLUE_87(), GLUE_88(), GLUE_89(), GLUE_9(), GLUE_90(), GLUE_91(), GLUE_92(), GLUE_93(), GLUE_94(), GLUE_95(), GLUE_96(), GLUE_97(), GLUE_98(), and GLUE_99().
Referenced by glue_algebramix().
00723 { 00724 static bool done = false; 00725 if (done) return; 00726 done = true; 00727 call_glue (string ("glue_vector_rational")); 00728 call_glue (string ("glue_matrix_integer")); 00729 define_type<row_tuple<rational> > (gen (lit ("Row"), lit ("Rational"))); 00730 define_type<row_tuple<complex<rational> > > (gen (lit ("Row"), gen (lit ("Complex"), lit ("Rational")))); 00731 define_type<matrix<rational> > (gen (lit ("Matrix"), lit ("Rational"))); 00732 define_type<matrix<complex<rational> > > (gen (lit ("Matrix"), gen (lit ("Complex"), lit ("Rational")))); 00733 define ("hilbert_matrix", GLUE_1); 00734 define ("(.)", GLUE_2); 00735 define ("matrix", GLUE_3); 00736 define ("matrix", GLUE_4); 00737 define ("[]", GLUE_5); 00738 define ("#", GLUE_6); 00739 define ("rows", GLUE_7); 00740 define ("columns", GLUE_8); 00741 define (".[]", GLUE_9); 00742 define (".[]", GLUE_10); 00743 define (".[]", GLUE_11); 00744 define ("transpose", GLUE_12); 00745 define ("horizontal_join", GLUE_13); 00746 define ("vertical_join", GLUE_14); 00747 define ("*", GLUE_15); 00748 define ("*", GLUE_16); 00749 define ("fill_matrix", GLUE_17); 00750 define ("jordan_matrix", GLUE_18); 00751 define ("-", GLUE_19); 00752 define ("square", GLUE_20); 00753 define ("+", GLUE_21); 00754 define ("-", GLUE_22); 00755 define ("*", GLUE_23); 00756 define ("+", GLUE_24); 00757 define ("+", GLUE_25); 00758 define ("-", GLUE_26); 00759 define ("-", GLUE_27); 00760 define ("*", GLUE_28); 00761 define ("*", GLUE_29); 00762 define ("=", GLUE_30); 00763 define ("!=", GLUE_31); 00764 define ("=", GLUE_32); 00765 define ("!=", GLUE_33); 00766 define ("=", GLUE_34); 00767 define ("!=", GLUE_35); 00768 define ("/", GLUE_36); 00769 define ("/", GLUE_37); 00770 define ("krylov", GLUE_38); 00771 define ("det", GLUE_39); 00772 define ("row_echelon", GLUE_40); 00773 define ("column_echelon", GLUE_41); 00774 define ("row_reduced_echelon", GLUE_42); 00775 define ("column_reduced_echelon", GLUE_43); 00776 define ("row_reduced_echelon_with_transform", GLUE_44); 00777 define ("column_reduced_echelon_with_transform", GLUE_45); 00778 define ("column_reduced_echelon_with_permutation", GLUE_46); 00779 define ("ker", GLUE_47); 00780 define ("im", GLUE_48); 00781 define ("rank", GLUE_49); 00782 define ("invert", GLUE_50); 00783 define_converter (":>", GLUE_51, PENALTY_INCLUSION); 00784 define_converter (":>", GLUE_52, PENALTY_INCLUSION); 00785 define_converter (":>", GLUE_53, PENALTY_HOMOMORPHISM); 00786 define_converter (":>", GLUE_54, PENALTY_HOMOMORPHISM); 00787 define_converter (":>", GLUE_55, PENALTY_PROMOTE_GENERIC); 00788 define_converter (":>", GLUE_56, PENALTY_PROMOTE_GENERIC); 00789 define_converter (":>", GLUE_57, PENALTY_PROMOTE_GENERIC); 00790 define_converter (":>", GLUE_58, PENALTY_PROMOTE_GENERIC); 00791 define_converter (":>", GLUE_59, PENALTY_INCLUSION); 00792 define_converter (":>", GLUE_60, PENALTY_HOMOMORPHISM); 00793 define ("row", GLUE_61); 00794 define ("column", GLUE_62); 00795 define ("(.)", GLUE_63); 00796 define ("matrix", GLUE_64); 00797 define ("matrix", GLUE_65); 00798 define ("[]", GLUE_66); 00799 define ("#", GLUE_67); 00800 define ("rows", GLUE_68); 00801 define ("columns", GLUE_69); 00802 define (".[]", GLUE_70); 00803 define (".[]", GLUE_71); 00804 define (".[]", GLUE_72); 00805 define ("row", GLUE_73); 00806 define ("column", GLUE_74); 00807 define ("transpose", GLUE_75); 00808 define ("horizontal_join", GLUE_76); 00809 define ("vertical_join", GLUE_77); 00810 define ("*", GLUE_78); 00811 define ("*", GLUE_79); 00812 define ("toeplitz_matrix", GLUE_80); 00813 define ("hankel_matrix", GLUE_81); 00814 define ("tensor_matrix", GLUE_82); 00815 define ("vandermonde", GLUE_83); 00816 define ("*", GLUE_84); 00817 define ("*", GLUE_85); 00818 define ("fill_matrix", GLUE_86); 00819 define ("jordan_matrix", GLUE_87); 00820 define ("toeplitz_matrix", GLUE_88); 00821 define ("hankel_matrix", GLUE_89); 00822 define ("tensor_matrix", GLUE_90); 00823 define ("vandermonde", GLUE_91); 00824 define ("-", GLUE_92); 00825 define ("square", GLUE_93); 00826 define ("+", GLUE_94); 00827 define ("-", GLUE_95); 00828 define ("*", GLUE_96); 00829 define ("+", GLUE_97); 00830 define ("+", GLUE_98); 00831 define ("-", GLUE_99); 00832 define ("-", GLUE_100); 00833 define ("*", GLUE_101); 00834 define ("*", GLUE_102); 00835 define ("*", GLUE_103); 00836 define ("*", GLUE_104); 00837 define ("=", GLUE_105); 00838 define ("!=", GLUE_106); 00839 define ("=", GLUE_107); 00840 define ("!=", GLUE_108); 00841 define ("=", GLUE_109); 00842 define ("!=", GLUE_110); 00843 define ("/", GLUE_111); 00844 define ("/", GLUE_112); 00845 define ("krylov", GLUE_113); 00846 define ("det", GLUE_114); 00847 define ("row_echelon", GLUE_115); 00848 define ("column_echelon", GLUE_116); 00849 define ("row_reduced_echelon", GLUE_117); 00850 define ("column_reduced_echelon", GLUE_118); 00851 define ("row_reduced_echelon_with_transform", GLUE_119); 00852 define ("column_reduced_echelon_with_transform", GLUE_120); 00853 define ("column_reduced_echelon_with_permutation", GLUE_121); 00854 define ("ker", GLUE_122); 00855 define ("im", GLUE_123); 00856 define ("rank", GLUE_124); 00857 define ("invert", GLUE_125); 00858 define ("abs", GLUE_126); 00859 define_converter (":>", GLUE_127, PENALTY_HOMOMORPHISM); 00860 define_converter (":>", GLUE_128, PENALTY_HOMOMORPHISM); 00861 }
void glue_p_adic_modular_integer | ( | ) |
Definition at line 219 of file glue_p_adic_modular_integer.cpp.
References GLUE_1(), GLUE_10(), GLUE_11(), GLUE_12(), GLUE_13(), GLUE_14(), GLUE_15(), GLUE_16(), GLUE_17(), GLUE_18(), GLUE_19(), GLUE_2(), GLUE_20(), GLUE_21(), GLUE_22(), GLUE_23(), GLUE_24(), GLUE_25(), GLUE_26(), GLUE_27(), GLUE_28(), GLUE_29(), GLUE_3(), GLUE_30(), GLUE_31(), GLUE_32(), GLUE_33(), GLUE_34(), GLUE_35(), GLUE_36(), GLUE_4(), GLUE_5(), GLUE_6(), GLUE_7(), GLUE_8(), and GLUE_9().
Referenced by glue_algebramix().
00219 { 00220 static bool done = false; 00221 if (done) return; 00222 done = true; 00223 call_glue (string ("glue_integer")); 00224 call_glue (string ("glue_modular_integer")); 00225 call_glue (string ("glue_p_expansion_modular_integer")); 00226 define_type<simple_p_adic(mmx_modular(integer) ) > (gen (lit ("P_adic"), gen (lit ("Modular"), lit ("Integer")))); 00227 define ("set_variable_name", GLUE_1); 00228 define ("set_output_order", GLUE_2); 00229 define ("set_cancel_order", GLUE_3); 00230 define ("set_formula_output", GLUE_4); 00231 define ("p_adic", GLUE_5); 00232 define_converter ("upgrade", GLUE_6, PENALTY_INCLUSION); 00233 define_converter (":>", GLUE_7, PENALTY_CAST); 00234 define (".[]", GLUE_8); 00235 define (".[]", GLUE_9); 00236 define ("-", GLUE_10); 00237 define ("square", GLUE_11); 00238 define ("+", GLUE_12); 00239 define ("-", GLUE_13); 00240 define ("*", GLUE_14); 00241 define ("+", GLUE_15); 00242 define ("+", GLUE_16); 00243 define ("-", GLUE_17); 00244 define ("-", GLUE_18); 00245 define ("*", GLUE_19); 00246 define ("*", GLUE_20); 00247 define ("^", GLUE_21); 00248 define ("<<", GLUE_22); 00249 define (">>", GLUE_23); 00250 define ("/", GLUE_24); 00251 define ("/", GLUE_25); 00252 define ("/", GLUE_26); 00253 define ("gcd", GLUE_27); 00254 define ("lcm", GLUE_28); 00255 define ("separable_root", GLUE_29); 00256 define ("pth_root", GLUE_30); 00257 define ("=", GLUE_31); 00258 define ("!=", GLUE_32); 00259 define ("=", GLUE_33); 00260 define ("!=", GLUE_34); 00261 define ("=", GLUE_35); 00262 define ("!=", GLUE_36); 00263 }
void glue_p_expansion_modular_integer | ( | ) |
Definition at line 75 of file glue_p_expansion_modular_integer.cpp.
References GLUE_1(), GLUE_2(), GLUE_3(), GLUE_4(), GLUE_5(), GLUE_6(), GLUE_7(), and GLUE_8().
Referenced by glue_algebramix().
00075 { 00076 static bool done = false; 00077 if (done) return; 00078 done = true; 00079 call_glue (string ("glue_basix_vector_generic")); 00080 call_glue (string ("glue_modular_integer")); 00081 call_glue (string ("glue_vector_modular_integer")); 00082 define_type<simple_p_expansion(mmx_modular(integer) ) > (gen (lit ("P_expansion"), gen (lit ("Modular"), lit ("Integer")))); 00083 define ("p_expansion", GLUE_1); 00084 define ("set_variable_name", GLUE_2); 00085 define_converter (":>", GLUE_3, PENALTY_CAST); 00086 define ("#", GLUE_4); 00087 define ("deg", GLUE_5); 00088 define (".[]", GLUE_6); 00089 define ("integer", GLUE_7); 00090 define ("p_expansion", GLUE_8); 00091 }
void glue_permutation | ( | ) |
Definition at line 69 of file glue_permutation.cpp.
References GLUE_1(), GLUE_10(), GLUE_11(), GLUE_2(), GLUE_3(), GLUE_4(), GLUE_5(), GLUE_6(), GLUE_7(), GLUE_8(), and GLUE_9().
Referenced by glue_algebramix().
00069 { 00070 static bool done = false; 00071 if (done) return; 00072 done = true; 00073 call_glue (string ("glue_int")); 00074 call_glue (string ("glue_vector_int")); 00075 define_type<permutation > (lit ("Permutation")); 00076 define ("permutation", GLUE_1); 00077 define ("permutation", GLUE_2); 00078 define ("transposition", GLUE_3); 00079 define ("cycle", GLUE_4); 00080 define ("as_vector", GLUE_5); 00081 define_converter (":>", GLUE_6, PENALTY_CAST); 00082 define ("#", GLUE_7); 00083 define (".()", GLUE_8); 00084 define ("nr_transpositions", GLUE_9); 00085 define ("*", GLUE_10); 00086 define ("invert", GLUE_11); 00087 }
void glue_polynomial_generic | ( | ) |
Definition at line 636 of file glue_polynomial_generic.cpp.
References GLUE_1(), GLUE_10(), GLUE_100(), GLUE_101(), GLUE_102(), GLUE_103(), GLUE_104(), GLUE_105(), GLUE_106(), GLUE_107(), GLUE_108(), GLUE_109(), GLUE_11(), GLUE_110(), GLUE_111(), GLUE_112(), GLUE_113(), GLUE_114(), GLUE_115(), GLUE_116(), GLUE_117(), GLUE_118(), GLUE_12(), GLUE_13(), GLUE_14(), GLUE_15(), GLUE_16(), GLUE_17(), GLUE_18(), GLUE_19(), GLUE_2(), GLUE_20(), GLUE_21(), GLUE_22(), GLUE_23(), GLUE_24(), GLUE_25(), GLUE_26(), GLUE_27(), GLUE_28(), GLUE_29(), GLUE_3(), GLUE_30(), GLUE_31(), GLUE_32(), GLUE_33(), GLUE_34(), GLUE_35(), GLUE_36(), GLUE_37(), GLUE_38(), GLUE_39(), GLUE_4(), GLUE_40(), GLUE_41(), GLUE_42(), GLUE_43(), GLUE_44(), GLUE_45(), GLUE_46(), GLUE_47(), GLUE_48(), GLUE_49(), GLUE_5(), GLUE_50(), GLUE_51(), GLUE_52(), GLUE_53(), GLUE_54(), GLUE_55(), GLUE_56(), GLUE_57(), GLUE_58(), GLUE_59(), GLUE_6(), GLUE_60(), GLUE_61(), GLUE_62(), GLUE_63(), GLUE_64(), GLUE_65(), GLUE_66(), GLUE_67(), GLUE_68(), GLUE_69(), GLUE_7(), GLUE_70(), GLUE_71(), GLUE_72(), GLUE_73(), GLUE_74(), GLUE_75(), GLUE_76(), GLUE_77(), GLUE_78(), GLUE_79(), GLUE_8(), GLUE_80(), GLUE_81(), GLUE_82(), GLUE_83(), GLUE_84(), GLUE_85(), GLUE_86(), GLUE_87(), GLUE_88(), GLUE_89(), GLUE_9(), GLUE_90(), GLUE_91(), GLUE_92(), GLUE_93(), GLUE_94(), GLUE_95(), GLUE_96(), GLUE_97(), GLUE_98(), and GLUE_99().
Referenced by glue_algebramix().
00636 { 00637 static bool done = false; 00638 if (done) return; 00639 done = true; 00640 call_glue (string ("glue_basix_vector_generic")); 00641 define ("-", GLUE_1); 00642 define ("square", GLUE_2); 00643 define ("+", GLUE_3); 00644 define ("-", GLUE_4); 00645 define ("*", GLUE_5); 00646 define ("dot", GLUE_6); 00647 define ("big_mul", GLUE_7); 00648 define ("big_add", GLUE_8); 00649 define ("=", GLUE_9); 00650 define ("!=", GLUE_10); 00651 define ("invert", GLUE_11); 00652 define ("/", GLUE_12); 00653 define ("<=", GLUE_13); 00654 define (">=", GLUE_14); 00655 define ("<", GLUE_15); 00656 define (">", GLUE_16); 00657 define ("inf", GLUE_17); 00658 define ("sup", GLUE_18); 00659 define ("^", GLUE_19); 00660 define ("sqrt", GLUE_20); 00661 define ("exp", GLUE_21); 00662 define ("log", GLUE_22); 00663 define ("cos", GLUE_23); 00664 define ("sin", GLUE_24); 00665 define ("tan", GLUE_25); 00666 define ("arccos", GLUE_26); 00667 define ("arcsin", GLUE_27); 00668 define ("arctan", GLUE_28); 00669 define ("derive", GLUE_29); 00670 define ("integrate", GLUE_30); 00671 define ("string?", GLUE_31); 00672 define ("#", GLUE_32); 00673 define (".[]", GLUE_33); 00674 define ("*", GLUE_34); 00675 define ("><", GLUE_35); 00676 define ("<<", GLUE_36); 00677 define ("<", GLUE_37); 00678 define ("<=", GLUE_38); 00679 define (">", GLUE_39); 00680 define (">=", GLUE_40); 00681 define ("starts?", GLUE_41); 00682 define ("ends?", GLUE_42); 00683 define ("replace", GLUE_43); 00684 define ("search_forwards", GLUE_44); 00685 define ("search_backwards", GLUE_45); 00686 define ("upcase", GLUE_46); 00687 define ("locase", GLUE_47); 00688 define ("upcase_first", GLUE_48); 00689 define ("locase_first", GLUE_49); 00690 define ("quote", GLUE_50); 00691 define ("unquote", GLUE_51); 00692 define ("ascii", GLUE_52); 00693 define ("ascii_code", GLUE_53); 00694 define ("literal?", GLUE_54); 00695 define (".()", GLUE_55); 00696 define (".[]", GLUE_56); 00697 define ("as_literal", GLUE_57); 00698 define ("as_string", GLUE_58); 00699 define ("compound?", GLUE_59); 00700 define (".()", GLUE_60); 00701 define ("compound", GLUE_61); 00702 define ("as_compound", GLUE_62); 00703 define ("as_vector", GLUE_63); 00704 define ("#", GLUE_64); 00705 define (".[]", GLUE_65); 00706 define ("components", GLUE_66); 00707 define ("arguments", GLUE_67); 00708 define ("boolean?", GLUE_68); 00709 define ("int?", GLUE_69); 00710 define ("double?", GLUE_70); 00711 define ("parse_lisp", GLUE_71); 00712 define ("as_lisp", GLUE_72); 00713 define ("flatten_as_mmx", GLUE_73); 00714 define ("flatten_as_cpp", GLUE_74); 00715 define ("set_frac_flag", GLUE_75); 00716 define_type<polynomial<generic> > (gen (lit ("Polynomial"), lit ("Generic"))); 00717 define ("poly", GLUE_76); 00718 define ("polynomial", GLUE_77); 00719 define ("set_variable_name", GLUE_78); 00720 define_converter (":>", GLUE_79, PENALTY_PROMOTE_GENERIC); 00721 define ("#", GLUE_80); 00722 define ("deg", GLUE_81); 00723 define (".[]", GLUE_82); 00724 define ("-", GLUE_83); 00725 define ("square", GLUE_84); 00726 define ("+", GLUE_85); 00727 define ("-", GLUE_86); 00728 define ("*", GLUE_87); 00729 define ("^", GLUE_88); 00730 define ("<<", GLUE_89); 00731 define (">>", GLUE_90); 00732 define ("=", GLUE_91); 00733 define ("!=", GLUE_92); 00734 define ("derive", GLUE_93); 00735 define ("xderive", GLUE_94); 00736 define ("eval", GLUE_95); 00737 define ("eval", GLUE_96); 00738 define ("evaluate", GLUE_97); 00739 define ("evaluate", GLUE_98); 00740 define ("div", GLUE_99); 00741 define ("quo", GLUE_100); 00742 define ("rem", GLUE_101); 00743 define ("divides?", GLUE_102); 00744 define ("subresultant", GLUE_103); 00745 define ("subresultants", GLUE_104); 00746 define ("resultant", GLUE_105); 00747 define ("discriminant", GLUE_106); 00748 define ("integrate", GLUE_107); 00749 define ("@", GLUE_108); 00750 define ("q_difference", GLUE_109); 00751 define ("dilate", GLUE_110); 00752 define ("annulator", GLUE_111); 00753 define ("interpolate", GLUE_112); 00754 define ("shift", GLUE_113); 00755 define ("graeffe", GLUE_114); 00756 define ("contents", GLUE_115); 00757 define ("primitive_part", GLUE_116); 00758 define ("gcd", GLUE_117); 00759 define ("lcm", GLUE_118); 00760 }
void glue_polynomial_integer | ( | ) |
Definition at line 222 of file glue_polynomial_integer.cpp.
References GLUE_1(), GLUE_10(), GLUE_11(), GLUE_12(), GLUE_13(), GLUE_14(), GLUE_15(), GLUE_16(), GLUE_17(), GLUE_18(), GLUE_19(), GLUE_2(), GLUE_20(), GLUE_21(), GLUE_22(), GLUE_23(), GLUE_24(), GLUE_25(), GLUE_26(), GLUE_27(), GLUE_28(), GLUE_29(), GLUE_3(), GLUE_30(), GLUE_31(), GLUE_32(), GLUE_33(), GLUE_34(), GLUE_35(), GLUE_4(), GLUE_5(), GLUE_6(), GLUE_7(), GLUE_8(), and GLUE_9().
Referenced by glue_algebramix().
00222 { 00223 static bool done = false; 00224 if (done) return; 00225 done = true; 00226 call_glue (string ("glue_vector_integer")); 00227 call_glue (string ("glue_polynomial_generic")); 00228 define_type<polynomial<integer> > (gen (lit ("Polynomial"), lit ("Integer"))); 00229 define ("poly", GLUE_1); 00230 define ("polynomial", GLUE_2); 00231 define ("set_variable_name", GLUE_3); 00232 define_converter ("upgrade", GLUE_4, PENALTY_INCLUSION); 00233 define_converter (":>", GLUE_5, PENALTY_CAST); 00234 define ("#", GLUE_6); 00235 define ("deg", GLUE_7); 00236 define (".[]", GLUE_8); 00237 define ("-", GLUE_9); 00238 define ("square", GLUE_10); 00239 define ("+", GLUE_11); 00240 define ("-", GLUE_12); 00241 define ("*", GLUE_13); 00242 define ("+", GLUE_14); 00243 define ("+", GLUE_15); 00244 define ("-", GLUE_16); 00245 define ("-", GLUE_17); 00246 define ("*", GLUE_18); 00247 define ("*", GLUE_19); 00248 define ("^", GLUE_20); 00249 define ("<<", GLUE_21); 00250 define (">>", GLUE_22); 00251 define ("=", GLUE_23); 00252 define ("!=", GLUE_24); 00253 define ("=", GLUE_25); 00254 define ("!=", GLUE_26); 00255 define ("=", GLUE_27); 00256 define ("!=", GLUE_28); 00257 define ("derive", GLUE_29); 00258 define ("xderive", GLUE_30); 00259 define ("eval", GLUE_31); 00260 define ("evaluate", GLUE_32); 00261 define_converter (":>", GLUE_33, PENALTY_PROMOTE_GENERIC); 00262 define ("eval", GLUE_34); 00263 define ("evaluate", GLUE_35); 00264 }
void mmx::glue_polynomial_modular_integer | ( | ) |
Referenced by glue_algebramix().
void glue_polynomial_p_adic_modular_integer | ( | ) |
Definition at line 315 of file glue_polynomial_p_adic_modular_integer.cpp.
References GLUE_1(), GLUE_10(), GLUE_11(), GLUE_12(), GLUE_13(), GLUE_14(), GLUE_15(), GLUE_16(), GLUE_17(), GLUE_18(), GLUE_19(), GLUE_2(), GLUE_20(), GLUE_21(), GLUE_22(), GLUE_23(), GLUE_24(), GLUE_25(), GLUE_26(), GLUE_27(), GLUE_28(), GLUE_29(), GLUE_3(), GLUE_30(), GLUE_31(), GLUE_32(), GLUE_33(), GLUE_34(), GLUE_35(), GLUE_36(), GLUE_37(), GLUE_38(), GLUE_39(), GLUE_4(), GLUE_40(), GLUE_41(), GLUE_42(), GLUE_43(), GLUE_44(), GLUE_45(), GLUE_46(), GLUE_47(), GLUE_48(), GLUE_49(), GLUE_5(), GLUE_6(), GLUE_7(), GLUE_8(), and GLUE_9().
Referenced by glue_algebramix().
00315 { 00316 static bool done = false; 00317 if (done) return; 00318 done = true; 00319 call_glue (string ("glue_basix_vector_generic")); 00320 call_glue (string ("glue_p_adic_modular_integer")); 00321 call_glue (string ("glue_polynomial_modular_integer")); 00322 define_type<polynomial<simple_p_adic(mmx_modular(integer) ) > > (gen (lit ("Polynomial"), gen (lit ("P_adic"), gen (lit ("Modular"), lit ("Integer"))))); 00323 define ("poly", GLUE_1); 00324 define ("polynomial", GLUE_2); 00325 define ("set_variable_name", GLUE_3); 00326 define_converter ("upgrade", GLUE_4, PENALTY_INCLUSION); 00327 define_converter (":>", GLUE_5, PENALTY_CAST); 00328 define ("#", GLUE_6); 00329 define ("deg", GLUE_7); 00330 define (".[]", GLUE_8); 00331 define ("-", GLUE_9); 00332 define ("square", GLUE_10); 00333 define ("+", GLUE_11); 00334 define ("-", GLUE_12); 00335 define ("*", GLUE_13); 00336 define ("+", GLUE_14); 00337 define ("+", GLUE_15); 00338 define ("-", GLUE_16); 00339 define ("-", GLUE_17); 00340 define ("*", GLUE_18); 00341 define ("*", GLUE_19); 00342 define ("^", GLUE_20); 00343 define ("<<", GLUE_21); 00344 define (">>", GLUE_22); 00345 define ("=", GLUE_23); 00346 define ("!=", GLUE_24); 00347 define ("=", GLUE_25); 00348 define ("!=", GLUE_26); 00349 define ("=", GLUE_27); 00350 define ("!=", GLUE_28); 00351 define ("derive", GLUE_29); 00352 define ("xderive", GLUE_30); 00353 define ("eval", GLUE_31); 00354 define ("evaluate", GLUE_32); 00355 define ("/", GLUE_33); 00356 define ("div", GLUE_34); 00357 define ("quo", GLUE_35); 00358 define ("rem", GLUE_36); 00359 define ("divides?", GLUE_37); 00360 define ("subresultant", GLUE_38); 00361 define ("subresultants", GLUE_39); 00362 define ("resultant", GLUE_40); 00363 define ("discriminant", GLUE_41); 00364 define ("integrate", GLUE_42); 00365 define ("@", GLUE_43); 00366 define ("q_difference", GLUE_44); 00367 define ("dilate", GLUE_45); 00368 define ("shift", GLUE_46); 00369 define ("graeffe", GLUE_47); 00370 define_converter (":>", GLUE_48, PENALTY_INCLUSION); 00371 define_converter (":>", GLUE_49, PENALTY_PROMOTE_GENERIC); 00372 }
void glue_polynomial_rational | ( | ) |
Definition at line 611 of file glue_polynomial_rational.cpp.
References GLUE_1(), GLUE_10(), GLUE_100(), GLUE_101(), GLUE_102(), GLUE_103(), GLUE_104(), GLUE_105(), GLUE_106(), GLUE_107(), GLUE_108(), GLUE_109(), GLUE_11(), GLUE_110(), GLUE_111(), GLUE_12(), GLUE_13(), GLUE_14(), GLUE_15(), GLUE_16(), GLUE_17(), GLUE_18(), GLUE_19(), GLUE_2(), GLUE_20(), GLUE_21(), GLUE_22(), GLUE_23(), GLUE_24(), GLUE_25(), GLUE_26(), GLUE_27(), GLUE_28(), GLUE_29(), GLUE_3(), GLUE_30(), GLUE_31(), GLUE_32(), GLUE_33(), GLUE_34(), GLUE_35(), GLUE_36(), GLUE_37(), GLUE_38(), GLUE_39(), GLUE_4(), GLUE_40(), GLUE_41(), GLUE_42(), GLUE_43(), GLUE_44(), GLUE_45(), GLUE_46(), GLUE_47(), GLUE_48(), GLUE_49(), GLUE_5(), GLUE_50(), GLUE_51(), GLUE_52(), GLUE_53(), GLUE_54(), GLUE_55(), GLUE_56(), GLUE_57(), GLUE_58(), GLUE_59(), GLUE_6(), GLUE_60(), GLUE_61(), GLUE_62(), GLUE_63(), GLUE_64(), GLUE_65(), GLUE_66(), GLUE_67(), GLUE_68(), GLUE_69(), GLUE_7(), GLUE_70(), GLUE_71(), GLUE_72(), GLUE_73(), GLUE_74(), GLUE_75(), GLUE_76(), GLUE_77(), GLUE_78(), GLUE_79(), GLUE_8(), GLUE_80(), GLUE_81(), GLUE_82(), GLUE_83(), GLUE_84(), GLUE_85(), GLUE_86(), GLUE_87(), GLUE_88(), GLUE_89(), GLUE_9(), GLUE_90(), GLUE_91(), GLUE_92(), GLUE_93(), GLUE_94(), GLUE_95(), GLUE_96(), GLUE_97(), GLUE_98(), and GLUE_99().
Referenced by glue_algebramix().
00611 { 00612 static bool done = false; 00613 if (done) return; 00614 done = true; 00615 call_glue (string ("glue_vector_rational")); 00616 call_glue (string ("glue_polynomial_integer")); 00617 define_type<polynomial<rational> > (gen (lit ("Polynomial"), lit ("Rational"))); 00618 define ("poly", GLUE_1); 00619 define ("polynomial", GLUE_2); 00620 define ("set_variable_name", GLUE_3); 00621 define_converter ("upgrade", GLUE_4, PENALTY_INCLUSION); 00622 define_converter (":>", GLUE_5, PENALTY_CAST); 00623 define ("#", GLUE_6); 00624 define ("deg", GLUE_7); 00625 define (".[]", GLUE_8); 00626 define ("-", GLUE_9); 00627 define ("square", GLUE_10); 00628 define ("+", GLUE_11); 00629 define ("-", GLUE_12); 00630 define ("*", GLUE_13); 00631 define ("+", GLUE_14); 00632 define ("+", GLUE_15); 00633 define ("-", GLUE_16); 00634 define ("-", GLUE_17); 00635 define ("*", GLUE_18); 00636 define ("*", GLUE_19); 00637 define ("^", GLUE_20); 00638 define ("<<", GLUE_21); 00639 define (">>", GLUE_22); 00640 define ("=", GLUE_23); 00641 define ("!=", GLUE_24); 00642 define ("=", GLUE_25); 00643 define ("!=", GLUE_26); 00644 define ("=", GLUE_27); 00645 define ("!=", GLUE_28); 00646 define ("derive", GLUE_29); 00647 define ("xderive", GLUE_30); 00648 define ("eval", GLUE_31); 00649 define ("evaluate", GLUE_32); 00650 define ("/", GLUE_33); 00651 define ("div", GLUE_34); 00652 define ("quo", GLUE_35); 00653 define ("rem", GLUE_36); 00654 define ("divides?", GLUE_37); 00655 define ("subresultant", GLUE_38); 00656 define ("subresultants", GLUE_39); 00657 define ("resultant", GLUE_40); 00658 define ("discriminant", GLUE_41); 00659 define ("integrate", GLUE_42); 00660 define ("@", GLUE_43); 00661 define ("q_difference", GLUE_44); 00662 define ("dilate", GLUE_45); 00663 define ("shift", GLUE_46); 00664 define ("graeffe", GLUE_47); 00665 define ("contents", GLUE_48); 00666 define ("primitive_part", GLUE_49); 00667 define ("gcd", GLUE_50); 00668 define ("lcm", GLUE_51); 00669 define_converter (":>", GLUE_52, PENALTY_INCLUSION); 00670 define_converter (":>", GLUE_53, PENALTY_PROMOTE_GENERIC); 00671 define_type<polynomial<complex<rational> > > (gen (lit ("Polynomial"), gen (lit ("Complex"), lit ("Rational")))); 00672 define ("eval", GLUE_54); 00673 define ("evaluate", GLUE_55); 00674 define ("poly", GLUE_56); 00675 define ("polynomial", GLUE_57); 00676 define ("set_variable_name", GLUE_58); 00677 define_converter ("upgrade", GLUE_59, PENALTY_INCLUSION); 00678 define_converter (":>", GLUE_60, PENALTY_CAST); 00679 define ("#", GLUE_61); 00680 define ("deg", GLUE_62); 00681 define (".[]", GLUE_63); 00682 define ("-", GLUE_64); 00683 define ("square", GLUE_65); 00684 define ("+", GLUE_66); 00685 define ("-", GLUE_67); 00686 define ("*", GLUE_68); 00687 define ("+", GLUE_69); 00688 define ("+", GLUE_70); 00689 define ("-", GLUE_71); 00690 define ("-", GLUE_72); 00691 define ("*", GLUE_73); 00692 define ("*", GLUE_74); 00693 define ("^", GLUE_75); 00694 define ("<<", GLUE_76); 00695 define (">>", GLUE_77); 00696 define ("=", GLUE_78); 00697 define ("!=", GLUE_79); 00698 define ("=", GLUE_80); 00699 define ("!=", GLUE_81); 00700 define ("=", GLUE_82); 00701 define ("!=", GLUE_83); 00702 define ("derive", GLUE_84); 00703 define ("xderive", GLUE_85); 00704 define ("eval", GLUE_86); 00705 define ("eval", GLUE_87); 00706 define ("evaluate", GLUE_88); 00707 define ("evaluate", GLUE_89); 00708 define ("annulator", GLUE_90); 00709 define ("interpolate", GLUE_91); 00710 define ("/", GLUE_92); 00711 define ("div", GLUE_93); 00712 define ("quo", GLUE_94); 00713 define ("rem", GLUE_95); 00714 define ("divides?", GLUE_96); 00715 define ("subresultant", GLUE_97); 00716 define ("subresultants", GLUE_98); 00717 define ("resultant", GLUE_99); 00718 define ("discriminant", GLUE_100); 00719 define ("integrate", GLUE_101); 00720 define ("@", GLUE_102); 00721 define ("q_difference", GLUE_103); 00722 define ("dilate", GLUE_104); 00723 define ("annulator", GLUE_105); 00724 define ("interpolate", GLUE_106); 00725 define ("shift", GLUE_107); 00726 define ("graeffe", GLUE_108); 00727 define_converter (":>", GLUE_109, PENALTY_INCLUSION); 00728 define_converter (":>", GLUE_110, PENALTY_HOMOMORPHISM); 00729 define_converter (":>", GLUE_111, PENALTY_PROMOTE_GENERIC); 00730 }
void glue_quotient_generic | ( | ) |
Definition at line 11 of file glue_quotient_generic.cpp.
Referenced by glue_algebramix().
void glue_quotient_polynomial_rational | ( | ) |
Definition at line 192 of file glue_quotient_polynomial_rational.cpp.
References GLUE_1(), GLUE_10(), GLUE_11(), GLUE_12(), GLUE_13(), GLUE_14(), GLUE_15(), GLUE_16(), GLUE_17(), GLUE_18(), GLUE_19(), GLUE_2(), GLUE_20(), GLUE_21(), GLUE_22(), GLUE_23(), GLUE_24(), GLUE_25(), GLUE_26(), GLUE_27(), GLUE_3(), GLUE_4(), GLUE_5(), GLUE_6(), GLUE_7(), GLUE_8(), and GLUE_9().
Referenced by glue_algebramix().
00192 { 00193 static bool done = false; 00194 if (done) return; 00195 done = true; 00196 call_glue (string ("glue_polynomial_rational")); 00197 define_type<simple_quotient(polynomial<rational> ) > (gen (lit ("Quotient"), gen (lit ("Polynomial"), lit ("Rational")))); 00198 define ("quotient", GLUE_1); 00199 define ("quotient", GLUE_2); 00200 define ("/", GLUE_3); 00201 define_converter ("upgrade", GLUE_4, PENALTY_INCLUSION); 00202 define ("numerator", GLUE_5); 00203 define ("denominator", GLUE_6); 00204 define ("-", GLUE_7); 00205 define ("square", GLUE_8); 00206 define ("+", GLUE_9); 00207 define ("-", GLUE_10); 00208 define ("*", GLUE_11); 00209 define ("/", GLUE_12); 00210 define ("+", GLUE_13); 00211 define ("+", GLUE_14); 00212 define ("-", GLUE_15); 00213 define ("-", GLUE_16); 00214 define ("*", GLUE_17); 00215 define ("*", GLUE_18); 00216 define ("/", GLUE_19); 00217 define ("/", GLUE_20); 00218 define ("^", GLUE_21); 00219 define ("=", GLUE_22); 00220 define ("!=", GLUE_23); 00221 define ("=", GLUE_24); 00222 define ("!=", GLUE_25); 00223 define ("=", GLUE_26); 00224 define ("!=", GLUE_27); 00225 }
void glue_series_generic | ( | ) |
Definition at line 331 of file glue_series_generic.cpp.
References GLUE_1(), GLUE_10(), GLUE_11(), GLUE_12(), GLUE_13(), GLUE_14(), GLUE_15(), GLUE_16(), GLUE_17(), GLUE_18(), GLUE_19(), GLUE_2(), GLUE_20(), GLUE_21(), GLUE_22(), GLUE_23(), GLUE_24(), GLUE_25(), GLUE_26(), GLUE_27(), GLUE_28(), GLUE_29(), GLUE_3(), GLUE_30(), GLUE_31(), GLUE_32(), GLUE_33(), GLUE_34(), GLUE_35(), GLUE_36(), GLUE_37(), GLUE_38(), GLUE_39(), GLUE_4(), GLUE_40(), GLUE_41(), GLUE_42(), GLUE_43(), GLUE_44(), GLUE_45(), GLUE_46(), GLUE_47(), GLUE_48(), GLUE_49(), GLUE_5(), GLUE_50(), GLUE_51(), GLUE_52(), GLUE_53(), GLUE_54(), GLUE_55(), GLUE_6(), GLUE_7(), GLUE_8(), and GLUE_9().
Referenced by glue_algebramix().
00331 { 00332 static bool done = false; 00333 if (done) return; 00334 done = true; 00335 call_glue (string ("glue_polynomial_generic")); 00336 define_constructor<int > (GLUE_1); 00337 define_type<series<generic> > (gen (lit ("Series"), lit ("Generic"))); 00338 define ("set_variable_name", GLUE_2); 00339 define ("set_output_order", GLUE_3); 00340 define ("set_cancel_order", GLUE_4); 00341 define ("set_formula_output", GLUE_5); 00342 define ("series", GLUE_6); 00343 define_converter ("upgrade", GLUE_7, PENALTY_PROMOTE_GENERIC); 00344 define_converter (":>", GLUE_8, PENALTY_PROMOTE_GENERIC); 00345 define (".[]", GLUE_9); 00346 define (".[]", GLUE_10); 00347 define ("-", GLUE_11); 00348 define ("square", GLUE_12); 00349 define ("+", GLUE_13); 00350 define ("-", GLUE_14); 00351 define ("*", GLUE_15); 00352 define ("^", GLUE_16); 00353 define ("=", GLUE_17); 00354 define ("!=", GLUE_18); 00355 define ("derive", GLUE_19); 00356 define ("xderive", GLUE_20); 00357 define ("dilate", GLUE_21); 00358 define ("<<", GLUE_22); 00359 define (">>", GLUE_23); 00360 define ("invert", GLUE_24); 00361 define ("/", GLUE_25); 00362 define ("div", GLUE_26); 00363 define ("divides?", GLUE_27); 00364 define ("gcd", GLUE_28); 00365 define ("lcm", GLUE_29); 00366 define ("integrate", GLUE_30); 00367 define ("@", GLUE_31); 00368 define ("reverse", GLUE_32); 00369 define ("q_difference", GLUE_33); 00370 define ("shift", GLUE_34); 00371 define ("shift", GLUE_35); 00372 define ("^", GLUE_36); 00373 define ("sqrt", GLUE_37); 00374 define ("exp", GLUE_38); 00375 define ("log", GLUE_39); 00376 define ("cos", GLUE_40); 00377 define ("sin", GLUE_41); 00378 define ("tan", GLUE_42); 00379 define ("arccos", GLUE_43); 00380 define ("arcsin", GLUE_44); 00381 define ("arctan", GLUE_45); 00382 define ("<", GLUE_46); 00383 define (">", GLUE_47); 00384 define ("<=", GLUE_48); 00385 define (">=", GLUE_49); 00386 define ("fixed_point_series", GLUE_50); 00387 define ("fixed_point_series", GLUE_51); 00388 define ("integrate_series", GLUE_52); 00389 define ("integrate_series", GLUE_53); 00390 define ("implicit_series", GLUE_54); 00391 define ("implicit_series", GLUE_55); 00392 }
void glue_series_integer | ( | ) |
Definition at line 301 of file glue_series_integer.cpp.
References GLUE_1(), GLUE_10(), GLUE_11(), GLUE_12(), GLUE_13(), GLUE_14(), GLUE_15(), GLUE_16(), GLUE_17(), GLUE_18(), GLUE_19(), GLUE_2(), GLUE_20(), GLUE_21(), GLUE_22(), GLUE_23(), GLUE_24(), GLUE_25(), GLUE_26(), GLUE_27(), GLUE_28(), GLUE_29(), GLUE_3(), GLUE_30(), GLUE_31(), GLUE_32(), GLUE_33(), GLUE_34(), GLUE_35(), GLUE_36(), GLUE_37(), GLUE_38(), GLUE_39(), GLUE_4(), GLUE_40(), GLUE_41(), GLUE_42(), GLUE_43(), GLUE_44(), GLUE_45(), GLUE_46(), GLUE_47(), GLUE_48(), GLUE_49(), GLUE_5(), GLUE_6(), GLUE_7(), GLUE_8(), and GLUE_9().
Referenced by glue_algebramix().
00301 { 00302 static bool done = false; 00303 if (done) return; 00304 done = true; 00305 call_glue (string ("glue_polynomial_integer")); 00306 call_glue (string ("glue_series_generic")); 00307 define ("^", GLUE_1); 00308 define_type<series<integer> > (gen (lit ("Series"), lit ("Integer"))); 00309 define ("^", GLUE_2); 00310 define ("set_variable_name", GLUE_3); 00311 define ("set_output_order", GLUE_4); 00312 define ("set_cancel_order", GLUE_5); 00313 define ("set_formula_output", GLUE_6); 00314 define ("series", GLUE_7); 00315 define_converter ("upgrade", GLUE_8, PENALTY_INCLUSION); 00316 define_converter ("upgrade", GLUE_9, PENALTY_INCLUSION); 00317 define_converter (":>", GLUE_10, PENALTY_CAST); 00318 define (".[]", GLUE_11); 00319 define (".[]", GLUE_12); 00320 define ("-", GLUE_13); 00321 define ("square", GLUE_14); 00322 define ("+", GLUE_15); 00323 define ("-", GLUE_16); 00324 define ("*", GLUE_17); 00325 define ("+", GLUE_18); 00326 define ("+", GLUE_19); 00327 define ("-", GLUE_20); 00328 define ("-", GLUE_21); 00329 define ("*", GLUE_22); 00330 define ("*", GLUE_23); 00331 define ("^", GLUE_24); 00332 define ("^", GLUE_25); 00333 define ("=", GLUE_26); 00334 define ("!=", GLUE_27); 00335 define ("=", GLUE_28); 00336 define ("!=", GLUE_29); 00337 define ("=", GLUE_30); 00338 define ("!=", GLUE_31); 00339 define ("derive", GLUE_32); 00340 define ("xderive", GLUE_33); 00341 define ("dilate", GLUE_34); 00342 define ("<<", GLUE_35); 00343 define (">>", GLUE_36); 00344 define ("<", GLUE_37); 00345 define (">", GLUE_38); 00346 define ("<=", GLUE_39); 00347 define (">=", GLUE_40); 00348 define ("<", GLUE_41); 00349 define (">", GLUE_42); 00350 define ("<=", GLUE_43); 00351 define (">=", GLUE_44); 00352 define ("<", GLUE_45); 00353 define (">", GLUE_46); 00354 define ("<=", GLUE_47); 00355 define (">=", GLUE_48); 00356 define_converter (":>", GLUE_49, PENALTY_PROMOTE_GENERIC); 00357 }
void mmx::glue_series_modular_integer | ( | ) |
Referenced by glue_algebramix().
void glue_series_rational | ( | ) |
Definition at line 954 of file glue_series_rational.cpp.
References GLUE_1(), GLUE_10(), GLUE_100(), GLUE_101(), GLUE_102(), GLUE_103(), GLUE_104(), GLUE_105(), GLUE_106(), GLUE_107(), GLUE_108(), GLUE_109(), GLUE_11(), GLUE_110(), GLUE_111(), GLUE_112(), GLUE_113(), GLUE_114(), GLUE_115(), GLUE_116(), GLUE_117(), GLUE_118(), GLUE_119(), GLUE_12(), GLUE_120(), GLUE_121(), GLUE_122(), GLUE_123(), GLUE_124(), GLUE_125(), GLUE_126(), GLUE_127(), GLUE_128(), GLUE_129(), GLUE_13(), GLUE_130(), GLUE_131(), GLUE_132(), GLUE_133(), GLUE_134(), GLUE_135(), GLUE_136(), GLUE_137(), GLUE_138(), GLUE_139(), GLUE_14(), GLUE_140(), GLUE_141(), GLUE_142(), GLUE_143(), GLUE_144(), GLUE_145(), GLUE_146(), GLUE_147(), GLUE_148(), GLUE_149(), GLUE_15(), GLUE_150(), GLUE_151(), GLUE_152(), GLUE_153(), GLUE_154(), GLUE_155(), GLUE_156(), GLUE_157(), GLUE_158(), GLUE_159(), GLUE_16(), GLUE_160(), GLUE_161(), GLUE_162(), GLUE_163(), GLUE_164(), GLUE_165(), GLUE_166(), GLUE_167(), GLUE_168(), GLUE_169(), GLUE_17(), GLUE_170(), GLUE_171(), GLUE_172(), GLUE_173(), GLUE_174(), GLUE_175(), GLUE_176(), GLUE_177(), GLUE_178(), GLUE_18(), GLUE_19(), GLUE_2(), GLUE_20(), GLUE_21(), GLUE_22(), GLUE_23(), GLUE_24(), GLUE_25(), GLUE_26(), GLUE_27(), GLUE_28(), GLUE_29(), GLUE_3(), GLUE_30(), GLUE_31(), GLUE_32(), GLUE_33(), GLUE_34(), GLUE_35(), GLUE_36(), GLUE_37(), GLUE_38(), GLUE_39(), GLUE_4(), GLUE_40(), GLUE_41(), GLUE_42(), GLUE_43(), GLUE_44(), GLUE_45(), GLUE_46(), GLUE_47(), GLUE_48(), GLUE_49(), GLUE_5(), GLUE_50(), GLUE_51(), GLUE_52(), GLUE_53(), GLUE_54(), GLUE_55(), GLUE_56(), GLUE_57(), GLUE_58(), GLUE_59(), GLUE_6(), GLUE_60(), GLUE_61(), GLUE_62(), GLUE_63(), GLUE_64(), GLUE_65(), GLUE_66(), GLUE_67(), GLUE_68(), GLUE_69(), GLUE_7(), GLUE_70(), GLUE_71(), GLUE_72(), GLUE_73(), GLUE_74(), GLUE_75(), GLUE_76(), GLUE_77(), GLUE_78(), GLUE_79(), GLUE_8(), GLUE_80(), GLUE_81(), GLUE_82(), GLUE_83(), GLUE_84(), GLUE_85(), GLUE_86(), GLUE_87(), GLUE_88(), GLUE_89(), GLUE_9(), GLUE_90(), GLUE_91(), GLUE_92(), GLUE_93(), GLUE_94(), GLUE_95(), GLUE_96(), GLUE_97(), GLUE_98(), and GLUE_99().
Referenced by glue_algebramix().
00954 { 00955 static bool done = false; 00956 if (done) return; 00957 done = true; 00958 call_glue (string ("glue_polynomial_rational")); 00959 call_glue (string ("glue_series_integer")); 00960 define_type<series<rational> > (gen (lit ("Series"), lit ("Rational"))); 00961 define ("set_variable_name", GLUE_1); 00962 define ("set_output_order", GLUE_2); 00963 define ("set_cancel_order", GLUE_3); 00964 define ("set_formula_output", GLUE_4); 00965 define ("series", GLUE_5); 00966 define_converter ("upgrade", GLUE_6, PENALTY_INCLUSION); 00967 define_converter ("upgrade", GLUE_7, PENALTY_INCLUSION); 00968 define_converter (":>", GLUE_8, PENALTY_CAST); 00969 define (".[]", GLUE_9); 00970 define (".[]", GLUE_10); 00971 define ("-", GLUE_11); 00972 define ("square", GLUE_12); 00973 define ("+", GLUE_13); 00974 define ("-", GLUE_14); 00975 define ("*", GLUE_15); 00976 define ("+", GLUE_16); 00977 define ("+", GLUE_17); 00978 define ("-", GLUE_18); 00979 define ("-", GLUE_19); 00980 define ("*", GLUE_20); 00981 define ("*", GLUE_21); 00982 define ("^", GLUE_22); 00983 define ("^", GLUE_23); 00984 define ("=", GLUE_24); 00985 define ("!=", GLUE_25); 00986 define ("=", GLUE_26); 00987 define ("!=", GLUE_27); 00988 define ("=", GLUE_28); 00989 define ("!=", GLUE_29); 00990 define ("derive", GLUE_30); 00991 define ("xderive", GLUE_31); 00992 define ("dilate", GLUE_32); 00993 define ("<<", GLUE_33); 00994 define (">>", GLUE_34); 00995 define ("invert", GLUE_35); 00996 define ("/", GLUE_36); 00997 define ("/", GLUE_37); 00998 define ("/", GLUE_38); 00999 define ("div", GLUE_39); 01000 define ("divides?", GLUE_40); 01001 define ("gcd", GLUE_41); 01002 define ("lcm", GLUE_42); 01003 define ("integrate", GLUE_43); 01004 define ("@", GLUE_44); 01005 define ("reverse", GLUE_45); 01006 define ("q_difference", GLUE_46); 01007 define ("shift", GLUE_47); 01008 define ("shift", GLUE_48); 01009 define ("<", GLUE_49); 01010 define (">", GLUE_50); 01011 define ("<=", GLUE_51); 01012 define (">=", GLUE_52); 01013 define ("<", GLUE_53); 01014 define (">", GLUE_54); 01015 define ("<=", GLUE_55); 01016 define (">=", GLUE_56); 01017 define ("<", GLUE_57); 01018 define (">", GLUE_58); 01019 define ("<=", GLUE_59); 01020 define (">=", GLUE_60); 01021 define_converter (":>", GLUE_61, PENALTY_INCLUSION); 01022 define_converter (":>", GLUE_62, PENALTY_PROMOTE_GENERIC); 01023 define ("^", GLUE_63); 01024 define ("sqrt", GLUE_64); 01025 define ("exp", GLUE_65); 01026 define ("log", GLUE_66); 01027 define ("cos", GLUE_67); 01028 define ("sin", GLUE_68); 01029 define ("tan", GLUE_69); 01030 define ("arccos", GLUE_70); 01031 define ("arcsin", GLUE_71); 01032 define ("arctan", GLUE_72); 01033 define_type<unknown<rational> > (gen (lit ("Unknown"), lit ("Rational"))); 01034 define_converter ("upgrade", GLUE_73, PENALTY_INCLUSION); 01035 define ("-", GLUE_74); 01036 define ("square", GLUE_75); 01037 define ("+", GLUE_76); 01038 define ("-", GLUE_77); 01039 define ("*", GLUE_78); 01040 define ("*", GLUE_79); 01041 define ("*", GLUE_80); 01042 define ("fixed_point_series", GLUE_81); 01043 define ("integrate_series", GLUE_82); 01044 define ("implicit_series", GLUE_83); 01045 define_type<series<complex<rational> > > (gen (lit ("Series"), gen (lit ("Complex"), lit ("Rational")))); 01046 define_type<series<unknown<rational> > > (gen (lit ("Series"), gen (lit ("Unknown"), lit ("Rational")))); 01047 define ("set_variable_name", GLUE_84); 01048 define ("set_output_order", GLUE_85); 01049 define ("set_cancel_order", GLUE_86); 01050 define ("set_formula_output", GLUE_87); 01051 define ("series", GLUE_88); 01052 define_converter ("upgrade", GLUE_89, PENALTY_INCLUSION); 01053 define_converter ("upgrade", GLUE_90, PENALTY_INCLUSION); 01054 define_converter (":>", GLUE_91, PENALTY_CAST); 01055 define (".[]", GLUE_92); 01056 define (".[]", GLUE_93); 01057 define ("-", GLUE_94); 01058 define ("square", GLUE_95); 01059 define ("+", GLUE_96); 01060 define ("-", GLUE_97); 01061 define ("*", GLUE_98); 01062 define ("+", GLUE_99); 01063 define ("+", GLUE_100); 01064 define ("-", GLUE_101); 01065 define ("-", GLUE_102); 01066 define ("*", GLUE_103); 01067 define ("*", GLUE_104); 01068 define ("^", GLUE_105); 01069 define ("^", GLUE_106); 01070 define ("=", GLUE_107); 01071 define ("!=", GLUE_108); 01072 define ("=", GLUE_109); 01073 define ("!=", GLUE_110); 01074 define ("=", GLUE_111); 01075 define ("!=", GLUE_112); 01076 define ("derive", GLUE_113); 01077 define ("xderive", GLUE_114); 01078 define ("dilate", GLUE_115); 01079 define ("<<", GLUE_116); 01080 define (">>", GLUE_117); 01081 define ("set_variable_name", GLUE_118); 01082 define ("set_output_order", GLUE_119); 01083 define ("set_cancel_order", GLUE_120); 01084 define ("set_formula_output", GLUE_121); 01085 define ("series", GLUE_122); 01086 define_converter ("upgrade", GLUE_123, PENALTY_INCLUSION); 01087 define_converter (":>", GLUE_124, PENALTY_CAST); 01088 define (".[]", GLUE_125); 01089 define ("-", GLUE_126); 01090 define ("square", GLUE_127); 01091 define ("+", GLUE_128); 01092 define ("-", GLUE_129); 01093 define ("*", GLUE_130); 01094 define ("+", GLUE_131); 01095 define ("+", GLUE_132); 01096 define ("-", GLUE_133); 01097 define ("-", GLUE_134); 01098 define ("*", GLUE_135); 01099 define ("*", GLUE_136); 01100 define ("^", GLUE_137); 01101 define ("^", GLUE_138); 01102 define ("=", GLUE_139); 01103 define ("!=", GLUE_140); 01104 define ("=", GLUE_141); 01105 define ("!=", GLUE_142); 01106 define ("=", GLUE_143); 01107 define ("!=", GLUE_144); 01108 define ("derive", GLUE_145); 01109 define ("xderive", GLUE_146); 01110 define ("dilate", GLUE_147); 01111 define ("<<", GLUE_148); 01112 define (">>", GLUE_149); 01113 define ("invert", GLUE_150); 01114 define ("/", GLUE_151); 01115 define ("/", GLUE_152); 01116 define ("/", GLUE_153); 01117 define ("div", GLUE_154); 01118 define ("divides?", GLUE_155); 01119 define ("gcd", GLUE_156); 01120 define ("lcm", GLUE_157); 01121 define ("integrate", GLUE_158); 01122 define ("@", GLUE_159); 01123 define ("reverse", GLUE_160); 01124 define ("q_difference", GLUE_161); 01125 define ("shift", GLUE_162); 01126 define ("shift", GLUE_163); 01127 define_converter (":>", GLUE_164, PENALTY_INCLUSION); 01128 define_converter (":>", GLUE_165, PENALTY_INCLUSION); 01129 define_converter (":>", GLUE_166, PENALTY_INCLUSION); 01130 define_converter (":>", GLUE_167, PENALTY_INCLUSION); 01131 define_converter (":>", GLUE_168, PENALTY_PROMOTE_GENERIC); 01132 define_converter (":>", GLUE_169, PENALTY_PROMOTE_GENERIC); 01133 define ("fixed_point_series", GLUE_170); 01134 define ("integrate_series", GLUE_171); 01135 define ("implicit_series", GLUE_172); 01136 define ("fixed_point_series", GLUE_173); 01137 define ("fixed_point_series", GLUE_174); 01138 define ("integrate_series", GLUE_175); 01139 define ("integrate_series", GLUE_176); 01140 define ("implicit_series", GLUE_177); 01141 define ("implicit_series", GLUE_178); 01142 }
void mmx::glue_table_generic | ( | ) |
Referenced by glue_algebramix().
void glue_vector_generic | ( | ) |
Definition at line 162 of file glue_vector_generic.cpp.
References GLUE_1(), GLUE_10(), GLUE_11(), GLUE_12(), GLUE_13(), GLUE_14(), GLUE_15(), GLUE_16(), GLUE_17(), GLUE_18(), GLUE_19(), GLUE_2(), GLUE_20(), GLUE_21(), GLUE_22(), GLUE_23(), GLUE_24(), GLUE_25(), GLUE_26(), GLUE_27(), GLUE_28(), GLUE_29(), GLUE_3(), GLUE_30(), GLUE_4(), GLUE_5(), GLUE_6(), GLUE_7(), GLUE_8(), and GLUE_9().
Referenced by glue_algebramix().
00162 { 00163 static bool done = false; 00164 if (done) return; 00165 done = true; 00166 call_glue (string ("glue_basix_vector_generic")); 00167 define ("-", GLUE_1); 00168 define ("square", GLUE_2); 00169 define ("+", GLUE_3); 00170 define ("-", GLUE_4); 00171 define ("*", GLUE_5); 00172 define ("dot", GLUE_6); 00173 define ("big_mul", GLUE_7); 00174 define ("big_add", GLUE_8); 00175 define ("=", GLUE_9); 00176 define ("!=", GLUE_10); 00177 define ("invert", GLUE_11); 00178 define ("/", GLUE_12); 00179 define ("<=", GLUE_13); 00180 define (">=", GLUE_14); 00181 define ("<", GLUE_15); 00182 define (">", GLUE_16); 00183 define ("inf", GLUE_17); 00184 define ("sup", GLUE_18); 00185 define ("^", GLUE_19); 00186 define ("sqrt", GLUE_20); 00187 define ("exp", GLUE_21); 00188 define ("log", GLUE_22); 00189 define ("cos", GLUE_23); 00190 define ("sin", GLUE_24); 00191 define ("tan", GLUE_25); 00192 define ("arccos", GLUE_26); 00193 define ("arcsin", GLUE_27); 00194 define ("arctan", GLUE_28); 00195 define ("derive", GLUE_29); 00196 define ("integrate", GLUE_30); 00197 }
void glue_vector_int | ( | ) |
Definition at line 279 of file glue_vector_int.cpp.
References GLUE_1(), GLUE_10(), GLUE_11(), GLUE_12(), GLUE_13(), GLUE_14(), GLUE_15(), GLUE_16(), GLUE_17(), GLUE_18(), GLUE_19(), GLUE_2(), GLUE_20(), GLUE_21(), GLUE_22(), GLUE_23(), GLUE_24(), GLUE_25(), GLUE_26(), GLUE_27(), GLUE_28(), GLUE_29(), GLUE_3(), GLUE_30(), GLUE_31(), GLUE_32(), GLUE_33(), GLUE_34(), GLUE_35(), GLUE_36(), GLUE_37(), GLUE_38(), GLUE_39(), GLUE_4(), GLUE_40(), GLUE_41(), GLUE_42(), GLUE_43(), GLUE_44(), GLUE_45(), GLUE_46(), GLUE_47(), GLUE_48(), GLUE_49(), GLUE_5(), GLUE_50(), GLUE_51(), GLUE_52(), GLUE_53(), GLUE_6(), GLUE_7(), GLUE_8(), and GLUE_9().
Referenced by glue_algebramix().
00279 { 00280 static bool done = false; 00281 if (done) return; 00282 done = true; 00283 call_glue (string ("glue_int")); 00284 call_glue (string ("glue_vector_generic")); 00285 define_type<vector<int> > (gen (lit ("Vector"), lit ("Int"))); 00286 define ("vector", GLUE_1); 00287 define ("[]", GLUE_2); 00288 define_converter (":>", GLUE_3, PENALTY_CAST); 00289 define ("#", GLUE_4); 00290 define (".[]", GLUE_5); 00291 define (".[]", GLUE_6); 00292 define (".[]", GLUE_7); 00293 define ("reverse", GLUE_8); 00294 define ("><", GLUE_9); 00295 define ("<<", GLUE_10); 00296 define ("cons", GLUE_11); 00297 define ("car", GLUE_12); 00298 define ("cdr", GLUE_13); 00299 define ("nil?", GLUE_14); 00300 define ("atom?", GLUE_15); 00301 define ("insert", GLUE_16); 00302 define ("find", GLUE_17); 00303 define ("contains?", GLUE_18); 00304 define_converter (":>", GLUE_19, PENALTY_PROMOTE_GENERIC); 00305 define ("-", GLUE_20); 00306 define ("square", GLUE_21); 00307 define ("+", GLUE_22); 00308 define ("-", GLUE_23); 00309 define ("*", GLUE_24); 00310 define ("+", GLUE_25); 00311 define ("+", GLUE_26); 00312 define ("-", GLUE_27); 00313 define ("-", GLUE_28); 00314 define ("*", GLUE_29); 00315 define ("*", GLUE_30); 00316 define ("dot", GLUE_31); 00317 define ("big_mul", GLUE_32); 00318 define ("big_add", GLUE_33); 00319 define ("=", GLUE_34); 00320 define ("!=", GLUE_35); 00321 define ("=", GLUE_36); 00322 define ("!=", GLUE_37); 00323 define ("=", GLUE_38); 00324 define ("!=", GLUE_39); 00325 define ("<=", GLUE_40); 00326 define (">=", GLUE_41); 00327 define ("<", GLUE_42); 00328 define (">", GLUE_43); 00329 define ("<=", GLUE_44); 00330 define (">=", GLUE_45); 00331 define ("<", GLUE_46); 00332 define (">", GLUE_47); 00333 define ("<=", GLUE_48); 00334 define (">=", GLUE_49); 00335 define ("<", GLUE_50); 00336 define (">", GLUE_51); 00337 define ("inf", GLUE_52); 00338 define ("sup", GLUE_53); 00339 }
void glue_vector_integer | ( | ) |
Definition at line 285 of file glue_vector_integer.cpp.
References GLUE_1(), GLUE_10(), GLUE_11(), GLUE_12(), GLUE_13(), GLUE_14(), GLUE_15(), GLUE_16(), GLUE_17(), GLUE_18(), GLUE_19(), GLUE_2(), GLUE_20(), GLUE_21(), GLUE_22(), GLUE_23(), GLUE_24(), GLUE_25(), GLUE_26(), GLUE_27(), GLUE_28(), GLUE_29(), GLUE_3(), GLUE_30(), GLUE_31(), GLUE_32(), GLUE_33(), GLUE_34(), GLUE_35(), GLUE_36(), GLUE_37(), GLUE_38(), GLUE_39(), GLUE_4(), GLUE_40(), GLUE_41(), GLUE_42(), GLUE_43(), GLUE_44(), GLUE_45(), GLUE_46(), GLUE_47(), GLUE_48(), GLUE_49(), GLUE_5(), GLUE_50(), GLUE_51(), GLUE_52(), GLUE_53(), GLUE_6(), GLUE_7(), GLUE_8(), and GLUE_9().
Referenced by glue_algebramix().
00285 { 00286 static bool done = false; 00287 if (done) return; 00288 done = true; 00289 call_glue (string ("glue_integer")); 00290 call_glue (string ("glue_vector_generic")); 00291 define_type<vector<integer> > (gen (lit ("Vector"), lit ("Integer"))); 00292 define ("vector", GLUE_1); 00293 define ("[]", GLUE_2); 00294 define_converter (":>", GLUE_3, PENALTY_CAST); 00295 define ("#", GLUE_4); 00296 define (".[]", GLUE_5); 00297 define (".[]", GLUE_6); 00298 define (".[]", GLUE_7); 00299 define ("reverse", GLUE_8); 00300 define ("><", GLUE_9); 00301 define ("<<", GLUE_10); 00302 define ("cons", GLUE_11); 00303 define ("car", GLUE_12); 00304 define ("cdr", GLUE_13); 00305 define ("nil?", GLUE_14); 00306 define ("atom?", GLUE_15); 00307 define ("insert", GLUE_16); 00308 define ("find", GLUE_17); 00309 define ("contains?", GLUE_18); 00310 define_converter (":>", GLUE_19, PENALTY_PROMOTE_GENERIC); 00311 define ("-", GLUE_20); 00312 define ("square", GLUE_21); 00313 define ("+", GLUE_22); 00314 define ("-", GLUE_23); 00315 define ("*", GLUE_24); 00316 define ("+", GLUE_25); 00317 define ("+", GLUE_26); 00318 define ("-", GLUE_27); 00319 define ("-", GLUE_28); 00320 define ("*", GLUE_29); 00321 define ("*", GLUE_30); 00322 define ("dot", GLUE_31); 00323 define ("big_mul", GLUE_32); 00324 define ("big_add", GLUE_33); 00325 define ("=", GLUE_34); 00326 define ("!=", GLUE_35); 00327 define ("=", GLUE_36); 00328 define ("!=", GLUE_37); 00329 define ("=", GLUE_38); 00330 define ("!=", GLUE_39); 00331 define ("<=", GLUE_40); 00332 define (">=", GLUE_41); 00333 define ("<", GLUE_42); 00334 define (">", GLUE_43); 00335 define ("<=", GLUE_44); 00336 define (">=", GLUE_45); 00337 define ("<", GLUE_46); 00338 define (">", GLUE_47); 00339 define ("<=", GLUE_48); 00340 define (">=", GLUE_49); 00341 define ("<", GLUE_50); 00342 define (">", GLUE_51); 00343 define ("inf", GLUE_52); 00344 define ("sup", GLUE_53); 00345 }
void mmx::glue_vector_modular_integer | ( | ) |
Referenced by glue_algebramix().
void glue_vector_rational | ( | ) |
Definition at line 545 of file glue_vector_rational.cpp.
References GLUE_1(), GLUE_10(), GLUE_100(), GLUE_101(), GLUE_102(), GLUE_103(), GLUE_104(), GLUE_11(), GLUE_12(), GLUE_13(), GLUE_14(), GLUE_15(), GLUE_16(), GLUE_17(), GLUE_18(), GLUE_19(), GLUE_2(), GLUE_20(), GLUE_21(), GLUE_22(), GLUE_23(), GLUE_24(), GLUE_25(), GLUE_26(), GLUE_27(), GLUE_28(), GLUE_29(), GLUE_3(), GLUE_30(), GLUE_31(), GLUE_32(), GLUE_33(), GLUE_34(), GLUE_35(), GLUE_36(), GLUE_37(), GLUE_38(), GLUE_39(), GLUE_4(), GLUE_40(), GLUE_41(), GLUE_42(), GLUE_43(), GLUE_44(), GLUE_45(), GLUE_46(), GLUE_47(), GLUE_48(), GLUE_49(), GLUE_5(), GLUE_50(), GLUE_51(), GLUE_52(), GLUE_53(), GLUE_54(), GLUE_55(), GLUE_56(), GLUE_57(), GLUE_58(), GLUE_59(), GLUE_6(), GLUE_60(), GLUE_61(), GLUE_62(), GLUE_63(), GLUE_64(), GLUE_65(), GLUE_66(), GLUE_67(), GLUE_68(), GLUE_69(), GLUE_7(), GLUE_70(), GLUE_71(), GLUE_72(), GLUE_73(), GLUE_74(), GLUE_75(), GLUE_76(), GLUE_77(), GLUE_78(), GLUE_79(), GLUE_8(), GLUE_80(), GLUE_81(), GLUE_82(), GLUE_83(), GLUE_84(), GLUE_85(), GLUE_86(), GLUE_87(), GLUE_88(), GLUE_89(), GLUE_9(), GLUE_90(), GLUE_91(), GLUE_92(), GLUE_93(), GLUE_94(), GLUE_95(), GLUE_96(), GLUE_97(), GLUE_98(), and GLUE_99().
Referenced by glue_algebramix().
00545 { 00546 static bool done = false; 00547 if (done) return; 00548 done = true; 00549 call_glue (string ("glue_complex_rational")); 00550 call_glue (string ("glue_vector_integer")); 00551 define_type<vector<rational> > (gen (lit ("Vector"), lit ("Rational"))); 00552 define_type<vector<complex<rational> > > (gen (lit ("Vector"), gen (lit ("Complex"), lit ("Rational")))); 00553 define ("vector", GLUE_1); 00554 define ("[]", GLUE_2); 00555 define_converter (":>", GLUE_3, PENALTY_CAST); 00556 define ("#", GLUE_4); 00557 define (".[]", GLUE_5); 00558 define (".[]", GLUE_6); 00559 define (".[]", GLUE_7); 00560 define ("reverse", GLUE_8); 00561 define ("><", GLUE_9); 00562 define ("<<", GLUE_10); 00563 define ("cons", GLUE_11); 00564 define ("car", GLUE_12); 00565 define ("cdr", GLUE_13); 00566 define ("nil?", GLUE_14); 00567 define ("atom?", GLUE_15); 00568 define ("insert", GLUE_16); 00569 define ("find", GLUE_17); 00570 define ("contains?", GLUE_18); 00571 define ("vector", GLUE_19); 00572 define ("[]", GLUE_20); 00573 define_converter (":>", GLUE_21, PENALTY_CAST); 00574 define ("#", GLUE_22); 00575 define (".[]", GLUE_23); 00576 define (".[]", GLUE_24); 00577 define (".[]", GLUE_25); 00578 define ("reverse", GLUE_26); 00579 define ("><", GLUE_27); 00580 define ("<<", GLUE_28); 00581 define ("cons", GLUE_29); 00582 define ("car", GLUE_30); 00583 define ("cdr", GLUE_31); 00584 define ("nil?", GLUE_32); 00585 define ("atom?", GLUE_33); 00586 define ("insert", GLUE_34); 00587 define ("find", GLUE_35); 00588 define ("contains?", GLUE_36); 00589 define_converter (":>", GLUE_37, PENALTY_INCLUSION); 00590 define_converter (":>", GLUE_38, PENALTY_HOMOMORPHISM); 00591 define_converter (":>", GLUE_39, PENALTY_PROMOTE_GENERIC); 00592 define_converter (":>", GLUE_40, PENALTY_PROMOTE_GENERIC); 00593 define ("-", GLUE_41); 00594 define ("square", GLUE_42); 00595 define ("+", GLUE_43); 00596 define ("-", GLUE_44); 00597 define ("*", GLUE_45); 00598 define ("+", GLUE_46); 00599 define ("+", GLUE_47); 00600 define ("-", GLUE_48); 00601 define ("-", GLUE_49); 00602 define ("*", GLUE_50); 00603 define ("*", GLUE_51); 00604 define ("dot", GLUE_52); 00605 define ("big_mul", GLUE_53); 00606 define ("big_add", GLUE_54); 00607 define ("=", GLUE_55); 00608 define ("!=", GLUE_56); 00609 define ("=", GLUE_57); 00610 define ("!=", GLUE_58); 00611 define ("=", GLUE_59); 00612 define ("!=", GLUE_60); 00613 define ("-", GLUE_61); 00614 define ("square", GLUE_62); 00615 define ("+", GLUE_63); 00616 define ("-", GLUE_64); 00617 define ("*", GLUE_65); 00618 define ("+", GLUE_66); 00619 define ("+", GLUE_67); 00620 define ("-", GLUE_68); 00621 define ("-", GLUE_69); 00622 define ("*", GLUE_70); 00623 define ("*", GLUE_71); 00624 define ("dot", GLUE_72); 00625 define ("big_mul", GLUE_73); 00626 define ("big_add", GLUE_74); 00627 define ("=", GLUE_75); 00628 define ("!=", GLUE_76); 00629 define ("=", GLUE_77); 00630 define ("!=", GLUE_78); 00631 define ("=", GLUE_79); 00632 define ("!=", GLUE_80); 00633 define ("invert", GLUE_81); 00634 define ("/", GLUE_82); 00635 define ("/", GLUE_83); 00636 define ("/", GLUE_84); 00637 define ("invert", GLUE_85); 00638 define ("/", GLUE_86); 00639 define ("/", GLUE_87); 00640 define ("/", GLUE_88); 00641 define ("<=", GLUE_89); 00642 define (">=", GLUE_90); 00643 define ("<", GLUE_91); 00644 define (">", GLUE_92); 00645 define ("<=", GLUE_93); 00646 define (">=", GLUE_94); 00647 define ("<", GLUE_95); 00648 define (">", GLUE_96); 00649 define ("<=", GLUE_97); 00650 define (">=", GLUE_98); 00651 define ("<", GLUE_99); 00652 define (">", GLUE_100); 00653 define ("inf", GLUE_101); 00654 define ("sup", GLUE_102); 00655 define ("abs", GLUE_103); 00656 define_converter (":>", GLUE_104, PENALTY_HOMOMORPHISM); 00657 }
polynomial<C,V> mmx::graeffe | ( | const polynomial< C, V > & | P | ) | [inline] |
Definition at line 1298 of file polynomial.hpp.
References C, CF(), N(), Polynomial, and seg().
Referenced by GLUE_108(), GLUE_114(), and GLUE_47().
01298 { 01299 typedef implementation<polynomial_graeffe,V> Pol; 01300 nat n= N(P); 01301 nat l= aligned_size<C,V> (n); 01302 C* r= mmx_formatted_new<C> (l, CF(P)); 01303 Pol::graeffe (r, seg (P), n); 01304 return Polynomial (r, n, l, CF(P)); 01305 }
Definition at line 865 of file matrix.hpp.
bool mmx::hard_eq | ( | const quotient< NT, DT > & | x1, | |
const quotient< NT, DT > & | x2 | |||
) | [inline] |
Definition at line 154 of file quotient.hpp.
References denominator(), hard_eq(), and numerator().
00154 { 00155 return hard_eq (numerator (x1), numerator (x2)) && 00156 hard_eq (denominator (x1), denominator (x2)); }
bool mmx::hard_eq | ( | const algebraic_number_extension< C, Ball > & | x, | |
const algebraic_number_extension< C, Ball > & | y | |||
) | [inline] |
Definition at line 86 of file algebraic_number.hpp.
References hard_eq().
bool mmx::hard_eq | ( | const algebraic_extension< C > & | x, | |
const algebraic_extension< C > & | y | |||
) | [inline] |
Definition at line 66 of file algebraic_extension.hpp.
References hard_eq().
bool mmx::hard_eq | ( | const algebraic< C, Extension > & | x1, | |
const algebraic< C, Extension > & | x2 | |||
) | [inline] |
nat mmx::hard_hash | ( | const quotient< NT, DT > & | x | ) | [inline] |
Definition at line 141 of file quotient.hpp.
References denominator(), hard_hash(), and numerator().
nat mmx::hard_hash | ( | const algebraic_number_extension< C, Ball > & | x | ) | [inline] |
Definition at line 77 of file algebraic_number.hpp.
References hard_hash().
nat mmx::hard_hash | ( | const algebraic_extension< C > & | x | ) | [inline] |
Definition at line 57 of file algebraic_extension.hpp.
References hard_hash().
nat mmx::hard_hash | ( | const algebraic< C, Extension > & | x | ) | [inline] |
bool mmx::hard_neq | ( | const quotient< NT, DT > & | x1, | |
const quotient< NT, DT > & | x2 | |||
) | [inline] |
Definition at line 157 of file quotient.hpp.
References hard_eq().
00157 { 00158 return !hard_eq (x1, x2); }
bool mmx::hard_neq | ( | const algebraic_number_extension< C, Ball > & | x, | |
const algebraic_number_extension< C, Ball > & | y | |||
) | [inline] |
Definition at line 88 of file algebraic_number.hpp.
References hard_neq().
bool mmx::hard_neq | ( | const algebraic_extension< C > & | x, | |
const algebraic_extension< C > & | y | |||
) | [inline] |
Definition at line 68 of file algebraic_extension.hpp.
References hard_neq().
bool mmx::hard_neq | ( | const algebraic< C, Extension > & | x1, | |
const algebraic< C, Extension > & | x2 | |||
) | [inline] |
Definition at line 119 of file algebraic.hpp.
References hard_eq().
Referenced by hard_neq(), and upgrade().
00119 { 00120 return !hard_eq (x1, x2); }
mmx::HARD_TO_EXACT_IDENTITY_SUGAR | ( | template< typename C, typename V > | , | |
series< C, V > | ||||
) |
nat mmx::hash | ( | const series< C, V > & | s | ) | [inline] |
Definition at line 291 of file series.hpp.
nat mmx::hash | ( | const quotient_series< Series, Monomial > & | f | ) | [inline] |
Definition at line 89 of file quotient_series.hpp.
nat mmx::hash | ( | const quotient< NT, DT > & | x | ) | [inline] |
Definition at line 135 of file quotient.hpp.
References denominator(), hash(), and numerator().
nat mmx::hash | ( | const algebraic_number_extension< C, Ball > & | x | ) | [inline] |
nat mmx::hash | ( | const algebraic_extension< C > & | x | ) | [inline] |
Definition at line 55 of file algebraic_extension.hpp.
References hash().
nat mmx::hash | ( | const algebraic< C, Extension > & | x | ) | [inline] |
quotient_series<Series,Monomial> mmx::head | ( | const quotient_series< Series, Monomial > & | f, | |
const list< Monomial > & | l | |||
) | [inline] |
Definition at line 124 of file quotient_series.hpp.
References Quotient_series.
Referenced by nrelax_mul_series_rep< C, V >::direct_transform(), level_info< C >::level_info(), and level_info< C >::~level_info().
00124 { 00125 return Quotient_series (head (f->f, stair_mul (1/f->m, l)), f->m); }
Definition at line 825 of file matrix.hpp.
References promote().
00825 { 00826 matrix<C> m (promote (0, fm), n, n); 00827 for (nat i=0; i<(nat) n; i++) 00828 for (nat j=0; j<(nat) n; j++) 00829 m (i, j)= 1 / promote (1 + i + j, fm); 00830 return m; 00831 }
Definition at line 880 of file matrix.hpp.
References CF(), cols(), is_non_scalar(), Matrix, promote(), and rows().
Referenced by GLUE_13(), GLUE_14(), GLUE_43(), and GLUE_76().
00880 { 00881 ASSERT (is_non_scalar (m1) || is_non_scalar (m2), 00882 "non-scalar matrix expected"); 00883 if (!is_non_scalar (m1)) 00884 return horizontal_join (Matrix (m1.scalar(), rows (m2), rows (m2)), m2); 00885 if (!is_non_scalar (m2)) 00886 return horizontal_join (m1, Matrix (m2.scalar(), rows (m1), rows (m1))); 00887 ASSERT (rows (m1) == rows (m2), "unequal number of rows"); 00888 Matrix r (promote (0, CF(m1)), rows (m1), cols (m1) + cols (m2)); 00889 for (nat i=0; i<rows(m1); i++) { 00890 for (nat j=0; j<cols(m1); j++) 00891 r(i,j)= m1(i,j); 00892 for (nat j=0; j<cols(m2); j++) 00893 r(i,j+cols(m1))= m2(i,j); 00894 } 00895 return r; 00896 }
vector<nat> mmx::id_vector | ( | nat | n | ) | [inline] |
Definition at line 27 of file permutation.hpp.
Referenced by cycle(), and transposition().
Definition at line 800 of file matrix.hpp.
References promote().
00800 { 00801 return matrix<C> (promote (1, fm), n, n); 00802 }
polynomial<Real_type(C),V> mmx::Im | ( | const polynomial< C, V > & | p | ) | [inline] |
Definition at line 1457 of file polynomial.hpp.
Definition at line 774 of file matrix.hpp.
algebraic_real mmx::Im | ( | const algebraic_number & | z | ) | [inline] |
Definition at line 1286 of file matrix.hpp.
References CF(), cols(), is_non_scalar(), Matrix, promote(), range(), rows(), and tab().
Referenced by GLUE_123(), GLUE_48(), GLUE_72(), and krylov().
Definition at line 152 of file series_sugar.hpp.
References implicit_series().
00152 { 00153 return implicit_series (fun, vec<C> (c)); 00154 }
Definition at line 146 of file series_sugar.hpp.
References access(), and solver().
Referenced by GLUE_177(), GLUE_54(), GLUE_83(), and implicit_series().
00146 { 00147 series_rep<VC >* rep= (series_rep<VC >*) new implicit_series_rep<C> (fun, c); 00148 return access (solver (series<VC > (rep)), 0); 00149 }
vector<series<C> > mmx::implicit_vector_series | ( | const routine & | fun, | |
const vector< C > & | c | |||
) | [inline] |
Definition at line 196 of file series_sugar.hpp.
References implicit_vector_series().
00196 { 00197 return implicit_vector_series (fun, vec<vector<C> > (c)); 00198 }
vector<series<C> > mmx::implicit_vector_series | ( | const routine & | fun, | |
const vector< vector< C > > & | c | |||
) | [inline] |
Definition at line 188 of file series_sugar.hpp.
References as_vector(), N(), and solver().
Referenced by gen_implicit_vector_series(), and implicit_vector_series().
00188 { 00189 ASSERT (N(c) > 0, "at least one initial condition required"); 00190 series_rep<VC >* rep= 00191 (series_rep<VC >*) new implicit_vector_series_rep<C> (fun, c); 00192 return as_vector (solver (series<VC > (rep))); 00193 }
bool mmx::improve_zero | ( | const polynomial< C > & | p, | |
Ball & | z | |||
) | [inline] |
Definition at line 127 of file algebraic_number.hpp.
References abs(), abs_up(), Ball, CBall, center(), Center_type(), copy(), derive(), eval(), included(), max(), Polynomial, radius(), sharpen(), and x.
Referenced by increase_precision(), and shrink().
00127 { 00128 typedef Center_type(Ball) CBall; 00129 typedef Radius_type(Ball) RBall; 00130 if (p[0] == 0 && z == 0) { z= Ball (0); return true; } 00131 CBall x= center (copy (z)); 00132 RBall r= radius (z); 00133 Polynomial dp= derive (p); 00134 while (true) { 00135 CBall nx= x - eval (p, x) / eval (dp, x); 00136 RBall nr= as<RBall> (abs (nx - x)); 00137 while (true) { 00138 Ball nb= Ball (nx, nr); 00139 if (eval (dp, nb) == 0) return false; 00140 RBall rr= abs_up (eval (p, sharpen (nb)) / eval (dp, nb)); 00141 if (rr <= nr) break; 00142 nr= max (2 * nr, rr); 00143 } 00144 bool ok= (2 * nr >= r); 00145 x= nx; 00146 r= nr; 00147 if (ok) break; 00148 } 00149 if (!included (Ball (x, r), z)) return false; 00150 z= Ball (x, r); 00151 return true; 00152 }
bool mmx::included | ( | const matrix< C, V > & | m, | |
const matrix< C, V > & | n | |||
) | [inline] |
Definition at line 792 of file matrix.hpp.
Referenced by improve_zero().
void mmx::increase_order | ( | const series< C, V > & | f, | |
nat | l | |||
) | [inline] |
Definition at line 204 of file series.hpp.
Referenced by lshiftz_series_vector_rep< C, V, W >::Increase_order(), vector_series_rep< C, V, W >::Increase_order(), vector_access_series_rep< C, V, W >::Increase_order(), reverse_series_rep< C, V >::Increase_order(), compose_series_rep< C, V >::Increase_order(), binary_series_rep< Op, C, V >::Increase_order(), unary_series_rep< Op, C, V >::Increase_order(), binary_scalar_recursive_series_rep< Op, C, V, X >::Increase_order(), binary_recursive_series_rep< Op, C, V >::Increase_order(), unary_recursive_series_rep< Op, C, V >::Increase_order(), unary_map_as_series_rep< Op, C, V, S, SV >::Increase_order(), ternary_scalar_series_rep< Op, C, V, X, Y >::Increase_order(), binary_scalar_series_rep< Op, C, V, X >::Increase_order(), matrix_series_rep< C, V, U >::Increase_order(), matrix_access_series_rep< C, V, U >::Increase_order(), solver_container_series_rep< C, V >::Increase_order(), solver_series_rep< C, V >::Increase_order(), known_series_rep< C, V, UV >::Increase_order(), mul_series_rep< C, V >::Increase_order(), nrelax_mul_series_rep< C, V >::Increase_order(), div_series_rep< M, V >::Increase_order(), rdiv_sc_series_rep< M, V, X >::Increase_order(), carry_mul_sc_series_rep< M, V, X >::Increase_order(), binary_series_rep< Op, M, V >::Increase_order(), unary_series_rep< Op, M, V >::Increase_order(), binary_scalar_series_rep< Op, M, V, X >::Increase_order(), ldiv_mat_monoblock_series_rep< M, V >::Increase_order(), ldiv_vec_monoblock_series_rep< M, V >::Increase_order(), ldiv_mat_series_rep< M, V >::Increase_order(), ldiv_sc_mat_series_rep< M, V >::Increase_order(), matrix_carry_mul_rem_series_rep< M, V >::Increase_order(), matrix_carry_mul_quo_series_rep< M, V, X >::Increase_order(), ldiv_vec_series_rep< M, V >::Increase_order(), ldiv_sc_vec_series_rep< M, V >::Increase_order(), vector_carry_mul_rem_series_rep< M, V >::Increase_order(), vector_carry_mul_quo_series_rep< M, V, X >::Increase_order(), lshiftz_series_matrix_rep< M, V >::Increase_order(), mul_series_rep< M, V >::Increase_order(), slp_polynomial_regular_root_monoblock_series_rep< M, V, L >::Increase_order(), binary_scalar_recursive_monoblock_series_rep< Op, M, V, s, BV, t, X >::Increase_order(), unary_polynomial_recursive_monoblock_series_rep< Op, M, V, s, BV, t, L >::Increase_order(), truncate_mul_monoblock_series_rep< M, V, s, BV, t >::Increase_order(), binary_monoblock_series_rep< Op, M, V, s, BV, t >::Increase_order(), change_precision_series_rep< C, V >::Increase_order(), deflate_series_rep< C, V >::Increase_order(), dilate_series_rep< C, V >::Increase_order(), q_difference_series_rep< C, V >::Increase_order(), shift_series_rep< C, V >::Increase_order(), integrate_series_rep< C, V >::Increase_order(), xderive_series_rep< C, V >::Increase_order(), derive_series_rep< C, V >::Increase_order(), piecewise_series_rep< C, V >::Increase_order(), restrict_series_rep< C, V >::Increase_order(), lshiftz_series_rep< C, V >::Increase_order(), lcm_series_rep< C, V >::Increase_order(), gcd_series_rep< C, V >::Increase_order(), map_series_rep< C, V, S, SV, Fun >::Increase_order(), cast_series_rep< C, V, K, W >::Increase_order(), slow_series_rep< C, V >::Increase_order(), fast_series_rep< C, V >::Increase_order(), recursive_container_series_rep< C, V >::Increase_order(), recursive_series_rep< vector< C > >::Increase_order(), and slp_polynomial_regular_root_series_rep< M, V, L >::increase_order_generic().
void mmx::increase_precision | ( | const algebraic_number_extension< C, Ball > & | ext | ) | [inline] |
Definition at line 176 of file algebraic_number.hpp.
References Ball, CBall, Center_type(), Field, improve_zero(), mmx_bit_precision, precision(), and x.
Referenced by eval().
00176 { 00177 typedef Center_type(Ball) CBall; 00178 typedef Radius_type(Ball) RBall; 00179 if (precision (ext.x) >= mmx_bit_precision) return; 00180 Ball new_x= ext.x; 00181 if (!improve_zero (ext.ext.mp, new_x)) { 00182 mmerr << "mp= " << ext.ext.mp << "\n"; 00183 mmerr << "x = " << new_x << "\n"; 00184 ERROR ("unexpected situation"); 00185 } 00186 (const_cast<Field*> (&ext)) -> x= new_x; 00187 }
mmx::INDIRECT_IMPL_2 | ( | unknown | , | |
unknown_rep | , | |||
typename C | , | |||
C | , | |||
typename V | , | |||
V | ||||
) |
mmx::INDIRECT_IMPL_2 | ( | series | , | |
series_rep | , | |||
typename C | , | |||
C | , | |||
typename V | , | |||
V | ||||
) |
mmx::INDIRECT_IMPL_2 | ( | quotient_series | , | |
quotient_series_rep | , | |||
typename Series | , | |||
Series | , | |||
typename Monomial | , | |||
Monomial | ||||
) |
mmx::INDIRECT_IMPL_2 | ( | polynomial | , | |
polynomial_rep | , | |||
typename C | , | |||
C | , | |||
typename V | , | |||
V | ||||
) |
mmx::INDIRECT_IMPL_2 | ( | matrix | , | |
matrix_rep | , | |||
typename C | , | |||
C | , | |||
typename V | , | |||
V | ||||
) |
void mmx::insert_and_reduce | ( | vector< unknown< C, V > > & | sys, | |
unknown< C, V > & | c | |||
) | [inline] |
Definition at line 310 of file series_implicit.hpp.
References is_exact_zero(), N(), and reduce().
Referenced by solver_series_rep< C, V >::next().
00310 { 00311 for (nat i=0; i<N(sys); i++) 00312 reduce (c, sys[i]); 00313 if (is_exact_zero (c)) return; 00314 ASSERT (c->i1 != c->i2, "contradictory equations"); 00315 sys << c; 00316 }
static polynomial< mmx_modular(integer), polynomial_carry_variant_helper< mmx_modular(integer) >::PV > integer_as_p_expansion | ( | const integer & | c, | |
const modulus< integer > & | p | |||
) | [inline, static] |
Definition at line 41 of file glue_polynomial_p_adic_modular_integer.cpp.
References simple_as_p_expansion.
Referenced by GLUE_8().
00041 { 00042 return simple_as_p_expansion(integer)(c, p); }
Definition at line 477 of file series_carry_naive.hpp.
References coefficients(), default_p_expansion, M, and Series.
00477 { 00478 if (a == integer (0)) return Series (); 00479 if (a > integer (0)) 00480 return Series (coefficients (as<default_p_expansion (M)> (a))); 00481 return -Series (coefficients (as<default_p_expansion (M)> (-a))); 00482 }
Definition at line 973 of file series.hpp.
References CF(), is_exact_zero(), Series, and Series_rep.
00973 { 00974 if (is_exact_zero (f)) return Series (CF(f)); 00975 return (Series_rep*) new integrate_series_rep<C,V> (f); 00976 }
polynomial<C,V> mmx::integrate | ( | const polynomial< C, V > & | P | ) | [inline] |
Definition at line 1070 of file polynomial.hpp.
References C, CF(), integrate(), N(), Polynomial, and seg().
01070 { 01071 typedef implementation<polynomial_linear,V> Pol; 01072 nat n= N(P); 01073 nat l= aligned_size<C,V> (n+1); 01074 C* r= mmx_formatted_new<C> (l, CF(P)); 01075 Pol::integrate (r, seg (P), n); 01076 return Polynomial (r, n+1, l, CF(P)); 01077 }
Definition at line 639 of file matrix.hpp.
Referenced by integrate_series_rep< C, V >::expression(), gen_integrate_vector_series(), GLUE_101(), GLUE_107(), GLUE_158(), GLUE_30(), GLUE_42(), GLUE_43(), GLUE_76(), integrate(), and integrate_series().
Definition at line 984 of file series.hpp.
Definition at line 979 of file series.hpp.
References Series_rep.
00979 { 00980 return (Series_rep*) new integrate_series_rep<C,V> (f, c); 00981 }
Definition at line 642 of file matrix.hpp.
Referenced by integrate_series_rep< C, V >::expression().
Definition at line 63 of file series_sugar.hpp.
References fixed_point_series(), and integrate().
Referenced by GLUE_175(), GLUE_52(), and GLUE_82().
00063 { 00064 return fixed_point_series (integrate (fun), vec<C> (c)); 00065 }
polynomial<C,typename polynomial_variant_helper< C >::PV > mmx::interpolate | ( | const vector< C > & | v, | |
const vector< C > & | x | |||
) | [inline] |
Definition at line 1221 of file polynomial.hpp.
Referenced by GLUE_106(), GLUE_112(), and implementation< polynomial_evaluate, V, polynomial_naive >::interpolate().
01221 { 01222 return interpolate_bis<C,typename Polynomial_variant(C) > (v, x); 01223 }
polynomial<C,V> mmx::interpolate_bis | ( | const vector< C > & | v, | |
const vector< C > & | x | |||
) | [inline] |
Definition at line 1215 of file polynomial.hpp.
01215 { 01216 typedef implementation<polynomial_evaluate,V> Pol; 01217 return Pol::template interpolate<Polynomial> (v, x); 01218 }
mmx::INV_TRIGO_SUGAR | ( | template< typename C, typename V > | , | |
series< C, V > | ||||
) |
Baser::base mmx::inverse_base | ( | const vector< typename Baser::modulus_base, W > & | src, | |
Baser & | baser | |||
) | [inline] |
Definition at line 192 of file base_naive.hpp.
References C, inverse_base(), N(), and seg().
00192 { 00193 C d; inverse_base (d, seg (src), N(src), baser); 00194 return d; 00195 }
void mmx::inverse_base | ( | typename Baser::base & | d, | |
const vector< typename Baser::modulus_base, W > & | src, | |||
Baser & | baser | |||
) | [inline] |
void mmx::inverse_base | ( | typename Baser::base & | d, | |
const typename Baser::modulus_base * | src, | |||
nat | n, | |||
Baser & | baser | |||
) | [inline] |
Definition at line 182 of file base_naive.hpp.
Referenced by implementation< base_transform, V, base_blocks< W > >::inverse(), inverse_base(), base_unsigned_integer_transformer< I >::inverse_transform(), and base_integer_transformer< I >::inverse_transform().
Crter::base mmx::inverse_crt | ( | const vector< typename Crter::modulus_base, W > & | src, | |
Crter & | crter | |||
) | [inline] |
Definition at line 369 of file crt_naive.hpp.
References C, inverse_crt(), and seg().
00369 { 00370 C d; inverse_crt (d, seg (src), crter); 00371 return d; 00372 }
void mmx::inverse_crt | ( | typename Crter::base & | d, | |
const vector< typename Crter::modulus_base, W > & | src, | |||
Crter & | crter | |||
) | [inline] |
Definition at line 364 of file crt_naive.hpp.
References seg().
00364 { 00365 crter.inverse_transform (d, seg (src)); 00366 }
void mmx::inverse_crt | ( | typename Crter::base & | d, | |
const typename Crter::modulus_base * | src, | |||
Crter & | crter | |||
) | [inline] |
Definition at line 359 of file crt_naive.hpp.
Referenced by implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::interpolate(), inverse_crt(), and implementation< matrix_multiply, V, matrix_crt< W > >::mat_inverse_crt().
void mmx::inverse_fft | ( | C * | dest, | |
nat | n | |||
) | [inline] |
Definition at line 217 of file fft_naive.hpp.
References fft_naive_transformer< C, V >::inverse_transform().
void mmx::inverse_fft_triadic | ( | C * | dest, | |
nat | n | |||
) | [inline] |
Definition at line 190 of file fft_triadic_naive.hpp.
References fft_triadic_naive_transformer< C, VV >::inverse_transform_triadic().
void mmx::inverse_kronecker | ( | integer * | dest, | |
nat | n, | |||
xnat | bits, | |||
const integer & | src | |||
) |
permutation invert | ( | const permutation & | p | ) |
Definition at line 56 of file permutation.cpp.
References N().
00056 { 00057 nat n= N(p); 00058 vector<nat> v= fill<nat> (n); 00059 for (nat i=0; i<n; i++) v[p(i)]= i; 00060 return permutation (v); 00061 }
Definition at line 1260 of file matrix.hpp.
References CF(), cols(), invert(), is_a_scalar(), Matrix, promote(), rows(), and tab().
01260 { 01261 typedef implementation<matrix_invert,V> Mat; 01262 if (is_a_scalar (m)) return Matrix (invert (m.scalar())); 01263 ASSERT (cols(m) == rows(m), "square matrix expected"); 01264 Matrix a (promote (1, CF(m)), rows(m), cols(m)); 01265 Mat::invert (tab(a), tab(m), rows(m)); 01266 return a; 01267 }
algebraic_number_extension<C,Ball>::El mmx::invert | ( | const algebraic_number_extension< C, Ball > & | ext, | |
const typename algebraic_number_extension< C, Ball >::El & | p1 | |||
) | [inline] |
Definition at line 242 of file algebraic_number.hpp.
References invert().
00242 { 00243 return invert (ext.ext, p1); 00244 }
algebraic_extension<C>::El mmx::invert | ( | const algebraic_extension< C > & | ext, | |
const typename algebraic_extension< C >::El & | p1 | |||
) | [inline] |
Definition at line 271 of file algebraic.hpp.
References Algebraic, field(), and value().
Referenced by roots_helper< CC, UU, SS >::dtft_cross(), ldiv_mat_monoblock_series_rep< M, V >::expression(), ldiv_vec_monoblock_series_rep< M, V >::expression(), ldiv_mat_series_rep< M, V >::expression(), ldiv_sc_mat_series_rep< M, V >::expression(), ldiv_vec_series_rep< M, V >::expression(), ldiv_sc_vec_series_rep< M, V >::expression(), GLUE_11(), GLUE_125(), GLUE_150(), GLUE_24(), GLUE_35(), GLUE_50(), GLUE_74(), GLUE_81(), GLUE_85(), div_series_rep< M, V >::initialize(), rdiv_sc_series_rep< M, V, X >::initialize(), ldiv_mat_series_rep< M, V >::initialize(), ldiv_vec_series_rep< M, V >::initialize(), fft_truncated_transformer< C, Ffter >::inverse_transform(), fft_threads_transformer< C, FFTER, thr >::inverse_transform(), fft_simd_transformer< C, FFTER, FFTER_SIMD, thr >::inverse_transform(), fft_naive_transformer< C, V >::inverse_transform(), fft_blocks_transformer< C, FFTER, log2_outer_block_size, log2_block_number, log2_inner_block_size, threshold >::inverse_transform(), fft_triadic_threads_transformer< C, FFTER, thr >::inverse_transform_triadic(), fft_triadic_naive_transformer< C, VV >::inverse_transform_triadic(), implementation< matrix_invert, V, matrix_ring_naive< W > >::invert(), invert(), roots_helper< CC, UU, SS >::itft_flip(), join(), integrate_series_rep< C, V >::next(), and operator/().
polynomial<C,V> mmx::invert_hi | ( | const polynomial< C, V > & | P | ) | [inline] |
Definition at line 1330 of file polynomial.hpp.
References C, CF(), N(), Polynomial, and seg().
Referenced by implementation< polynomial_divide, V, polynomial_naive >::invert_hi(), implementation< polynomial_divide, V, polynomial_dicho< BV > >::invert_hi(), modulus< polynomial< C, V >, modulus_polynomial_preinverse< W > >::modulus(), implementation< polynomial_divide, V, polynomial_dicho< BV > >::quo_rem(), and implementation< polynomial_divide, V, polynomial_dicho< BV > >::tquo_rem().
01330 { 01331 typedef implementation<polynomial_divide,V> Pol; 01332 nat n= N(P); 01333 nat l= aligned_size<C,V> (n); 01334 C* r= mmx_formatted_new<C> (l, CF(P)); 01335 Pol::invert_hi (r, seg (P), n); 01336 return Polynomial (r, n, l, CF(P)); 01337 }
polynomial<C,V> mmx::invert_lo | ( | const polynomial< C, V > & | P | ) | [inline] |
Definition at line 1325 of file polynomial.hpp.
References invert_lo(), and N().
polynomial<C,V> mmx::invert_lo | ( | const polynomial< C, V > & | P, | |
nat | m | |||
) | [inline] |
Definition at line 1308 of file polynomial.hpp.
References C, CF(), copy(), N(), Polynomial, and seg().
Referenced by implementation< polynomial_divide, V, polynomial_dicho< BV > >::invert_lo(), invert_lo(), and implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::tevaluate().
01308 { 01309 typedef implementation<polynomial_divide,V> Pol; 01310 nat n= N(P); 01311 nat l= aligned_size<C,V> (m); 01312 C* r= mmx_formatted_new<C> (l, CF(P)); 01313 if (n >= m) 01314 Pol::invert_lo (r, seg (P), m); 01315 else { 01316 C* t= mmx_formatted_new<C> (l, CF(P)); 01317 Pol::copy (t, seg (P), n); 01318 Pol::clear (t + n, m - n); 01319 Pol::invert_lo (r, t, m); 01320 } 01321 return Polynomial (r, m, l, CF(P)); 01322 }
polynomial<C,V> mmx::invert_modulo | ( | const polynomial< C, V > & | P, | |
const polynomial< C, V > & | Q | |||
) | [inline] |
Definition at line 843 of file polynomial.hpp.
Referenced by inv_mod_polynomial_series_rep< C, U, V, W >::initialize(), and modulus_polynomial_inv_naive< V >::inv_mod().
bool mmx::is_a_scalar | ( | const matrix< C, matrix_fixed< V, RS, CS > > & | m | ) | [inline] |
Definition at line 310 of file matrix.hpp.
bool is_a_scalar | ( | const matrix< C, V > & | m | ) | [inline] |
Definition at line 190 of file matrix.hpp.
Referenced by binary_map(), binary_map_scalar(), binary_test(), as_helper< matrix< T, TV >, matrix< F, FV > >::cv(), fast_helper< matrix< C, V > >::dd(), binary_helper< matrix< C, V > >::disassemble(), extend(), flatten(), invert(), is_finite(), is_fuzz(), is_infinite(), is_nan(), is_reliable(), matrix< M >::matrix(), vector_access_series_rep< C, V, W >::next(), operator*(), permute_columns(), permute_rows(), range(), REP_STRUCT_1(), matrix< M >::scalar(), project_helper< matrix< C, V > >::set_op(), lift_helper< matrix< C, V > >::set_op(), transpose(), unary_map(), unary_set(), unary_set_scalar(), fast_helper< matrix< C, V > >::uu(), and binary_helper< matrix< C, V > >::write().
K bool mmx::is_evaluable | ( | const quotient< NT, DT > & | x, | |
const K & | a, | |||
Evaluate_type(quotient< NT, DT >, K)& | b | |||
) |
Definition at line 351 of file quotient.hpp.
References denominator(), DT, is_evaluable(), is_exact_zero(), NT, and numerator().
00351 { 00352 Evaluate_type(NT,K) num= b; 00353 Evaluate_type(DT,K) den= b; 00354 if (!is_evaluable (numerator (x), a, num)) return false; 00355 if (!is_evaluable (denominator (x), a, den)) return false; 00356 if (is_exact_zero (den)) return false; // FIXME: test for invertibility 00357 b= num / den; return true; }
bool mmx::is_evaluable | ( | const polynomial< C, V > & | p, | |
const C & | x, | |||
C & | y | |||
) | [inline] |
Definition at line 1168 of file polynomial.hpp.
References evaluate().
bool mmx::is_evaluable | ( | const matrix< C, V > & | v, | |
const K & | a, | |||
matrix< Evaluate_type(C, K), W > & | w | |||
) | [inline] |
Definition at line 719 of file matrix.hpp.
References CF(), cols(), promote(), and rows().
Referenced by is_evaluable().
00720 { 00721 nat r= rows (v), c= cols (v); 00722 w= matrix<Evaluate_type(C,K),W> (promote (0, CF(w)), r, c); 00723 for (nat i= 0; i < r; i++) 00724 for (nat j= 0; j < c; j++) 00725 if (!is_evaluable (v(i,j), a, w(i,j))) return false; 00726 return true; }
bool mmx::is_exact_zero | ( | const unknown< C, V > | c | ) | [inline] |
Definition at line 120 of file series_implicit.hpp.
References is_exact_zero().
00120 { 00121 return c->i1 == c->i2 && is_exact_zero (c->b); 00122 }
bool mmx::is_exact_zero | ( | const series< C, V > & | f | ) | [inline] |
Definition at line 307 of file series.hpp.
Referenced by deflate(), derive(), dilate(), div_kronecker(), series_carry_monoblock_transformer< M, W, s, BV >::from_monoblock(), insert_and_reduce(), integrate(), is_evaluable(), is_exact_zero(), is_invertible(), lshiftz(), lshiftz_series_matrix(), lshiftz_series_vector(), modulus< polynomial< C, V >, modulus_polynomial_power_of_the_variable< W > >::modulus(), modulus< polynomial< C, V >, modulus_polynomial_preinverse< W > >::modulus(), modulus_polynomial_mul_power_of_the_variable< X, W >::mul_mod(), modulus_polynomial_mul_preinverse< X, W >::mul_mod(), solver_series_rep< C, V >::next(), REP_STRUCT< Series, Monomial >::normalize(), operator*(), operator+(), operator-(), operator/(), q_difference(), reduce(), modulus_polynomial_reduction_preinverse< X >::reduce_mod(), rem(), restrict(), rshiftz(), implementation< series_separable_root, U, series_naive >::sep_root(), implementation< series_separable_root, U, series_carry_naive >::sep_root(), implementation< series_compose, U, series_naive >::ser_compose(), implementation< series_divide, U, series_naive >::ser_div(), implementation< series_divide, U, series_carry_naive >::ser_div(), implementation< series_divide, U, series_carry_monoblock< W, s, BV, t > >::ser_div(), implementation< series_multiply, U, series_relaxed< W > >::ser_mul(), implementation< series_multiply, U, series_naive >::ser_mul(), implementation< series_multiply, U, series_fast >::ser_mul(), implementation< series_multiply, U, series_carry_relaxed< W > >::ser_mul(), implementation< series_multiply, U, series_carry_lift< W > >::ser_mul(), implementation< series_multiply, U, series_carry_naive >::ser_mul(), implementation< series_multiply, U, series_carry_blocks< W, s, BV, t > >::ser_mul(), implementation< series_multiply, U, series_carry_monoblock< W, s, BV, t > >::ser_mul(), implementation< series_multiply, U, series_carry_modular_int_naive< W > >::ser_mul(), implementation< series_divide, U, series_naive >::ser_quo(), implementation< series_divide, U, series_naive >::ser_rdiv_sc(), implementation< series_divide, U, series_carry_naive >::ser_rdiv_sc(), implementation< series_divide, U, series_naive >::ser_rquo_sc(), implementation< series_divide, U, series_naive >::ser_rrem_sc(), implementation< series_multiply, U, series_relaxed< W > >::ser_truncate_mul(), implementation< series_multiply, U, series_naive >::ser_truncate_mul(), implementation< series_multiply, U, series_fast >::ser_truncate_mul(), implementation< series_multiply, U, series_carry_relaxed< W > >::ser_truncate_mul(), implementation< series_multiply, U, series_carry_lift< W > >::ser_truncate_mul(), implementation< series_multiply, U, series_carry_naive >::ser_truncate_mul(), implementation< series_multiply, U, series_carry_blocks< W, s, BV, t > >::ser_truncate_mul(), implementation< series_multiply, U, series_carry_monoblock< W, s, BV, t > >::ser_truncate_mul(), implementation< series_multiply, U, series_carry_modular_int_naive< W > >::ser_truncate_mul(), shift(), sqrt(), polynomial_series_rep< C, V >::test_exact_zero(), scalar_series_rep< C, V >::test_exact_zero(), series_carry_monoblock_transformer< M, W, s, BV >::to_monoblock(), implementation< series_pth_root, U, series_carry_p_adic< W > >::unsep_root(), and xderive().
bool mmx::is_finite | ( | const polynomial< C, V > & | p | ) | [inline] |
Definition at line 1430 of file polynomial.hpp.
bool mmx::is_finite | ( | const matrix< C, V > & | m | ) | [inline] |
Definition at line 742 of file matrix.hpp.
References is_a_scalar().
00742 { 00743 if (is_a_scalar (m)) return is_finite (m.scalar()); 00744 return big<and_is_finite_op> (m); }
bool mmx::is_fuzz | ( | const polynomial< C, V > & | p | ) | [inline] |
Definition at line 1436 of file polynomial.hpp.
References is_nan().
01436 { 01437 return !is_nan (p) && big<or_is_fuzz_op> (p); }
bool mmx::is_fuzz | ( | const matrix< C, V > & | m | ) | [inline] |
Definition at line 751 of file matrix.hpp.
References is_a_scalar(), and is_nan().
00751 { 00752 if (is_a_scalar (m)) return is_fuzz (m.scalar()); 00753 return !is_nan (m) && big<or_is_fuzz_op> (m); }
bool mmx::is_infinite | ( | const polynomial< C, V > & | p | ) | [inline] |
Definition at line 1434 of file polynomial.hpp.
References is_nan().
01434 { 01435 return !is_nan (p) && big<or_is_infinite_op> (p); }
bool mmx::is_infinite | ( | const matrix< C, V > & | m | ) | [inline] |
Definition at line 748 of file matrix.hpp.
References is_a_scalar(), and is_nan().
00748 { 00749 if (is_a_scalar (m)) return is_infinite (m.scalar()); 00750 return !is_nan (m) && big<or_is_infinite_op> (m); }
bool mmx::is_invertible | ( | const quotient< NT, DT > & | x | ) | [inline] |
Definition at line 291 of file quotient.hpp.
References is_exact_zero().
Referenced by quotient_normalization_helper< polynomial< C, V >, polynomial< C, V > >::normalize().
00291 { 00292 return !is_exact_zero (x); // assumes NT = DT 00293 }
V bool mmx::is_known | ( | const unknown< C, V > & | c | ) | [inline] |
Definition at line 84 of file series_implicit.hpp.
Referenced by subst_mul_series_rep< C, V, UV >::next().
bool mmx::is_nan | ( | const polynomial< C, V > & | p | ) | [inline] |
Definition at line 1432 of file polynomial.hpp.
bool mmx::is_nan | ( | const matrix< C, V > & | m | ) | [inline] |
Definition at line 745 of file matrix.hpp.
References is_a_scalar().
Referenced by is_fuzz(), and is_infinite().
00745 { 00746 if (is_a_scalar (m)) return is_nan (m.scalar()); 00747 return big<or_is_nan_op> (m); }
bool mmx::is_non_scalar | ( | const matrix< C, matrix_fixed< V, RS, CS > > & | m | ) | [inline] |
Definition at line 312 of file matrix.hpp.
bool is_non_scalar | ( | const matrix< C, V > & | m | ) | [inline] |
Definition at line 191 of file matrix.hpp.
Referenced by implementation< polynomial_evaluate, V, polynomial_naive >::annulator(), implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::annulator(), binary_map(), binary_test(), cofactor(), column_echelon(), column_orthogonalization(), column_orthonormalization(), column_reduced_echelon(), delete_col(), delete_row(), det(), implementation< polynomial_evaluate, V, polynomial_naive >::evaluate(), implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::evaluate(), extend(), first_minor(), horizontal_join(), image(), implementation< polynomial_evaluate, V, polynomial_naive >::interpolate(), implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::interpolate(), iterate(), kernel(), krylov(), implementation< polynomial_evaluate, V, polynomial_naive >::multi_rem(), matrix< M >::operator()(), operator*(), rank(), REP_STRUCT_1(), reverse_cols(), row_orthogonalization(), row_orthonormalization(), swap_col(), swap_row(), tab(), tensor_matrix(), implementation< polynomial_evaluate, V, polynomial_naive >::tevaluate(), implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::tevaluate(), implementation< polynomial_evaluate, V, polynomial_naive >::tinterpolate(), implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::tinterpolate(), unary_set(), vandermonde(), and vertical_join().
bool is_prime | ( | nat | n | ) |
Definition at line 17 of file crt_int.cpp.
Referenced by fft_prime_sequence_int< s >::extend().
00017 { 00018 static coprime_moduli_sequence 00019 <modulus<nat,modulus_int_naive<8*sizeof(nat)> >,prime_sequence_int> seq; 00020 if (n == 0 || n == 1) return false; 00021 for (nat i= 0; true; i++) { 00022 nat p= * seq[i]; 00023 if (n % p == 0) return false; 00024 if (p * p >= n) break; 00025 } 00026 return true; 00027 }
bool is_probable_prime | ( | unsigned long int | n | ) |
Definition at line 29 of file crt_int.cpp.
00029 { 00030 return is_probable_prime (integer (n)); 00031 }
bool mmx::is_reconstructible | ( | const polynomial< C, V > & | p, | |
polynomial< Reconstruct_type(C), W > & | q | |||
) | [inline] |
Definition at line 1406 of file polynomial.hpp.
References CF(), coefficients(), and is_reconstructible().
01407 { 01408 vector<Reconstruct_type(C)> v (CF(q)); 01409 if (!is_reconstructible (coefficients (p), v)) return false; 01410 q= polynomial<Reconstruct_type(C),W> (v); 01411 return true; }
bool mmx::is_reconstructible | ( | const modular< modulus< polynomial< C, V >, MoV >, MaV > & | x, | |
quotient< polynomial< C, V >, polynomial< C, V > > & | y | |||
) | [inline] |
Definition at line 341 of file modular_polynomial.hpp.
References get_modulus(), N(), Quotient, reconstruct(), and x.
00342 { 00343 polynomial<C,V> num, den, q= *get_modulus (x); 00344 nat k= N(q) >> 1; 00345 if (!reconstruct (*x, q, k, num, den)) return false; 00346 y= Quotient (num, den); 00347 return true; }
bool mmx::is_reconstructible | ( | const matrix< C, V > & | v, | |
matrix< Reconstruct_type(C), W > & | w | |||
) | [inline] |
Definition at line 703 of file matrix.hpp.
References CF(), cols(), promote(), and rows().
Referenced by is_reconstructible().
00703 { 00704 nat r= rows (v), c= cols (v); 00705 w= fill (promote (0, CF(w)), r, c); 00706 for (nat i= 0; i < r; i++) 00707 for (nat j= 0; i < c; j++) 00708 if (!is_reconstructible (v(i,j), w(i,j))) return false; 00709 return true; }
bool mmx::is_reliable | ( | const polynomial< C, V > & | p | ) | [inline] |
Definition at line 1438 of file polynomial.hpp.
References CF(), is_reliable(), and promote().
01438 { 01439 return is_reliable (promote (0, CF(p))); }
bool mmx::is_reliable | ( | const matrix< C, V > & | m | ) | [inline] |
Definition at line 754 of file matrix.hpp.
References is_a_scalar().
Referenced by is_reliable().
00754 { 00755 if (is_a_scalar (m)) return is_reliable (m.scalar()); 00756 return is_reliable (C (0)); }
bool mmx::is_square_matrix | ( | const matrix< C, V > & | m | ) | [inline] |
Definition at line 192 of file matrix.hpp.
References cols(), and rows().
Referenced by krylov(), solve_lde(), and solve_lde_init().
bool mmx::is_zero | ( | const algebraic_number_extension< C, Ball > & | ext, | |
const typename algebraic_number_extension< C, Ball >::El & | p1 | |||
) | [inline] |
Definition at line 257 of file algebraic_number.hpp.
References annihilator(), Ball, deg(), derive(), eval(), is_non_zero(), is_zero(), mmx_bit_precision, and Polynomial.
00257 { 00258 if (deg (p1) <= 0) return is_zero (ext.ext, p1); 00259 Ball y= eval (ext, p1); 00260 if (is_non_zero (y)) return false; 00261 Polynomial ann= annihilator (ext, p1); 00262 if (ann[0] == 0 && is_non_zero (eval (derive (ann), y))) return true; 00263 nat old_precision= mmx_bit_precision; 00264 mmx_bit_precision *= 2; 00265 bool r= is_zero (ext, p1); 00266 mmx_bit_precision= old_precision; 00267 return r; 00268 }
bool mmx::is_zero | ( | const algebraic_extension< C > & | ext, | |
const typename algebraic_extension< C >::El & | p1 | |||
) | [inline] |
Definition at line 125 of file algebraic_extension.hpp.
References deg().
00125 { 00126 return deg (p1) < 0; 00127 }
bool mmx::is_zero | ( | const algebraic< C, Extension > & | x | ) | [inline] |
Definition at line 122 of file algebraic.hpp.
References field(), and value().
Referenced by is_zero(), operator!=(), and operator==().
iterator<C> mmx::iterate | ( | const series< C, V > & | f | ) | [inline] |
Definition at line 272 of file series.hpp.
iterator<C> mmx::iterate | ( | const polynomial< C, V > & | P | ) | [inline] |
Definition at line 299 of file polynomial.hpp.
iterator<nat> mmx::iterate | ( | const permutation & | p | ) | [inline] |
Definition at line 59 of file permutation.hpp.
References as_vector(), and iterate().
iterator<C> mmx::iterate | ( | const matrix< C, V > & | m | ) | [inline] |
Definition at line 340 of file matrix.hpp.
References is_non_scalar().
Referenced by flatten(), GLUE_10(), GLUE_124(), GLUE_21(), GLUE_3(), GLUE_5(), GLUE_60(), GLUE_7(), GLUE_79(), GLUE_8(), GLUE_91(), iterate(), and iterate_int().
00340 { 00341 ASSERT (is_non_scalar (m), "non-scalar matrix expected"); 00342 return iterator<C> (new matrix_iterator_rep<C,V> (m)); 00343 }
iterator<int> mmx::iterate_int | ( | const permutation & | p | ) | [inline] |
Definition at line 61 of file permutation.hpp.
References iterate().
Referenced by GLUE_6().
00061 { 00062 return iterate (as_vector_int (p)); }
algebraic_number_extension<C,Ball> mmx::join | ( | const algebraic_number_extension< C, Ball > & | ext1, | |
const algebraic_number_extension< C, Ball > & | ext2, | |||
typename algebraic_number_extension< C, Ball >::El & | z1, | |||
typename algebraic_number_extension< C, Ball >::El & | z2 | |||
) | [inline] |
Definition at line 289 of file algebraic_number.hpp.
References Ball, C, column(), deg(), Element, eval(), Extension, Field, hard_eq(), invert(), mmx_bit_precision, Polynomial, pow_matrix(), range(), rem(), shrink(), square_free(), transpose(), and x.
00289 { 00290 // Return the smallest common extension ext of ext1 and ext2 00291 // On exit, z1 and z2 contains the primitive els of ext1 and ext2 inside ext 00292 if (deg (ext1.ext.mp) == 1) { 00293 z1= Polynomial (-ext1.ext.mp[0]/ext1.ext.mp[1]); 00294 z2= Polynomial (C(1), (nat) 1); 00295 return ext2; 00296 } 00297 else if (deg (ext2.ext.mp) == 1) { 00298 z1= Polynomial (C(1), (nat) 1); 00299 z2= Polynomial (-ext2.ext.mp[0]/ext2.ext.mp[1]); 00300 return ext1; 00301 } 00302 else if (hard_eq (ext1, ext2)) { 00303 z1= Polynomial (C(1), (nat) 1); 00304 z2= Polynomial (C(1), (nat) 1); 00305 return ext1; 00306 } 00307 else { 00308 nat n= deg (ext1.ext.mp) * deg (ext2.ext.mp); 00309 matrix<C> m= transpose (pow_matrix (ext1.ext, ext2.ext)); 00310 matrix<C> u= invert (range (m, 0, 0, n, n)); 00311 vector<C> v= - (u * column (m, n)); 00312 v << C(1); 00313 Polynomial mp= Polynomial (v); 00314 Polynomial sf= square_free (mp); 00315 Extension ext= Extension (sf); 00316 v= fill<C> (C(0), n); 00317 v[deg(ext2.ext.mp)]= C(1); 00318 z1= Element (u * v); 00319 if (deg (sf) < deg (mp)) z1= rem (z1, sf); 00320 v= fill<C> (C(0), n); 00321 v[1]= C(1); 00322 z2= Element (u * v); 00323 if (deg (sf) < deg (mp)) z2= rem (z2, sf); 00324 Ball x; 00325 nat old_precision= mmx_bit_precision; 00326 while (true) { 00327 x= eval (ext1, ext2, column (m, 1)); 00328 if (shrink (ext.mp, x)) break; 00329 mmx_bit_precision= mmx_bit_precision << 1; 00330 } 00331 mmx_bit_precision= old_precision; 00332 return Field (ext, x); 00333 } 00334 }
algebraic_extension<C> mmx::join | ( | const algebraic_extension< C > & | ext1, | |
const algebraic_extension< C > & | ext2, | |||
typename algebraic_extension< C >::El & | z1, | |||
typename algebraic_extension< C >::El & | z2 | |||
) | [inline] |
Definition at line 238 of file algebraic_extension.hpp.
References CF(), column(), deg(), Element, Extension, hard_eq(), invert(), N(), Polynomial, pow_matrix(), promote(), range(), rem(), square_free(), and transpose().
Referenced by upgrade().
00238 { 00239 // Return the smallest common extension ext of ext1 and ext2 00240 // On exit, z1 and z2 contains the primitive els of ext1 and ext2 inside ext 00241 ASSERT (N(ext1.mp) > 0, "uninitialized algebraic extension"); 00242 ASSERT (N(ext2.mp) > 0, "uninitialized algebraic extension"); 00243 if (deg (ext1.mp) == 1) { 00244 z1= Polynomial (-ext1.mp[0]/ext1.mp[1]); 00245 z2= Polynomial (promote (1, CF(ext1)), (nat) 1); 00246 return ext2; 00247 } 00248 else if (deg (ext2.mp) == 1) { 00249 z1= Polynomial (promote (1, CF(ext1)), (nat) 1); 00250 z2= Polynomial (-ext2.mp[0]/ext2.mp[1]); 00251 return ext1; 00252 } 00253 else if (hard_eq (ext1, ext2)) { 00254 z1= Polynomial (promote (1, CF(ext1)), (nat) 1); 00255 z2= Polynomial (promote (1, CF(ext1)), (nat) 1); 00256 return ext1; 00257 } 00258 else { 00259 nat n= deg (ext1.mp) * deg (ext2.mp); 00260 matrix<C> m= transpose (pow_matrix (ext1, ext2)); 00261 matrix<C> u= invert (range (m, 0, 0, n, n)); 00262 vector<C> v= - (u * column (m, n)); 00263 v << promote (1, CF(ext1)); 00264 Polynomial mp= Polynomial (v); 00265 Polynomial sf= square_free (mp); 00266 Extension ext= Extension (sf); 00267 v= fill<C> (promote (0, CF(ext1)), n); 00268 v[deg(ext2.mp)]= promote (1, CF(ext1)); 00269 z1= Element (u * v); 00270 if (deg (sf) < deg (mp)) z1= rem (z1, sf); 00271 v= fill<C> (promote (0, CF(ext1)), n); 00272 v[1]= promote (1, CF(ext1)); 00273 z2= Element (u * v); 00274 if (deg (sf) < deg (mp)) z2= rem (z2, sf); 00275 return ext; 00276 } 00277 }
Definition at line 1277 of file matrix.hpp.
References CF(), cols(), is_non_scalar(), Matrix, promote(), range(), rows(), and tab().
Referenced by GLUE_122(), GLUE_47(), and GLUE_71().
Definition at line 365 of file series_implicit.hpp.
References Series_rep.
00365 { 00366 return (Series_rep*) new known_series_rep<C,V,UV> (f); 00367 }
C mmx::known | ( | const unknown< C, V > & | c | ) | [inline] |
Definition at line 89 of file series_implicit.hpp.
Referenced by known_series_rep< C, V, UV >::next(), operator*(), operator+(), and operator-().
Definition at line 1302 of file matrix.hpp.
References image(), is_non_scalar(), is_square_matrix(), Matrix, rows(), and vertical_join().
Referenced by GLUE_113(), GLUE_38(), and GLUE_62().
01302 { 01303 ASSERT (is_non_scalar (m), "non-scalar matrix expected"); 01304 ASSERT (is_square_matrix (m), "square matrix expected"); 01305 Matrix r= image (v); 01306 Matrix p= m; 01307 while (true) { 01308 nat rk= rows (r); 01309 r= image (vertical_join (r, r*p)); 01310 if (rows (r) <= rk) return r; 01311 p= p*p; 01312 } 01313 }
Definition at line 825 of file series.hpp.
References Series_rep.
00825 { 00826 return (Series_rep*) new lcm_series_rep<C,V> (f, g); 00827 }
polynomial<C,V> mmx::lcm | ( | const polynomial< C, V > & | P1, | |
const polynomial< C, V > & | P2 | |||
) | [inline] |
Definition at line 837 of file polynomial.hpp.
Referenced by lcm_series_rep< C, V >::expression(), GLUE_118(), GLUE_157(), GLUE_28(), GLUE_29(), GLUE_42(), and GLUE_51().
00837 { 00838 typedef implementation<polynomial_gcd,V> Pol; 00839 return Pol::lcm (P1, P2); 00840 }
static series< matrix<M> ,V> mmx::ldiv | ( | const matrix< series< M, V > > & | m, | |
const matrix< series< M, V > > & | ms, | |||
const matrix< M > & | init | |||
) | [inline, static] |
Definition at line 758 of file series_carry_linear_algebra.hpp.
static series< matrix<M> ,V> mmx::ldiv | ( | const matrix< series< M, V > > & | m, | |
const matrix< series< M, V > > & | ms | |||
) | [inline, static] |
Definition at line 752 of file series_carry_linear_algebra.hpp.
static series< matrix<M> ,V> mmx::ldiv | ( | const matrix< M > & | m, | |
const matrix< series< M, V > > & | ms, | |||
const matrix< M > & | inv, | |||
const matrix< M > & | init | |||
) | [inline, static] |
Definition at line 745 of file series_carry_linear_algebra.hpp.
static series< matrix<M> ,V> mmx::ldiv | ( | const matrix< M > & | m, | |
const matrix< series< M, V > > & | ms, | |||
const matrix< M > & | inv | |||
) | [inline, static] |
Definition at line 739 of file series_carry_linear_algebra.hpp.
static series< matrix<M> ,V> mmx::ldiv | ( | const matrix< M > & | m, | |
const matrix< series< M, V > > & | ms | |||
) | [inline, static] |
Definition at line 733 of file series_carry_linear_algebra.hpp.
static series< vector< typename M::C > ,V> mmx::ldiv | ( | const matrix< series< M, V > > & | m, | |
const vector< series< M, V > > & | vs, | |||
const vector< typename M::C > & | init | |||
) | [inline, static] |
Definition at line 420 of file series_carry_linear_algebra.hpp.
static series< vector< typename M::C > ,V> mmx::ldiv | ( | const matrix< series< M, V > > & | m, | |
const vector< series< M, V > > & | vs | |||
) | [inline, static] |
Definition at line 414 of file series_carry_linear_algebra.hpp.
static series< vector< typename M::C > ,V> mmx::ldiv | ( | const matrix< M > & | m, | |
const vector< series< M, V > > & | vs, | |||
const matrix< M > & | inv, | |||
const vector< typename M::C > & | init | |||
) | [inline, static] |
Definition at line 407 of file series_carry_linear_algebra.hpp.
static series< vector< typename M::C > ,V> mmx::ldiv | ( | const matrix< M > & | m, | |
const vector< series< M, V > > & | vs, | |||
const matrix< M > & | inv | |||
) | [inline, static] |
Definition at line 401 of file series_carry_linear_algebra.hpp.
static series< vector< typename M::C > ,V> mmx::ldiv | ( | const matrix< M > & | m, | |
const vector< series< M, V > > & | vs | |||
) | [inline, static] |
Definition at line 395 of file series_carry_linear_algebra.hpp.
Referenced by ldiv_mat_monoblock_series_rep< M, V >::Increase_order(), ldiv_vec_monoblock_series_rep< M, V >::Increase_order(), ldiv_mat_series_rep< M, V >::initialize(), ldiv_vec_series_rep< M, V >::initialize(), ldiv_mat_monoblock_series_rep< M, V >::ldiv_mat_monoblock_series_rep(), and ldiv_vec_monoblock_series_rep< M, V >::ldiv_vec_monoblock_series_rep().
static series< matrix<M> ,V> mmx::lmul_quo | ( | const matrix< M > & | m, | |
const series< matrix< M >, V > & | sm | |||
) | [inline, static] |
Definition at line 721 of file series_carry_linear_algebra.hpp.
static series< vector< typename M::C > ,V> mmx::lmul_quo | ( | const matrix< M > & | m, | |
const series< vector< typename M::C >, V > & | sv | |||
) | [inline, static] |
Definition at line 383 of file series_carry_linear_algebra.hpp.
Referenced by ldiv_sc_mat_series_rep< M, V >::initialize(), and ldiv_sc_vec_series_rep< M, V >::initialize().
series< matrix<M> ,V> mmx::lmul_rem | ( | const matrix< M > & | m, | |
const series< matrix< M >, V > & | sm | |||
) | [inline] |
Definition at line 727 of file series_carry_linear_algebra.hpp.
series< vector< typename M::C > ,V> mmx::lmul_rem | ( | const matrix< M > & | m, | |
const series< vector< typename M::C >, V > & | sv | |||
) | [inline] |
Definition at line 389 of file series_carry_linear_algebra.hpp.
Referenced by ldiv_sc_mat_series_rep< M, V >::initialize(), and ldiv_sc_vec_series_rep< M, V >::initialize().
Definition at line 50 of file series_elementary.hpp.
polynomial<Center_type(C),V> mmx::lower | ( | const polynomial< C, V > & | p | ) | [inline] |
Definition at line 1464 of file polynomial.hpp.
Definition at line 781 of file matrix.hpp.
matrix< series<M,V> > mmx::lshiftz | ( | const matrix< series< M, V > > & | m, | |
const int & | shift = 1 | |||
) | [inline] |
Definition at line 151 of file series_carry_linear_algebra.hpp.
References cols(), lshiftz(), Matrix_series, rows(), Series, and shift().
vector< series<M,V> > mmx::lshiftz | ( | const vector< series< M, V > > & | v, | |
const int & | shift = 1 | |||
) | [inline] |
Definition at line 137 of file series_carry_linear_algebra.hpp.
References lshiftz(), N(), Series, shift(), and Vector_series.
00137 { 00138 nat n= N (v); 00139 Vector_series lv (Series(), n); 00140 for (nat i=0; i<n; i++) 00141 lv[i] = lshiftz (v[i], shift); 00142 return lv; 00143 }
Definition at line 850 of file series.hpp.
References CF(), is_exact_zero(), Series, and Series_rep.
00850 { 00851 if (is_exact_zero (f)) return Series (CF(f)); 00852 return (Series_rep*) new lshiftz_series_rep<C,V> (f, shift); 00853 }
polynomial<C,V> mmx::lshiftz | ( | const polynomial< C, V > & | P, | |
const int & | shift | |||
) | [inline] |
Definition at line 1272 of file polynomial.hpp.
References C, CF(), copy(), N(), Polynomial, promote(), range(), and seg().
Referenced by ser_carry_separable_root_op::binpow_no_tangent(), ser_carry_pth_root_reg_op::binpow_no_tangent_normalized(), ser_polynomial_regular_root_op::def(), ser_carry_polynomial_regular_root_op::def(), ser_carry_pth_root_reg_op::def(), implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_ducos_inc< BV > >::defected_prem(), implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_naive_inc< W > >::defected_prem(), lshiftz_series_vector_rep< C, V, W >::expression(), lshiftz_series_matrix_rep< M, V >::expression(), lshiftz_series_rep< C, V >::expression(), GLUE_116(), GLUE_148(), GLUE_21(), GLUE_22(), GLUE_33(), GLUE_35(), GLUE_76(), GLUE_89(), reverse_series_rep< C, V >::initialize(), div_series_rep< M, V >::initialize(), ldiv_mat_series_rep< M, V >::initialize(), ldiv_vec_series_rep< M, V >::initialize(), inv_mod_polynomial_series_rep< C, U, V, W >::initialize(), lshiftz(), implementation< matrix_multiply, V, matrix_balanced< W > >::mat_lshift(), minimal_polynomial_bis(), mul_series_rep< M, V >::mul_series_rep(), normalize(), slp_polynomial_regular_root_series_rep< M, V, L >::rec_prod(), slp_polynomial_regular_root_series_rep< M, V, L >::rec_square(), rshiftz(), shift1(), shift2(), implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::tinterpolate(), and implementation< series_pth_root, U, series_carry_p_adic< W > >::unsep_root().
01272 { 01273 typedef implementation<polynomial_linear,V> Pol; 01274 if (shift == 0) return P; 01275 else if (shift <= -((int) N(P))) return promote (0, P); 01276 else if (shift < 0) return range (P, (nat) (-shift), N(P)); 01277 else { 01278 nat n= N(P) + shift; 01279 nat l= aligned_size<C,V> (n); 01280 C* r= mmx_formatted_new<C> (l, CF(P)); 01281 Pol::copy (r+shift, seg (P), N(P)); 01282 return Polynomial (r, n, l, CF(P)); 01283 } 01284 }
series< matrix<M> ,V> mmx::lshiftz_series_matrix | ( | const series< matrix< M >, V > & | f, | |
const nat & | r, | |||
const nat & | c, | |||
const int & | shift = 1 | |||
) | [inline] |
Definition at line 126 of file series_carry_linear_algebra.hpp.
References as_series(), CF(), is_exact_zero(), Matrix_series, Series, Series_matrix, and shift().
Referenced by ldiv_sc_mat_series_rep< M, V >::initialize().
00127 { 00128 if (is_exact_zero (f)) { 00129 Series zero (get_format1 (CF(f))); 00130 return as_series (Matrix_series (zero, r, c)); 00131 } 00132 return Series_matrix ((series_rep<Matrix,V>*) 00133 new lshiftz_series_matrix_rep<M,V> (f, r, c, shift)); 00134 }
series< vector<C,W> ,V> mmx::lshiftz_series_vector | ( | const series< vector< C, W >, V > & | f, | |
const nat & | n, | |||
const int & | shift = 1 | |||
) | [inline] |
Definition at line 161 of file series_vector.hpp.
References as_series(), CF(), is_exact_zero(), Series, shift(), and Vector_series.
Referenced by ldiv_sc_vec_series_rep< M, V >::initialize().
00162 { 00163 if (is_exact_zero (f)) { 00164 Series zero (get_format1 (CF(f))); 00165 return as_series (Vector_series (zero, n)); 00166 } 00167 return (series_rep<Vector,V>*) 00168 new lshiftz_series_vector_rep<C,V,W> (f, n, shift); 00169 }
double mmx::magnitude | ( | const polynomial< C, V > & | p | ) | [inline] |
Definition at line 1448 of file polynomial.hpp.
double mmx::magnitude | ( | const matrix< C, V > & | m | ) | [inline] |
Definition at line 765 of file matrix.hpp.
Definition at line 606 of file series.hpp.
References D, and Series_variant.
00606 { 00607 typedef map_series_rep<D ,typename Series_variant(D ), 00608 S1,typename Series_variant(S1),Fun> Mapper; 00609 return (series_rep<D>*) new Mapper (fun, f, fm); 00610 }
Definition at line 131 of file quotient.hpp.
References denominator(), and numerator().
00131 { 00132 return quotient<D,D> (fun (numerator (x)), fun (denominator (x))); 00133 }
quotient<D,D> mmx::map | ( | const function_1< D, Argument(S1) > & | fun, | |
const quotient< S1, S1 > & | x | |||
) | [inline] |
Definition at line 126 of file quotient.hpp.
References denominator(), and numerator().
00126 { 00127 return quotient<D,D> (fun (numerator (x)), fun (denominator (x))); 00128 }
polynomial<D> mmx::map | ( | const Fun & | fun, | |
const polynomial< S1 > & | p1, | |||
const format< D > & | fm | |||
) | [inline] |
Definition at line 540 of file matrix.hpp.
Definition at line 35 of file glue_matrix_rational.cpp.
References C, cols(), N(), and rows().
Referenced by GLUE_3(), GLUE_31(), GLUE_32(), GLUE_33(), GLUE_4(), GLUE_5(), GLUE_6(), GLUE_64(), GLUE_65(), and GLUE_66().
00035 { 00036 if (N(t) == 0) return matrix<C> (); 00037 nat i, j, rows= N(t), cols= N(t[0]); 00038 C dummy= zero_cst<C> (); 00039 matrix<C> r (dummy, rows, cols); 00040 for (i=0; i<rows; i++) { 00041 ASSERT (N(t[i]) == cols, "unequal row lengths"); 00042 for (j=0; j<cols; j++) 00043 r(i,j)= t[i][j]; 00044 } 00045 return r; 00046 }
xnat matrix_product_bit_size | ( | const integer * | s1, | |
nat | s1_rs, | |||
nat | s1_cs, | |||
const integer * | s2, | |||
nat | s2_rs, | |||
nat | s2_cs, | |||
nat | r, | |||
nat | l, | |||
nat | c | |||
) |
Definition at line 18 of file matrix_integer.cpp.
References max().
Referenced by matrix_crt_multiply_helper< integer >::size().
00021 { 00022 double count= 1.0; 00023 xnat sz = 0; 00024 // NOTE: the largest integer in the result will be bounded by 00025 // count * 2^sz at the end. The bound is computed carefully, 00026 // so as to be both fast and relatively sharp. 00027 for (nat k=0; k<l; k++) { 00028 xnat sz1= 0, sz2= 0; 00029 const integer* ss1= s1 + k * s1_cs; 00030 const integer* ss2= s2 + k * s2_rs; 00031 for (nat i=0; i<r; i++, ss1 += s1_rs) 00032 sz1= max (sz1, bit_size (*ss1)); 00033 for (nat j=0; j<c; j++, ss2 += s2_cs) 00034 sz2= max (sz2, bit_size (*ss2)); 00035 xnat szs= sz1 + sz2; 00036 if (szs > sz) { 00037 if (szs >= sz + 30) { 00038 count= (count / 1.0e9) + 1.000000001; 00039 sz = szs; 00040 } 00041 else { 00042 count= (count / ((double) (1 << (szs - sz)))) + 1.000000001; 00043 sz = szs; 00044 } 00045 } 00046 else { 00047 if (sz >= szs + 30) count += 1.0e-9; 00048 else count += 1.000000001 / ((double) (1 << (sz - szs))); 00049 } 00050 } 00051 return sz + ((xnat) logb (count)) + 1; 00052 }
xnat max_bit_size | ( | const integer * | src, | |
nat | n | |||
) |
Definition at line 113 of file kronecker_integer.cpp.
References max().
Referenced by mul_kronecker(), and square_kronecker().
nat mmx::max_polynomial_size | ( | const polynomial< C, V > * | src, | |
nat | n | |||
) | [inline] |
Definition at line 26 of file kronecker_polynomial.hpp.
Referenced by div_kronecker(), mul_kronecker(), and square_kronecker().
00026 { 00027 nat m= 0; 00028 for (nat i= 0; i < n; i++) m= max (N(src[i]), m); 00029 return m; 00030 }
polynomial<C,typename polynomial_variant_helper< C >::PV > mmx::minimal_polynomial | ( | const vector< C, W > & | v | ) | [inline] |
Definition at line 888 of file polynomial.hpp.
References minimal_polynomial_bis().
00888 { 00889 polynomial<C,typename Polynomial_variant(C) > P; 00890 minimal_polynomial_bis (P, v); 00891 return P; 00892 }
void mmx::minimal_polynomial_bis | ( | polynomial< C, V > & | p, | |
const vector< C, W > & | v | |||
) | [inline] |
Definition at line 875 of file polynomial.hpp.
References deg(), lshiftz(), N(), pade(), Polynomial, and reverse().
Referenced by minimal_polynomial().
00875 { 00876 // p is the minimal polynomial of the sequence of the elements in v 00877 // Algorithm 12.19 of "Modern Computer Algebra" 00878 nat n= N(v); nat k= n >> 1; 00879 ASSERT ((n & 1) == 0, "even size expected"); 00880 Polynomial h (v), s, t; 00881 pade (h, n, k, s, t); 00882 t= reverse (t); 00883 p= (deg(t) < 1 + deg(s)) ? lshiftz (t, 1 + deg (s) - deg (t)) : t; 00884 }
static mmx::mmx_ball | ( | mmx_floating | , | |
complex< mmx_floating > | ||||
) | const [static] |
Definition at line 472 of file glue_algebraic_number.cpp.
References as_ball().
static mmx::mmx_ball | ( | mmx_floating | , | |
mmx_floating | ||||
) | const [static] |
Definition at line 457 of file glue_algebraic_number.cpp.
References as_ball().
static mmx::mmx_table | ( | generic | , | |
generic | ||||
) | const [static] |
modulus< typename Crter::base , typename Crter::modulus_variant> mmx::moduli_product | ( | Crter & | crter | ) | [inline] |
Definition at line 314 of file crt_naive.hpp.
Referenced by implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::annulator(), implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::tevaluate(), and implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::tinterpolate().
Monomial mmx::monomial_val | ( | const quotient_series< Series, Monomial > | f | ) | [inline] |
Definition at line 119 of file quotient_series.hpp.
Referenced by operator/().
00119 { 00120 return monomial_val (f->f) * f->m; }
algebraic_number_extension<C,Ball>::El mmx::mul | ( | const algebraic_number_extension< C, Ball > & | ext, | |
const typename algebraic_number_extension< C, Ball >::El & | p1, | |||
const typename algebraic_number_extension< C, Ball >::El & | p2 | |||
) | [inline] |
Definition at line 237 of file algebraic_number.hpp.
References mul().
00237 { 00238 return mul (ext.ext, p1, p2); 00239 }
algebraic_extension<C>::El mmx::mul | ( | const algebraic_extension< C > & | ext, | |
const typename algebraic_extension< C >::El & | p1, | |||
const typename algebraic_extension< C >::El & | p2 | |||
) | [inline] |
Definition at line 102 of file algebraic_extension.hpp.
References rem().
Referenced by implementation< polynomial_evaluate, V, polynomial_naive >::annulator(), implementation< polynomial_compose, V, polynomial_naive >::compose(), fft_mul(), roots_triadic_helper< CC, UU, SS >::fft_shift(), fft_simd_transformer< C, FFTER, FFTER_SIMD, thr >::inverse_transform(), fft_triadic_threads_transformer< C, FFTER, thr >::inverse_transform_triadic(), implementation< matrix_invert, V, matrix_ring_naive< W > >::invert(), implementation< matrix_invert, V, matrix_naive >::invert(), implementation< polynomial_divide, V, polynomial_naive >::invert_hi(), implementation< polynomial_divide, V, polynomial_dicho< BV > >::invert_hi(), implementation< polynomial_divide, V, polynomial_dicho< BV > >::invert_lo(), implementation< matrix_iterate, V, matrix_naive >::iterate_mul(), multiplier< modular< modulus< C, modulus_int_preinverse< size > >, V > >::lmul(), implementation< polynomial_multiply, V, polynomial_balanced_tft< W > >::mul(), implementation< polynomial_multiply, V, polynomial_tft_inc< W, Th > >::mul(), implementation< polynomial_multiply, V, polynomial_tangent< CV > >::mul(), implementation< polynomial_multiply, V, polynomial_schonhage_inc< W, Th, Th_rec > >::mul(), implementation< polynomial_multiply, V, polynomial_quotient< W > >::mul(), implementation< polynomial_multiply, V, polynomial_modular< W > >::mul(), implementation< polynomial_multiply, V, polynomial_kronecker< W > >::mul(), implementation< polynomial_multiply, V, polynomial_complex< CV > >::mul(), implementation< polynomial_multiply, V, polynomial_balanced< W > >::mul(), implementation< matrix_multiply, V, matrix_quotient< W > >::mul(), implementation< matrix_multiply, V, matrix_crt< W > >::mul(), implementation< matrix_multiply, V, matrix_complex< CV > >::mul(), implementation< matrix_multiply, V, matrix_balanced< W > >::mul(), implementation< matrix_multiply_base, Z, matrix_assume_aligned< V, W > >::mul(), mul(), implementation< polynomial_multiply, V, polynomial_schonhage_strassen_inc< W, Th > >::mul_negative_cyclic(), implementation< polynomial_multiply, V, polynomial_schonhage_strassen_inc< W, Th > >::mul_negative_cyclic_truncated(), implementation< polynomial_vectorial, V, polynomial_naive >::mul_sc(), implementation< polynomial_multiply, V, polynomial_schonhage_triadic_inc< W, Th > >::mul_triadic(), implementation< polynomial_multiply, V, polynomial_karatsuba< W > >::multiply(), mul_series_rep< C, V >::next(), operator*(), implementation< polynomial_divide, V, polynomial_dicho< BV > >::pinvert_hi(), implementation< polynomial_divide, V, polynomial_ring_dicho_inc< W > >::pquo_rem(), implementation< polynomial_divide, V, polynomial_dicho< BV > >::pquo_rem(), implementation< matrix_iterate, V, matrix_naive >::project_iterate_mul(), implementation< polynomial_divide, V, polynomial_ring_dicho_inc< W > >::quo_rem(), implementation< polynomial_divide, V, polynomial_dicho< BV > >::quo_rem(), implementation< polynomial_euclidean, V, polynomial_dicho< BV > >::reconstruct(), multiplier< modular< modulus< C, modulus_int_preinverse< size > >, V > >::rmul(), fft_mul_sc_op::set_op(), implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::shift(), implementation< polynomial_multiply, V, polynomial_unrolled< W, m > >::square(), implementation< polynomial_multiply, V, polynomial_tft_inc< W, Th > >::square(), implementation< polynomial_multiply, V, polynomial_tangent< CV > >::square(), implementation< polynomial_multiply, V, polynomial_schonhage_inc< W, Th, Th_rec > >::square(), and implementation< polynomial_evaluate, V, polynomial_naive >::tevaluate().
00102 { 00103 return rem (p1 * p2, ext.mp); 00104 }
void mmx::mul_complete | ( | D * | dest, | |
const S1 * | src1, | |||
const S2 * | src2, | |||
nat | r, | |||
nat | rr, | |||
nat | l, | |||
nat | ll, | |||
nat | c, | |||
nat | cc, | |||
nat | hr, | |||
nat | hl, | |||
nat | hc | |||
) | [inline] |
Definition at line 44 of file matrix_unrolled.hpp.
00047 { 00048 typedef implementation<matrix_multiply,V> Mat; 00049 typedef typename Op::acc_op Acc; 00050 if (hr < r && hl != 0 && hc != 0) 00051 Mat::template mul<Op > (dest + Mat::index (hr, 0, rr, cc), 00052 src1 + Mat::index (hr, 0, rr, ll), 00053 src2, 00054 r-hr, rr, hl, ll, hc, cc); 00055 if (hc < c && hl != 0) 00056 Mat::template mul<Op > (dest + Mat::index (0, hc, rr, cc), 00057 src1, 00058 src2 + Mat::index (0, hc, ll, cc), 00059 r , rr, hl, ll, c-hc, cc); 00060 if (hl < l) 00061 Mat::template mul<Acc> (dest, 00062 src1 + Mat::index (0, hl, rr, ll), 00063 src2 + Mat::index (hl, 0, ll, cc), 00064 r , rr, l-hl, ll, c , cc); 00065 }
void mmx::mul_kronecker | ( | signed short int * | dest, | |
const signed short int * | src1, | |||
nat | n1, | |||
const signed short int * | src2, | |||
nat | n2 | |||
) |
Definition at line 183 of file kronecker_int.cpp.
void mmx::mul_kronecker | ( | polynomial< C, V > * | dest, | |
const polynomial< C, V > * | s1, | |||
nat | n1, | |||
const polynomial< C, V > * | s2, | |||
nat | n2 | |||
) | [inline] |
Definition at line 67 of file kronecker_polynomial.hpp.
References decode_kronecker(), encode_kronecker(), max_polynomial_size(), and Polynomial.
00069 { 00070 typedef implementation<polynomial_linear,V> Pol; 00071 if (n1 == 0 || n2 == 0) return; 00072 if (n1 == 1) { Pol::mul_sc (dest, s2, s1[0], n2); return; } 00073 if (n2 == 1) { Pol::mul_sc (dest, s1, s2[0], n1); return; } 00074 nat m1= max_polynomial_size (s1, n1); 00075 nat m2= max_polynomial_size (s2, n2); 00076 nat m = m1 + m2 - 1; 00077 Polynomial x1, x2, y; 00078 encode_kronecker (x1, s1, n1, m); 00079 encode_kronecker (x2, s2, n2, m); 00080 y= x1 * x2; 00081 decode_kronecker (dest, y, n1 + n2 - 1, m); }
void mmx::mul_kronecker | ( | modular< modulus< I, MoV >, modular_local > * | dest, | |
const modular< modulus< I, MoV >, modular_local > * | s1, | |||
const modular< modulus< I, MoV >, modular_local > * | s2, | |||
nat | n1, | |||
nat | n2 | |||
) | [inline] |
Definition at line 72 of file kronecker_modular_int.hpp.
References C, get_modulus(), I, and mul_kronecker_mod().
00072 { 00073 nat l1= default_aligned_size<I> (n1), l2= default_aligned_size<I> (n2); 00074 nat spc= l1 + l2 + default_aligned_size<I> (n1 + n2 - 1); 00075 I* t1= mmx_new<I> (spc); I* t2= t1 + l1, * r= t1 + l1 + l2; 00076 for (nat i= 0; i < n1; i++) t1[i]= * s1[i]; 00077 for (nat i= 0; i < n2; i++) t2[i]= * s2[i]; 00078 I p= * get_modulus (s1[0]); 00079 mul_kronecker_mod (r, t1, n1, t2, n2, p); 00080 for (nat i= 0; i < n1 + n2 - 1; i++) dest[i]= C (* r[i], p, true); 00081 mmx_delete<I> (t1, spc); 00082 }
void mmx::mul_kronecker | ( | modular< modulus< I, MoV >, MaV > * | dest, | |
const modular< modulus< I, MoV >, MaV > * | s1, | |||
nat | n1, | |||
const modular< modulus< I, MoV >, MaV > * | s2, | |||
nat | n2 | |||
) | [inline] |
Definition at line 51 of file kronecker_modular_int.hpp.
References I, and mul_kronecker_mod().
00051 { 00052 mul_kronecker_mod ((I*) (void*) dest, 00053 (const I*) (const void*) s1, n1, 00054 (const I*) (const void*) s2, n2, 00055 * C::get_modulus()); 00056 }
void mul_kronecker | ( | integer * | dest, | |
const integer * | src1, | |||
nat | n1, | |||
const integer * | src2, | |||
nat | n2 | |||
) |
Definition at line 121 of file kronecker_integer.cpp.
References decode_kronecker(), encode_kronecker(), max_bit_size(), and min().
00124 { 00125 /* 00126 mmout << "n1= " << n1 << ", " << "n2= " << n2 << "\n"; 00127 for (nat i=0; i<n1; i++) 00128 mmout << " s" << i << "\t" << src1[i] << "\n"; 00129 for (nat i=0; i<n2; i++) 00130 mmout << " t" << i << "\t" << src2[i] << "\n"; 00131 */ 00132 if (n1 == 0 && n2 == 0) return; 00133 for (nat i= 0; i < n1 + n2 - 1; i++) dest[i]= 0; 00134 while (n1 > 0 && src1[n1-1] == 0) n1--; 00135 while (n2 > 0 && src2[n2-1] == 0) n2--; 00136 if (n1 == 0 || n2 == 0) return; 00137 00138 xnat bits1= max_bit_size (src1, n1); 00139 xnat bits2= max_bit_size (src2, n2); 00140 xnat bits= bits1 + bits2 + bit_size (integer (min (n1, n2))) + 1; 00141 integer aux1, aux2; 00142 //mmout << "Encoding\n"; 00143 //nat start= mmx_time (); 00144 encode_kronecker (aux1, src1, n1, bits); 00145 encode_kronecker (aux2, src2, n2, bits); 00146 //mmout << "Done in " << mmx_time () - start << "ms\n"; 00147 //mmout << "Multiplying\n"; 00148 //start= mmx_time (); 00149 integer aux= aux1*aux2; 00150 //mmout << "Done in " << mmx_time () - start << "ms\n"; 00151 //mmout << "Decoding\n"; 00152 //start= mmx_time (); 00153 decode_kronecker (dest, n1+n2-1, bits, aux); 00154 //mmout << "Done in " << mmx_time () - start << "ms\n"; 00155 00156 /* 00157 integer* dest1= mmx_new<integer> (n1+n2-1); 00158 decode_kronecker_naive (dest1, n1+n2-1, bits, aux); 00159 decode_kronecker (dest, n1+n2-1, bits, aux); 00160 for (nat i=0; i<n1+n2-1; i++) { 00161 mmout << "naive\t" << i << "\t" << dest1[i] << "\n"; 00162 mmout << "fast\t" << i << "\t" << dest[i] << "\n"; 00163 } 00164 mmx_delete<integer> (dest1, n1+n2-1); 00165 */ 00166 }
void mul_kronecker | ( | unsigned long long int * | dest, | |
const unsigned long long int * | src1, | |||
nat | n1, | |||
const unsigned long long int * | src2, | |||
nat | n2 | |||
) |
Definition at line 190 of file kronecker_int.cpp.
void mul_kronecker | ( | long long int * | dest, | |
const long long int * | src1, | |||
nat | n1, | |||
const long long int * | src2, | |||
nat | n2 | |||
) |
Definition at line 189 of file kronecker_int.cpp.
void mul_kronecker | ( | unsigned long int * | dest, | |
const unsigned long int * | src1, | |||
nat | n1, | |||
const unsigned long int * | src2, | |||
nat | n2 | |||
) |
Definition at line 188 of file kronecker_int.cpp.
void mul_kronecker | ( | long int * | dest, | |
const long int * | src1, | |||
nat | n1, | |||
const long int * | src2, | |||
nat | n2 | |||
) |
Definition at line 187 of file kronecker_int.cpp.
void mul_kronecker | ( | unsigned int * | dest, | |
const unsigned int * | src1, | |||
nat | n1, | |||
const unsigned int * | src2, | |||
nat | n2 | |||
) |
Definition at line 186 of file kronecker_int.cpp.
void mul_kronecker | ( | int * | dest, | |
const int * | src1, | |||
nat | n1, | |||
const int * | src2, | |||
nat | n2 | |||
) |
Definition at line 185 of file kronecker_int.cpp.
void mul_kronecker | ( | unsigned short int * | dest, | |
const unsigned short int * | src1, | |||
nat | n1, | |||
const unsigned short int * | src2, | |||
nat | n2 | |||
) |
Definition at line 184 of file kronecker_int.cpp.
void mmx::mul_kronecker | ( | short int * | dest, | |
const short int * | src1, | |||
nat | n1, | |||
const short int * | src2, | |||
nat | n2 | |||
) |
void mul_kronecker | ( | unsigned char * | dest, | |
const unsigned char * | src1, | |||
nat | n1, | |||
const unsigned char * | src2, | |||
nat | n2 | |||
) |
Definition at line 182 of file kronecker_int.cpp.
void mul_kronecker | ( | signed char * | dest, | |
const signed char * | src1, | |||
nat | n1, | |||
const signed char * | src2, | |||
nat | n2 | |||
) |
Definition at line 181 of file kronecker_int.cpp.
Referenced by implementation< polynomial_multiply, V, polynomial_kronecker< W > >::mul().
static void mmx::mul_kronecker_int | ( | I * | dest, | |
const I * | src1, | |||
nat | n1, | |||
const I * | src2, | |||
nat | n2 | |||
) | [inline, static] |
Definition at line 159 of file kronecker_int.cpp.
References decode_kronecker(), encode_kronecker(), I, and min().
00162 { 00163 if (n1 == 0 && n2 == 0) return; 00164 for (nat i= 0; i < n1 + n2 - 1; i++) dest[i]= 0; 00165 while (n1 > 0 && src1[n1-1] == 0) n1--; 00166 while (n2 > 0 && src2[n2-1] == 0) n2--; 00167 if (n1 == 0 || n2 == 0) return; 00168 00169 xnat bits= 16 * sizeof (I) + bit_size (min (n1, n2)); 00170 integer aux1, aux2; 00171 encode_kronecker (aux1, src1, n1, bits); 00172 encode_kronecker (aux2, src2, n2, bits); 00173 integer aux= aux1 * aux2; 00174 decode_kronecker (dest, n1+n2-1, bits, aux); 00175 }
void mul_kronecker_mod | ( | unsigned long long int * | dest, | |
const unsigned long long int * | src1, | |||
nat | n1, | |||
const unsigned long long int * | src2, | |||
nat | n2, | |||
const unsigned long long int & | p | |||
) |
Definition at line 130 of file kronecker_modular_int.cpp.
void mul_kronecker_mod | ( | long long int * | dest, | |
const long long int * | src1, | |||
nat | n1, | |||
const long long int * | src2, | |||
nat | n2, | |||
const long long int & | p | |||
) |
Definition at line 129 of file kronecker_modular_int.cpp.
void mul_kronecker_mod | ( | unsigned long int * | dest, | |
const unsigned long int * | src1, | |||
nat | n1, | |||
const unsigned long int * | src2, | |||
nat | n2, | |||
const unsigned long int & | p | |||
) |
Definition at line 128 of file kronecker_modular_int.cpp.
void mul_kronecker_mod | ( | long int * | dest, | |
const long int * | src1, | |||
nat | n1, | |||
const long int * | src2, | |||
nat | n2, | |||
const long int & | p | |||
) |
Definition at line 127 of file kronecker_modular_int.cpp.
void mul_kronecker_mod | ( | unsigned int * | dest, | |
const unsigned int * | src1, | |||
nat | n1, | |||
const unsigned int * | src2, | |||
nat | n2, | |||
const unsigned int & | p | |||
) |
Definition at line 126 of file kronecker_modular_int.cpp.
void mul_kronecker_mod | ( | int * | dest, | |
const int * | src1, | |||
nat | n1, | |||
const int * | src2, | |||
nat | n2, | |||
const int & | p | |||
) |
Definition at line 125 of file kronecker_modular_int.cpp.
void mul_kronecker_mod | ( | unsigned short int * | dest, | |
const unsigned short int * | src1, | |||
nat | n1, | |||
const unsigned short int * | src2, | |||
nat | n2, | |||
const unsigned short int & | p | |||
) |
Definition at line 124 of file kronecker_modular_int.cpp.
void mul_kronecker_mod | ( | short int * | dest, | |
const short int * | src1, | |||
nat | n1, | |||
const short int * | src2, | |||
nat | n2, | |||
const short int & | p | |||
) |
Definition at line 123 of file kronecker_modular_int.cpp.
void mul_kronecker_mod | ( | unsigned char * | dest, | |
const unsigned char * | src1, | |||
nat | n1, | |||
const unsigned char * | src2, | |||
nat | n2, | |||
const unsigned char & | p | |||
) |
Definition at line 122 of file kronecker_modular_int.cpp.
void mul_kronecker_mod | ( | signed char * | dest, | |
const signed char * | src1, | |||
nat | n1, | |||
const signed char * | src2, | |||
nat | n2, | |||
const signed char & | p | |||
) |
static void mmx::mul_kronecker_mod_int | ( | I * | dest, | |
const I * | src1, | |||
nat | n1, | |||
const I * | src2, | |||
nat | n2, | |||
const I & | p | |||
) | [inline, static] |
Definition at line 99 of file kronecker_modular_int.cpp.
References decode_kronecker_mod(), encode_kronecker(), and min().
00102 { 00103 if (n1 == 0 && n2 == 0) return; 00104 for (nat i= 0; i < n1 + n2 - 1; i++) dest[i]= 0; 00105 while (n1 > 0 && src1[n1-1] == 0) n1--; 00106 while (n2 > 0 && src2[n2-1] == 0) n2--; 00107 if (n1 == 0 || n2 == 0) return; 00108 00109 xnat bits= 2 * bit_size (p-1) + bit_size (min (n1, n2)); 00110 integer aux1, aux2; 00111 encode_kronecker (aux1, src1, n1, bits); 00112 encode_kronecker (aux2, src2, n2, bits); 00113 integer aux= aux1*aux2; 00114 decode_kronecker_mod (dest, n1+n2-1, bits, aux, p); 00115 }
matrix<C> mmx::mul_matrix | ( | const algebraic_extension< C > & | ext1, | |
const algebraic_extension< C > & | ext2, | |||
const vector< C > & | v | |||
) | [inline] |
Definition at line 172 of file algebraic_extension.hpp.
References CF(), deg(), promote(), shift1(), and shift2().
Referenced by pow_matrix().
00172 { 00173 // let p (x1, x2) be the bivariate polynomial represented by v 00174 // return the matrix whose rows represent polynomials p (x1, x2) x1^i x2^j 00175 nat d1= deg (ext1.mp), d2= deg (ext2.mp); 00176 matrix<C> r (promote (0, CF(ext1)), d1*d2, d1*d2); 00177 vector<C> aux= fill<C> (promote (0, CF(ext1)), d1*d2); 00178 for (nat i1=0; i1<d1; i1++) { 00179 if (i1 == 0) 00180 for (nat k=0; k<d1*d2; k++) 00181 r (0, k)= v[k]; 00182 else { 00183 for (nat k=0; k<d1*d2; k++) 00184 aux[k]= r((i1-1)*d2, k); 00185 aux= shift1 (ext1, ext2, aux); 00186 for (nat k=0; k<d1*d2; k++) 00187 r(i1*d2, k)= aux[k]; 00188 } 00189 for (nat i2=1; i2<d2; i2++) { 00190 for (nat k=0; k<d1*d2; k++) 00191 aux[k]= r(i1*d2 + i2-1, k); 00192 aux= shift2 (ext1, ext2, aux); 00193 for (nat k=0; k<d1*d2; k++) 00194 r(i1*d2 + i2, k)= aux[k]; 00195 } 00196 } 00197 return r; 00198 }
void mmx::mul_unrolled | ( | D * | dest, | |
const S1 * | src1, | |||
const S2 * | src2, | |||
nat | r, | |||
nat | rr, | |||
nat | l, | |||
nat | ll, | |||
nat | c, | |||
nat | cc | |||
) | [inline] |
Definition at line 73 of file matrix_unrolled.hpp.
00075 { 00076 typedef implementation<matrix_multiply,V> Mat; 00077 typedef implementation<matrix_multiply_base,matrix_naive> NMat; 00078 typedef typename Op::acc_op Acc; 00079 nat nr= r/ur, nl= l/ul, nc= c/uc; 00080 if (nl == 0) 00081 NMat::template clr<Op> (dest, r, rr, c, cc); 00082 else 00083 for (nat ir=0; ir<nr; ir++) 00084 for (nat ic=0; ic<nc; ic++) { 00085 nat il=0; 00086 for (; il<1; il++) 00087 matrix_multiply_helper<Op,D,S1,S2,ur,ul,uc>:: 00088 mul_stride (dest + Mat::index (ir*ur, ic*uc, rr, cc), 00089 src1 + Mat::index (ir*ur, il*ul, rr, ll), 00090 src2 + Mat::index (il*ul, ic*uc, ll, cc), 00091 rr, ll); 00092 for (; il<nl; il++) 00093 matrix_multiply_helper<Acc,D,S1,S2,ur,ul,uc>:: 00094 mul_stride (dest + Mat::index (ir*ur, ic*uc, rr, cc), 00095 src1 + Mat::index (ir*ur, il*ul, rr, ll), 00096 src2 + Mat::index (il*ul, ic*uc, ll, cc), 00097 rr, ll); 00098 } 00099 mul_complete<Op,V> (dest, src1, src2, r, rr, l, ll, c, cc, 00100 ur*nr, ul*nl, uc*nc); 00101 }
V nat N | ( | const polynomial< C, V > & | P | ) | [inline] |
Definition at line 190 of file polynomial.hpp.
nat mmx::N | ( | const matrix< C, V > & | m | ) | [inline] |
nat mmx::N | ( | const crt_naive_transformer< C, M, V > & | crter | ) | [inline] |
Definition at line 299 of file crt_naive.hpp.
References crt_naive_transformer< C, S, V >::size().
nat mmx::N | ( | const crt_dicho_transformer< C, M, V > & | crter | ) | [inline] |
Definition at line 208 of file crt_dicho.hpp.
References crt_dicho_transformer< C, S, V >::size().
nat mmx::N | ( | const crt_blocks_transformer< WL, WH, s, V > & | crter | ) | [inline] |
Definition at line 175 of file crt_blocks.hpp.
References crt_blocks_transformer< WL, WH, s, V >::size().
Referenced by slp_polynomial_regular_root_series_rep< M, V, L >::_derive(), slp_polynomial_regular_root_series_rep< M, V, L >::_eps(), slp_polynomial_regular_root_series_rep< M, V, L >::_eval(), slp_polynomial_regular_root_series_rep< M, V, L >::_eval2(), implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_dicho_inc< BV > >::_half_gcd(), implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::_multi_rem(), access(), annihilator(), implementation< polynomial_evaluate, V, polynomial_naive >::annulator(), implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::annulator(), as_matrix(), as_p_expansion(), as_vector(), big_add(), big_mul(), binary_map_scalar(), binary_test(), coefficients(), compare(), compose(), contents(), moduli_helper< integer, M, fft_prime_sequence_int< t > >::covering(), crt_blocks_transformer< WL, WH, s, V >::crt_blocks_transformer(), crt_dicho_transformer< C, S, V >::crt_dicho_transformer(), as_helper< polynomial< T, TV >, polynomial< F, FV > >::cv(), as_helper< polynomial< modular< modulus< C, U1 >, U2 >, V >, Lift_type(modular< modulus< C, U1 >, U2 >)>::cv(), fast_helper< polynomial< C, V > >::dd(), decode_kronecker(), ser_polynomial_regular_root_op::def(), ser_carry_polynomial_regular_root_op::def(), derive(), implementation< series_multiply, U, series_fast >::determine_sizes(), dilate(), direct_crt(), implementation< polynomial_evaluate, V, polynomial_naive >::evaluate(), implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::evaluate(), evaluate(), expand(), coprime_moduli_sequence_polynomial::extend(), probable_prime_sequence_int< s >::extend(), fft_prime_sequence_int< s >::extend(), prime_sequence_int::extend(), extract_mod(), flatten(), implementation< polynomial_gcd, V, polynomial_ring_naive< W > >::gcd(), implementation< polynomial_gcd, V, polynomial_naive >::gcd(), mul_series_rep< M, V >::get_power_of_p(), get_vector_format(), GLUE_2(), GLUE_22(), GLUE_32(), GLUE_34(), GLUE_4(), GLUE_6(), GLUE_61(), GLUE_64(), GLUE_67(), GLUE_7(), GLUE_80(), graeffe(), implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_dicho_inc< BV > >::half_subresultant(), implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_dicho_inc< BV > >::half_subresultant_rec(), hankel_matrix(), implicit_vector_series(), vector_series_rep< C, V, W >::Increase_order(), solver_series_rep< C, V >::Increase_order(), mul_series_rep< C, V >::Increase_order(), slp_polynomial_regular_root_series_rep< M, V, L >::increase_order_generic(), fixed_point_vector_series_rep< C >::initialize(), fixed_point_series_rep< C >::initialize(), inv_mod_polynomial_series_rep< C, U, V, W >::initialize(), insert_and_reduce(), integrate(), implementation< polynomial_evaluate, V, polynomial_naive >::interpolate(), implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::interpolate(), inverse_base(), invert(), invert_hi(), invert_lo(), implementation< polynomial_gcd, X, polynomial_series< BV > >::invert_mod(), is_reconstructible(), join(), lshiftz(), map(), implementation< matrix_multiply, V, matrix_crt< W > >::mat_direct_crt(), implementation< matrix_multiply, V, matrix_crt< W > >::mat_inverse_crt(), implementation< matrix_multiply, V, matrix_balanced< W > >::mat_size(), matrix_new(), max_polynomial_size(), minimal_polynomial_bis(), implementation< matrix_multiply, V, matrix_crt< W > >::mul(), mul_series_rep< M, V >::mul_series_rep(), implementation< polynomial_evaluate, V, polynomial_gcd_ring_dicho_inc< W > >::multi_gcd(), implementation< polynomial_evaluate, V, polynomial_naive >::multi_rem(), vector_series_rep< C, V, W >::next(), vector_access_series_rep< C, V, W >::next(), solver_series_rep< C, V >::next(), polynomial_series_rep< C, V >::next(), mul_series_rep< M, V >::next(), quotient_normalization_helper< polynomial< C, V >, polynomial< C, V > >::normalize(), nr_transpositions(), nrelax_mul_series_rep< C, V >::nrelax_mul_series_rep(), nth_root(), ser_carry_polynomial_regular_root_op::op(), permutation::operator()(), operator*(), operator+(), polynomial< C, V >::operator+=(), operator-(), polynomial< C, V >::operator-=(), operator/(), coprime_moduli_sequence< M, V >::operator[](), pade(), implementation< series_polynomial_regular_root, U, series_naive >::pol_root(), implementation< series_polynomial_regular_root, U, series_carry_naive >::pol_root(), implementation< series_polynomial_regular_root, U, series_carry_monoblock< W, s, BV, t > >::pol_root(), implementation< series_polynomial_regular_root, U, series_carry_monoblock< W, s, BV, t > >::pol_root_init(), polynomial< L >::polynomial(), polynomial_modular_root(), polynomial_modular_roots(), pquo(), prem(), primitive_part(), q_difference(), quo(), range(), slp_polynomial_regular_root_series_rep< M, V, L >::rec_prod(), slp_polynomial_regular_root_series_rep< M, V, L >::rec_square(), implementation< polynomial_gcd, V, polynomial_ring_naive< W > >::reconstruct(), implementation< polynomial_gcd, V, polynomial_naive >::reconstruct(), reconstruct(), rem(), reverse(), root_modular_naive::roots(), row_matrix(), separable_root(), set_as(), lift_helper< polynomial< C, V > >::set_op(), mul_series_rep< M, V >::Set_order(), shift(), sign(), singleton_vector(), matrix_crt_multiply_helper< C >::size(), size_bound_in_base_helper< C, I >::size(), skew_div(), solver_series_rep< C, V >::solver_series_rep(), square(), implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_dicho_inc< BV > >::subresultant_compose(), implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_ducos_inc< BV > >::subresultant_sequence(), implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_naive_inc< W > >::subresultant_sequence(), implementation< polynomial_subresultant_base, V, polynomial_ring_naive< W > >::subresultant_sequence(), implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_dicho_inc< BV > >::subresultant_sequence(), implementation< polynomial_subresultant, V, polynomial_naive >::subresultant_sequence(), implementation< polynomial_subresultant_base, V, polynomial_naive >::subresultant_sequence(), tensor_matrix(), implementation< polynomial_evaluate, V, polynomial_naive >::tevaluate(), implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::tevaluate(), implementation< polynomial_evaluate, V, polynomial_naive >::tinterpolate(), implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::tinterpolate(), tmul(), toeplitz_matrix(), tquo(), trem(), unary_hash(), unary_map(), fast_helper< polynomial< C, V > >::uu(), val(), vandermonde(), WRAP_BINARY_IMPL(), binary_helper< polynomial< C, V > >::write(), and xderive().
nat mmx::nbcol | ( | const matrix< C, V > & | m | ) | [inline] |
nat mmx::nbrow | ( | const matrix< C, V > & | m | ) | [inline] |
quotient_series<Series,Monomial> mmx::normalize | ( | const quotient_series< Series, Monomial > & | f, | |
const Monomial & | dom_m | |||
) | [inline] |
Definition at line 131 of file quotient_series.hpp.
References lshiftz(), and Quotient_series.
00131 { 00132 return Quotient_series (lshiftz (f->f, f->m / dom_m), dom_m); }
algebraic_number_extension<C,Ball> mmx::normalize | ( | const algebraic_number_extension< C, Ball > & | ext, | |
const typename algebraic_number_extension< C, Ball >::El & | p | |||
) | [inline] |
Definition at line 360 of file algebraic_number.hpp.
References annihilator(), Ball, eval(), Extension, Field, mmx_bit_precision, Polynomial, and shrink().
00360 { 00361 Polynomial mp= annihilator (ext.ext, p); 00362 Ball z; 00363 nat old_precision= mmx_bit_precision; 00364 while (true) { 00365 z= eval (ext, p); 00366 if (shrink (mp, z)) break; 00367 mmx_bit_precision= mmx_bit_precision << 1; 00368 } 00369 mmx_bit_precision= old_precision; 00370 return Field (Extension (mp), z); 00371 }
algebraic_extension<C> mmx::normalize | ( | const algebraic_extension< C > & | ext, | |
const typename algebraic_extension< C >::El & | p | |||
) | [inline] |
Definition at line 331 of file algebraic_extension.hpp.
References annihilator(), and Extension.
00331 { 00332 return Extension (annihilator (ext, p)); 00333 }
Definition at line 199 of file algebraic.hpp.
References Algebraic, CF(), Extension, field(), Polynomial, promote(), and value().
Referenced by abs(), GLUE_48(), GLUE_6(), polynomial< C, V >::operator+=(), quotient< NT, DT >::quotient(), Re(), root(), set_as(), and REP_STRUCT< Series, Monomial >::unknown_rep().
nat nr_transpositions | ( | const permutation & | p | ) |
Definition at line 39 of file permutation.cpp.
References N().
Referenced by GLUE_9().
00039 { 00040 nat s= 0, n= N(p); 00041 for (nat i=0; i<n; i++) 00042 if (p (i) > i) s += p (i) - i; 00043 return s; 00044 }
Definition at line 165 of file root_modular.hpp.
References N(), and nth_roots().
vector< modular< modulus<C,V> ,W> > mmx::nth_roots | ( | const modular< modulus< C, V >, W > & | a, | |
nat | r | |||
) | [inline] |
Definition at line 157 of file root_modular.hpp.
References C, get_modulus(), Modular, and separable_roots().
Referenced by nth_root().
00157 { 00158 // return all the r th roots of a 00159 C p= * get_modulus (a); 00160 if (Modular (r) == 0) return nth_roots (a, r / as<nat> (p)); 00161 return separable_roots (a, r); 00162 }
Definition at line 617 of file series.hpp.
References C, recursive(), and Series_variant.
00617 { 00618 typedef typename Series_variant (C) V; 00619 typedef implementation<series_recursive_abstractions,V> Ser; 00620 typedef typename Ser::template nullary_recursive_series_rep<Op,C,V> Nullary; 00621 series_rep<C>* rep= new Nullary (c); 00622 return recursive (series<C> (rep)); 00623 }
NT numerator | ( | const quotient< NT, DT > & | x | ) | [inline] |
Definition at line 98 of file quotient.hpp.
Referenced by CF(), complete(), as_helper< modular< modulus< polynomial< C, V >, MoV >, MaV >, quotient< polynomial< C, V >, polynomial< C, V > > >::cv(), derive(), binary_helper< quotient< NT, DT > >::disassemble(), exact_eq(), exact_hash(), flatten(), GLUE_5(), hard_eq(), hard_hash(), hash(), is_evaluable(), map(), operator*(), operator+(), operator-(), operator/(), operator==(), precision(), sign(), binary_helper< quotient< NT, DT > >::write(), and xderive().
00098 { return x.n; }
bool mmx::operator!= | ( | const series< C, V > & | f1, | |
const series< C, V > & | f2 | |||
) | [inline] |
Definition at line 304 of file series.hpp.
bool mmx::operator!= | ( | const quotient_series< Series, Monomial > & | f, | |
const quotient_series< Series, Monomial > & | g | |||
) | [inline] |
Definition at line 97 of file quotient_series.hpp.
bool mmx::operator!= | ( | const quotient< NT, DT > & | x1, | |
const quotient< NT, DT > & | x2 | |||
) | [inline] |
Definition at line 147 of file quotient.hpp.
bool mmx::operator!= | ( | const K & | c, | |
const matrix< C, V > & | m | |||
) | [inline] |
bool mmx::operator!= | ( | const matrix< C, V > & | m, | |
const K & | c | |||
) | [inline] |
bool mmx::operator!= | ( | const algebraic_number_extension< C, Ball > & | x, | |
const algebraic_number_extension< C, Ball > & | y | |||
) | [inline] |
Definition at line 80 of file algebraic_number.hpp.
00080 { 00081 return (*x) != (*y); }
bool mmx::operator!= | ( | const algebraic_extension< C > & | x, | |
const algebraic_extension< C > & | y | |||
) | [inline] |
Definition at line 60 of file algebraic_extension.hpp.
00060 { 00061 return (*x) != (*y); }
bool mmx::operator!= | ( | const algebraic< C, Extension > & | x1, | |
const algebraic< C, Extension > & | x2 | |||
) | [inline] |
Definition at line 128 of file algebraic.hpp.
References is_zero().
00128 { 00129 return !is_zero (x1 - x2); }
series< unknown<C,V> ,UV> mmx::operator* | ( | const series< unknown< C, V >, UV > & | f, | |
const series< unknown< C, V >, UV > & | g | |||
) | [inline] |
Definition at line 414 of file series_implicit.hpp.
References CF(), and is_exact_zero().
00414 { 00415 if (is_exact_zero (f) || is_exact_zero (g)) 00416 return series<UC,UV> (CF(f)); 00417 return (series_rep<UC,UV>*) new subst_mul_series_rep<C,V,UV> (f, g); 00418 }
Definition at line 269 of file series_implicit.hpp.
References is_exact_zero(), known(), substitute(), and UC.
00269 { 00270 //mmerr << " times " << c1 << ", " << c2 << "\n"; 00271 if (is_exact_zero (c1)) return c1; 00272 if (is_exact_zero (c2)) return c2; 00273 if (c1->i1 == c1->i2) return known (c1) * c2; 00274 if (c2->i1 == c2->i2) return c1 * known (c2); 00275 UC c1b= substitute (c1); 00276 UC c2b= substitute (c2); 00277 if (c1b->i1 == c1b->i2) return known (c1b) * c2b; 00278 if (c2b->i1 == c2b->i2) return c1b * known (c2b); 00279 ERROR ("invalid product of unknown coefficients"); 00280 }
Definition at line 205 of file series_implicit.hpp.
References C, is_exact_zero(), and UC.
00205 { 00206 //mmerr << " scalar times " << c1 << ", " << c2 << "\n"; 00207 if (is_exact_zero (c2)) return c2; 00208 if (is_exact_zero (c1)) 00209 return UC (c2->f, C (0), mmx_new<C> (0), c2->i1, c2->i1); 00210 nat n= c2->i2 - c2->i1; 00211 C* s= mmx_new<C> (n); 00212 for (nat i=0; i<n; i++) 00213 s[i]= c1 * c2->s[i]; 00214 return UC (c2->f, c1 * c2->b, s, c2->i1, c2->i2); 00215 }
Definition at line 192 of file series_implicit.hpp.
References C, is_exact_zero(), and UC.
00192 { 00193 //mmerr << " scalar times " << c1 << ", " << c2 << "\n"; 00194 if (is_exact_zero (c1)) return c1; 00195 if (is_exact_zero (c2)) 00196 return UC (c1->f, C (0), mmx_new<C> (0), c1->i1, c1->i1); 00197 nat n= c1->i2 - c1->i1; 00198 C* s= mmx_new<C> (n); 00199 for (nat i=0; i<n; i++) 00200 s[i]= c1->s[i] * c2; 00201 return UC (c1->f, c1->b * c2, s, c1->i1, c1->i2); 00202 }
Definition at line 1096 of file series.hpp.
Definition at line 763 of file series.hpp.
References is_exact_zero(), and Series.
00763 { 00764 if (is_exact_zero (f) || is_exact_zero (c)) 00765 return Series (get_format (c)); 00766 return binary_scalar_series<lmul_op> (f, c); 00767 }
Definition at line 756 of file series.hpp.
References is_exact_zero(), and Series.
00756 { 00757 if (is_exact_zero (f) || is_exact_zero (c)) 00758 return Series (get_format (c)); 00759 return binary_scalar_series<rmul_op> (f, c); 00760 }
quotient_series<Series,Monomial> mmx::operator* | ( | const quotient_series< Series, Monomial > & | f, | |
const quotient_series< Series, Monomial > & | g | |||
) | [inline] |
Definition at line 202 of file quotient_series.hpp.
References Quotient_series.
00202 { 00203 return Quotient_series (f->f * g->f, f->m * g->m); 00204 }
quotient_series<Series,Monomial> mmx::operator* | ( | const quotient_series< Series, Monomial > & | f, | |
const typename scalar_type_helper< Series >::val & | c | |||
) | [inline] |
Definition at line 197 of file quotient_series.hpp.
References Quotient_series.
00197 { 00198 return Quotient_series (c * f->f, f->m); 00199 }
quotient_series<Series,Monomial> mmx::operator* | ( | const typename scalar_type_helper< Series >::val & | c, | |
const quotient_series< Series, Monomial > & | f | |||
) | [inline] |
Definition at line 192 of file quotient_series.hpp.
References Quotient_series.
00192 { 00193 return Quotient_series (c * f->f, f->m); 00194 }
quotient_series<Series,Monomial> mmx::operator* | ( | const quotient_series< Series, Monomial > & | f, | |
const Monomial & | m | |||
) | [inline] |
Definition at line 187 of file quotient_series.hpp.
References Quotient_series.
00187 { 00188 return Quotient_series (f->f, f->m * m); 00189 }
quotient_series<Series,Monomial> mmx::operator* | ( | const Monomial & | m, | |
const quotient_series< Series, Monomial > & | f | |||
) | [inline] |
Definition at line 182 of file quotient_series.hpp.
References Quotient_series.
00182 { 00183 return Quotient_series (f->f, m * f->m); 00184 }
quotient< polynomial<C,V> , polynomial<C,V> > mmx::operator* | ( | const quotient< polynomial< C, V >, polynomial< C, V > > & | x, | |
const C & | c | |||
) | [inline] |
Definition at line 52 of file quotient_polynomial.hpp.
References denominator(), numerator(), and Quotient.
00052 { 00053 return Quotient (numerator (x) * c, denominator (x)); 00054 }
quotient< polynomial<C,V> , polynomial<C,V> > mmx::operator* | ( | const C & | c, | |
const quotient< polynomial< C, V >, polynomial< C, V > > & | x | |||
) | [inline] |
Definition at line 47 of file quotient_polynomial.hpp.
References denominator(), numerator(), and Quotient.
00047 { 00048 return Quotient (c * numerator (x), denominator (x)); 00049 }
quotient<NT,DT> mmx::operator* | ( | const quotient< NT, DT > & | x1, | |
const quotient< NT, DT > & | x2 | |||
) | [inline] |
Definition at line 258 of file quotient.hpp.
References denominator(), DT, gcd(), numerator(), and Quotient.
00258 { 00259 DT g1 = gcd (numerator (x1), denominator (x2)); 00260 DT g2 = gcd (numerator (x2), denominator (x1)); 00261 return Quotient ((numerator (x1) / g1) * (numerator (x2) / g2), 00262 (denominator (x1) / g2) * (denominator (x2) / g1)); 00263 }
Definition at line 252 of file quotient.hpp.
References denominator(), DT, gcd(), numerator(), and Quotient.
00252 { 00253 DT g = gcd (c, denominator (x)); 00254 return Quotient (numerator (x) * (c / g), denominator (x) / g); 00255 }
Definition at line 246 of file quotient.hpp.
References denominator(), DT, gcd(), numerator(), and Quotient.
00246 { 00247 DT g = gcd (c, denominator (x)); 00248 return Quotient ((c / g) * numerator (x), denominator (x) / g); 00249 }
polynomial<C,V> mmx::operator* | ( | const C & | c, | |
const polynomial< C, V > & | P | |||
) | [inline] |
Definition at line 566 of file polynomial.hpp.
References C, CF(), N(), Polynomial, and seg().
polynomial<C,V> mmx::operator* | ( | const polynomial< C, V > & | P, | |
const C & | c | |||
) | [inline] |
Definition at line 556 of file polynomial.hpp.
References C, CF(), N(), Polynomial, and seg().
polynomial<C,V> mmx::operator* | ( | const polynomial< C, V > & | P1, | |
const polynomial< C, V > & | P2 | |||
) | [inline] |
Definition at line 511 of file polynomial.hpp.
References C, CF(), mul(), N(), Polynomial, and seg().
00511 { 00512 typedef implementation<polynomial_multiply,V> Pol; 00513 nat n1= N(P1), n2= N(P2); 00514 if (n1 == 0 || n2 == 0) return Polynomial (CF(P1)); 00515 nat l= aligned_size<C,V> (n1+n2-1); 00516 C* r= mmx_formatted_new<C> (l, CF(P1)); 00517 Pol::mul (r, seg (P1), seg (P2), n1, n2); 00518 return Polynomial (r, n1+n2-1, l, CF(P1)); 00519 }
permutation operator* | ( | const permutation & | p1, | |
const permutation & | p2 | |||
) |
Definition at line 47 of file permutation.cpp.
References N().
X mmx::operator* | ( | const multiplier< C > & | b, | |
const X & | a | |||
) | [inline] |
Definition at line 61 of file multiplier.hpp.
multiplier<C> X mmx::operator* | ( | const X & | a, | |
const multiplier< C > & | b | |||
) | [inline] |
Definition at line 55 of file multiplier.hpp.
Definition at line 39 of file matrix_int.hpp.
References promote().
Definition at line 1148 of file matrix.hpp.
References CF(), cols(), is_a_scalar(), Matrix, promote(), rows(), seg(), and tab().
01148 { 01149 // returns transpose (as_matrix (p)) * m 01150 typedef implementation<matrix_permute,V> Mat; 01151 if (is_a_scalar (m)) return m; 01152 nat rs= rows (m), cs= cols (m); 01153 Matrix dest (promote (0, CF(m)), rs, cs); 01154 Mat::row_permute (tab (dest), tab (m), seg (*p), rs, cs); 01155 return dest; 01156 }
Definition at line 1137 of file matrix.hpp.
References CF(), cols(), is_a_scalar(), Matrix, promote(), rows(), seg(), and tab().
01137 { 01138 // returns m * as_matrix (p) 01139 typedef implementation<matrix_permute,V> Mat; 01140 if (is_a_scalar (m)) return m; 01141 nat rs= rows (m), cs= cols (m); 01142 Matrix dest (promote (0, CF(m)), rs, cs); 01143 Mat::col_permute (tab (dest), tab (m), seg (*p), rs, cs); 01144 return dest; 01145 }
Definition at line 997 of file matrix.hpp.
References CF(), cols(), is_a_scalar(), is_non_scalar(), N(), rows(), matrix< C, V >::scalar(), seg(), and tab().
00997 { 00998 typedef implementation<vector_linear,W> Vec; 00999 typedef implementation<matrix_linear,V> Mat; 01000 if (is_a_scalar (m)) return v * m.scalar(); 01001 ASSERT (is_non_scalar (v), "non-scalar vector expected"); 01002 nat rr= rows (m), cc= cols (m); 01003 ASSERT (rr == N(v), "sizes don't match"); 01004 nat l= aligned_size<C,W> (cc); 01005 C* a= mmx_formatted_new<C> (l, CF(m)); 01006 for (nat i=0; i<cc; i++) 01007 a[i]= Vec::template vec_binary_big_stride<mul_add_op> 01008 (seg (v), 1, 01009 tab (m) + Mat::index (0, i, rr, cc), Mat::index (1, 0, rr, cc), rr); 01010 return vector<C,W> (a, cc, l, CF(m)); 01011 }
Definition at line 980 of file matrix.hpp.
References CF(), cols(), is_a_scalar(), is_non_scalar(), N(), rows(), matrix< C, V >::scalar(), seg(), and tab().
00980 { 00981 typedef implementation<vector_linear,W> Vec; 00982 typedef implementation<matrix_linear,V> Mat; 00983 if (is_a_scalar (m)) return m.scalar() * v; 00984 ASSERT (is_non_scalar (v), "non-scalar vector expected"); 00985 nat rr= rows (m), cc= cols (m); 00986 ASSERT (cc == N(v), "sizes don't match"); 00987 nat l= aligned_size<C,W> (rr); 00988 C* a= mmx_formatted_new<C> (l, CF(m)); 00989 for (nat i=0; i<rr; i++) 00990 a[i]= Vec::template vec_binary_big_stride<mul_add_op> 00991 (tab (m) + Mat::index (i, 0, rr, cc), Mat::index (0, 1, rr, cc), 00992 seg (v), 1, cc); 00993 return vector<C,W> (a, rr, l, CF(m)); 00994 }
Definition at line 964 of file matrix.hpp.
References CF(), cols(), is_a_scalar(), is_non_scalar(), Matrix, mul(), rows(), and tab().
00964 { 00965 typedef implementation<matrix_multiply,V> Mat; 00966 if (is_a_scalar (m) || is_a_scalar (n)) { 00967 if (is_non_scalar (m)) return m * n.scalar(); 00968 if (is_non_scalar (n)) return m.scalar() * n; 00969 return Matrix (m.scalar() * n.scalar()); 00970 } 00971 nat mrows= rows (m), mcols= cols (m), nrows= rows(n), ncols= cols(n); 00972 ASSERT (nrows == mcols, "numbers of rows and columns don't match"); 00973 nat l= aligned_size<C,V> (mrows * ncols); 00974 C* r= mmx_formatted_new<C> (l, CF(m)); 00975 Mat::mul (r, tab (m), tab (n), mrows, mcols, ncols); 00976 return Matrix (r, mrows, ncols, CF(m)); 00977 }
Definition at line 593 of file matrix.hpp.
Definition at line 591 of file matrix.hpp.
X mmx::operator*= | ( | X & | a, | |
const multiplier< C > & | b | |||
) | [inline] |
Definition at line 67 of file multiplier.hpp.
Definition at line 605 of file matrix.hpp.
00605 { 00606 return unary_set_scalar<rmul_op> (m, x); }
Definition at line 218 of file series_implicit.hpp.
References C, known(), max(), min(), and UC.
00218 { 00219 //mmerr << " plus " << c1 << ", " << c2 << "\n"; 00220 if (c1->i1 == c1->i2) return c2 + known (c1); 00221 if (c2->i1 == c2->i2) return c1 + known (c2); 00222 ASSERT (c1->f == c2->f, "incompatible unknown coefficients"); 00223 nat i1= min (c1->i1, c2->i1); 00224 nat i2= max (c1->i2, c2->i2); 00225 C* s= mmx_new<C> (i2-i1); 00226 for (nat i= i1; i<i2; i++) 00227 s[i-i1]= 00228 (i >= c1->i1 && i < c1->i2? c1->s[i - c1->i1]: C(0)) + 00229 (i >= c2->i1 && i < c2->i2? c2->s[i - c2->i1]: C(0)); 00230 return UC (c1->f, c1->b + c2->b, s, i1, i2); 00231 }
Definition at line 179 of file series_implicit.hpp.
References C, is_exact_zero(), and UC.
00179 { 00180 //mmerr << " scalar plus " << c1 << ", " << c2 << "\n"; 00181 if (is_exact_zero (c1)) 00182 return UC (c1->f, c2, mmx_new<C> (0), c1->i1, c1->i1); 00183 if (is_exact_zero (c2)) return c1; 00184 nat n= c1->i2 - c1->i1; 00185 C* s= mmx_new<C> (n); 00186 for (nat i=0; i<n; i++) 00187 s[i]= c1->s[i]; 00188 return UC (c1->f, c1->b + c2, s, c1->i1, c1->i2); 00189 }
Definition at line 722 of file series.hpp.
References is_exact_zero(), and Series.
00722 { 00723 if (is_exact_zero (c)) return f; 00724 if (is_exact_zero (f)) return Series (c); 00725 return binary_series<add_op> (f, Series (c)); 00726 }
Definition at line 715 of file series.hpp.
References is_exact_zero(), and Series.
00715 { 00716 if (is_exact_zero (c)) return f; 00717 if (is_exact_zero (f)) return Series (c); 00718 return binary_series<add_op> (Series (c), f); 00719 }
Definition at line 708 of file series.hpp.
References is_exact_zero().
00708 { 00709 if (is_exact_zero (f)) return g; 00710 if (is_exact_zero (g)) return f; 00711 return binary_series<add_op> (f, g); 00712 }
quotient_series<Series,Monomial> mmx::operator+ | ( | const typename scalar_type_helper< Series >::val & | c, | |
const quotient_series< Series, Monomial > & | f | |||
) | [inline] |
Definition at line 153 of file quotient_series.hpp.
References Quotient_series.
00153 { 00154 return Quotient_series (Quotient_series (c) + f->f); 00155 }
quotient_series<Series,Monomial> mmx::operator+ | ( | const quotient_series< Series, Monomial > & | f, | |
const typename scalar_type_helper< Series >::val & | c | |||
) | [inline] |
Definition at line 148 of file quotient_series.hpp.
References Quotient_series.
00148 { 00149 return Quotient_series (f->f + Quotient_series (c)); 00150 }
quotient_series<Series,Monomial> mmx::operator+ | ( | const quotient_series< Series, Monomial > & | f, | |
const quotient_series< Series, Monomial > & | g | |||
) | [inline] |
Definition at line 139 of file quotient_series.hpp.
References gcd(), Monomial, and Quotient_series.
00139 { 00140 if (f->m == g->m) return Quotient_series (f->f + g->f, f->m); 00141 else { 00142 Monomial m= gcd (f->m, g->m); 00143 return Quotient_series (f->f * (f->m / m) + g->f * (g->m / m), m); 00144 } 00145 }
quotient< polynomial<C,V> , polynomial<C,V> > mmx::operator+ | ( | const C & | x1, | |
const quotient< polynomial< C, V >, polynomial< C, V > > & | x2 | |||
) | [inline] |
Definition at line 29 of file quotient_polynomial.hpp.
References denominator(), numerator(), and Quotient.
00029 { 00030 return Quotient (x1 * denominator (x2) + numerator (x2), 00031 denominator (x2)); 00032 }
quotient< polynomial<C,V> , polynomial<C,V> > mmx::operator+ | ( | const quotient< polynomial< C, V >, polynomial< C, V > > & | x1, | |
const C & | x2 | |||
) | [inline] |
Definition at line 23 of file quotient_polynomial.hpp.
References denominator(), numerator(), and Quotient.
00023 { 00024 return Quotient (numerator (x1) + x2 * denominator (x1), 00025 denominator (x1)); 00026 }
Definition at line 213 of file quotient.hpp.
References denominator(), numerator(), and Quotient.
00213 { 00214 return Quotient (x1 * denominator (x2) + numerator (x2), 00215 denominator (x2)); 00216 }
Definition at line 207 of file quotient.hpp.
References denominator(), numerator(), and Quotient.
00207 { 00208 return Quotient (numerator (x1) + x2 * denominator (x1), 00209 denominator (x1)); 00210 }
DT quotient<NT,DT> mmx::operator+ | ( | const quotient< NT, DT > & | x1, | |
const quotient< NT, DT > & | x2 | |||
) | [inline] |
Definition at line 197 of file quotient.hpp.
References denominator(), DT, gcd(), NT, numerator(), and Quotient.
00197 { 00198 DT g = gcd (denominator (x1), denominator(x2)); 00199 DT y1 = denominator (x1) / g; 00200 DT y2 = denominator (x2) / g; 00201 NT n = numerator(x1) * y2 + numerator(x2) * y1; 00202 DT h = gcd (g, n); 00203 return Quotient (n / h, (g / h) * y1 * y2); 00204 }
polynomial<C,V> mmx::operator+ | ( | const C & | c, | |
const polynomial< C, V > & | P | |||
) | [inline] |
Definition at line 477 of file polynomial.hpp.
References Polynomial.
00477 { 00478 return Polynomial (c) + P; }
polynomial<C,V> mmx::operator+ | ( | const polynomial< C, V > & | P, | |
const C & | c | |||
) | [inline] |
Definition at line 475 of file polynomial.hpp.
References Polynomial.
00475 { 00476 return P + Polynomial (c); }
polynomial<C,V> mmx::operator+ | ( | const polynomial< C, V > & | P1, | |
const polynomial< C, V > & | P2 | |||
) | [inline] |
Definition at line 463 of file polynomial.hpp.
References C, CF(), copy(), max(), min(), N(), Polynomial, and seg().
00463 { 00464 typedef implementation<polynomial_linear,V> Pol; 00465 nat m= min (N(P1), N(P2)); 00466 nat n= max (N(P1), N(P2)); 00467 nat l= aligned_size<C,V> (n); 00468 C* r= mmx_formatted_new<C> (l, CF(P1)); 00469 Pol::add (r, seg (P1), seg (P2), m); 00470 if (N(P1) > m) Pol::copy (r+m, seg(P1)+m, n-m); 00471 if (N(P2) > m) Pol::copy (r+m, seg(P2)+m, n-m); 00472 return Polynomial (r, n, l, CF(P1)); 00473 }
Definition at line 31 of file matrix_int.hpp.
References promote().
Definition at line 583 of file matrix.hpp.
References Matrix.
00583 { 00584 return binary_map<add_op> (Matrix (m), n); }
Definition at line 581 of file matrix.hpp.
References Matrix.
00581 { 00582 return binary_map<add_op> (m, Matrix (n)); }
Definition at line 579 of file matrix.hpp.
Definition at line 601 of file matrix.hpp.
Definition at line 234 of file series_implicit.hpp.
References C, known(), max(), min(), and UC.
00234 { 00235 //mmerr << " minus " << c1 << ", " << c2 << "\n"; 00236 if (c1->i1 == c1->i2) return (-c2) + known (c1); 00237 if (c2->i1 == c2->i2) return c1 + (-known (c2)); 00238 ASSERT (c1->f == c2->f, "incompatible unknown coefficients"); 00239 nat i1= min (c1->i1, c2->i1); 00240 nat i2= max (c1->i2, c2->i2); 00241 C* s= mmx_new<C> (i2-i1); 00242 for (nat i=i1; i<i2; i++) 00243 s[i-i1]= 00244 (i >= c1->i1 && i < c1->i2? c1->s[i - c1->i1]: C(0)) - 00245 (i >= c2->i1 && i < c2->i2? c2->s[i - c2->i1]: C(0)); 00246 return UC (c1->f, c1->b - c2->b, s, i1, i2); 00247 }
Definition at line 168 of file series_implicit.hpp.
References C, is_exact_zero(), and UC.
00168 { 00169 //mmerr << " negate " << c << "\n"; 00170 if (is_exact_zero (c)) return c; 00171 nat n= c->i2 - c->i1; 00172 C* s= mmx_new<C> (n); 00173 for (nat i=0; i<n; i++) 00174 s[i]= -c->s[i]; 00175 return UC (c->f, -c->b, s, c->i1, c->i2); 00176 }
Definition at line 749 of file series.hpp.
References is_exact_zero(), and Series.
00749 { 00750 if (is_exact_zero (f)) return Series (-c); 00751 if (is_exact_zero (c)) return f; 00752 return binary_series<sub_op> (f, Series (c)); 00753 }
Definition at line 742 of file series.hpp.
References is_exact_zero(), and Series.
00742 { 00743 if (is_exact_zero (c)) return -f; 00744 if (is_exact_zero (f)) return Series (c); 00745 return binary_series<sub_op> (Series (c), f); 00746 }
Definition at line 735 of file series.hpp.
References is_exact_zero().
00735 { 00736 if (is_exact_zero (f)) return -g; 00737 if (is_exact_zero (g)) return f; 00738 return binary_series<sub_op> (f, g); 00739 }
Definition at line 729 of file series.hpp.
References is_exact_zero().
00729 { 00730 if (is_exact_zero (f)) return f; 00731 return unary_series<neg_op> (f); 00732 }
quotient_series<Series,Monomial> mmx::operator- | ( | const typename scalar_type_helper< Series >::val & | c, | |
const quotient_series< Series, Monomial > & | f | |||
) | [inline] |
Definition at line 177 of file quotient_series.hpp.
References Quotient_series.
00177 { 00178 return Quotient_series (Quotient_series (c) - f->f); 00179 }
quotient_series<Series,Monomial> mmx::operator- | ( | const quotient_series< Series, Monomial > & | f, | |
const typename scalar_type_helper< Series >::val & | c | |||
) | [inline] |
Definition at line 172 of file quotient_series.hpp.
References Quotient_series.
00172 { 00173 return Quotient_series (f->f - Quotient_series (c)); 00174 }
quotient_series<Series,Monomial> mmx::operator- | ( | const quotient_series< Series, Monomial > & | f, | |
const quotient_series< Series, Monomial > & | g | |||
) | [inline] |
Definition at line 163 of file quotient_series.hpp.
References gcd(), Monomial, and Quotient_series.
00163 { 00164 if (f->m == g->m) return Quotient_series (f->f - g->f, f->m); 00165 else { 00166 Monomial m= gcd (f->m, g->m); 00167 return Quotient_series (f->f * (f->m / m) - g->f * (g->m / m), m); 00168 } 00169 }
quotient_series<Series,Monomial> mmx::operator- | ( | const quotient_series< Series, Monomial > & | f | ) | [inline] |
Definition at line 158 of file quotient_series.hpp.
References Quotient_series.
00158 { 00159 return Quotient_series (-f->f, f->m); 00160 }
quotient< polynomial<C,V> , polynomial<C,V> > mmx::operator- | ( | const C & | x1, | |
const quotient< polynomial< C, V >, polynomial< C, V > > & | x2 | |||
) | [inline] |
Definition at line 41 of file quotient_polynomial.hpp.
References denominator(), numerator(), and Quotient.
00041 { 00042 return Quotient (x1 * denominator (x2) - numerator (x2), 00043 denominator (x2)); 00044 }
quotient< polynomial<C,V> , polynomial<C,V> > mmx::operator- | ( | const quotient< polynomial< C, V >, polynomial< C, V > > & | x1, | |
const C & | x2 | |||
) | [inline] |
Definition at line 35 of file quotient_polynomial.hpp.
References denominator(), numerator(), and Quotient.
00035 { 00036 return Quotient (numerator (x1) - x2 * denominator (x1), 00037 denominator (x1)); 00038 }
Definition at line 240 of file quotient.hpp.
References denominator(), numerator(), and Quotient.
00240 { 00241 return Quotient (x1 * denominator (x2) - numerator (x2), 00242 denominator (x2)); 00243 }
Definition at line 234 of file quotient.hpp.
References denominator(), numerator(), and Quotient.
00234 { 00235 return Quotient (numerator (x1) - x2 * denominator (x1), 00236 denominator (x1)); 00237 }
quotient<NT,DT> mmx::operator- | ( | const quotient< NT, DT > & | x1, | |
const quotient< NT, DT > & | x2 | |||
) | [inline] |
Definition at line 224 of file quotient.hpp.
References denominator(), DT, gcd(), NT, numerator(), and Quotient.
00224 { 00225 DT g = gcd (denominator (x1), denominator(x2)); 00226 DT y1 = denominator (x1) / g; 00227 DT y2 = denominator (x2) / g; 00228 NT n = numerator(x1) * y2 - numerator(x2) * y1; 00229 DT h = gcd (g, n); 00230 return Quotient (n / h, (g / h) * y1 * y2); 00231 }
Definition at line 219 of file quotient.hpp.
References denominator(), numerator(), and Quotient.
00219 { 00220 return Quotient (-numerator (x), denominator (x)); 00221 }
polynomial<C,V> mmx::operator- | ( | const C & | c, | |
const polynomial< C, V > & | P | |||
) | [inline] |
Definition at line 507 of file polynomial.hpp.
References Polynomial.
00507 { 00508 return Polynomial (c) - P; }
polynomial<C,V> mmx::operator- | ( | const polynomial< C, V > & | P, | |
const C & | c | |||
) | [inline] |
Definition at line 505 of file polynomial.hpp.
References Polynomial.
00505 { 00506 return P - Polynomial (c); }
polynomial<C,V> mmx::operator- | ( | const polynomial< C, V > & | P1, | |
const polynomial< C, V > & | P2 | |||
) | [inline] |
Definition at line 493 of file polynomial.hpp.
References C, CF(), copy(), max(), min(), N(), Polynomial, and seg().
00493 { 00494 typedef implementation<polynomial_linear,V> Pol; 00495 nat m= min (N(P1), N(P2)); 00496 nat n= max (N(P1), N(P2)); 00497 nat l= aligned_size<C,V> (n); 00498 C* r= mmx_formatted_new<C> (l, CF(P1)); 00499 Pol::sub (r, seg (P1), seg (P2), m); 00500 if (N(P1) > m) Pol::copy (r+m, seg(P1)+m, n-m); 00501 if (N(P2) > m) Pol::neg (r+m, seg(P2)+m, n-m); 00502 return Polynomial (r, n, l, CF(P1)); 00503 }
polynomial<C,V> mmx::operator- | ( | const polynomial< C, V > & | P | ) | [inline] |
Definition at line 453 of file polynomial.hpp.
References C, CF(), N(), Polynomial, and seg().
Definition at line 35 of file matrix_int.hpp.
References promote().
Definition at line 589 of file matrix.hpp.
References Matrix.
00589 { 00590 return binary_map<sub_op> (Matrix (m), n); }
Definition at line 587 of file matrix.hpp.
References Matrix.
00587 { 00588 return binary_map<sub_op> (m, Matrix (n)); }
Definition at line 585 of file matrix.hpp.
Definition at line 577 of file matrix.hpp.
Definition at line 603 of file matrix.hpp.
Definition at line 1121 of file series.hpp.
References is_exact_zero(), and Series.
01121 { 01122 typedef implementation<series_divide,V> Ser; 01123 if (is_exact_zero (c)) return Series (get_format (c)); 01124 return Ser::ser_div (Series (c), f); 01125 }
Definition at line 1115 of file series.hpp.
Definition at line 1109 of file series.hpp.
quotient_series<Series,Monomial> mmx::operator/ | ( | const quotient_series< Series, Monomial > & | f, | |
const quotient_series< Series, Monomial > & | g | |||
) | [inline] |
Definition at line 231 of file quotient_series.hpp.
References Monomial, monomial_val(), and Quotient_series.
00231 { 00232 Monomial v= monomial_val (g); 00233 if (v != Monomial (1)) return (f/v) / (g/v); 00234 return Quotient_series (f->f / g->f, f->m); 00235 }
quotient_series<Series,Monomial> mmx::operator/ | ( | const typename scalar_type_helper< Series >::val & | c, | |
const quotient_series< Series, Monomial > & | f | |||
) | [inline] |
Definition at line 224 of file quotient_series.hpp.
References Monomial, monomial_val(), and Quotient_series.
00224 { 00225 Monomial v= monomial_val (f); 00226 if (v != Monomial (1)) return (c / (f/v)) / v; 00227 return Quotient_series (c / f->f, Monomial (1) / f->m); 00228 }
quotient_series<Series,Monomial> mmx::operator/ | ( | const quotient_series< Series, Monomial > & | f, | |
const typename scalar_type_helper< Series >::val & | c | |||
) | [inline] |
Definition at line 219 of file quotient_series.hpp.
References Quotient_series.
00219 { 00220 return Quotient_series (f->f / c, f->m); 00221 }
quotient_series<Series,Monomial> mmx::operator/ | ( | const Monomial & | m, | |
const quotient_series< Series, Monomial > & | f | |||
) | [inline] |
Definition at line 212 of file quotient_series.hpp.
References C, Monomial, monomial_val(), and Quotient_series.
00212 { 00213 Monomial v= monomial_val (f); 00214 if (v != Monomial (1)) return (m/v) / (f/v); 00215 return Quotient_series (C(1) / f->f, m / f->m); 00216 }
quotient_series<Series,Monomial> mmx::operator/ | ( | const quotient_series< Series, Monomial > & | f, | |
const Monomial & | m | |||
) | [inline] |
Definition at line 207 of file quotient_series.hpp.
References Quotient_series.
00207 { 00208 return Quotient_series (f->f, f->m / m); 00209 }
quotient< polynomial<C,V> , polynomial<C,V> > mmx::operator/ | ( | const quotient< polynomial< C, V >, polynomial< C, V > > & | x, | |
const C & | c | |||
) | [inline] |
Definition at line 63 of file quotient_polynomial.hpp.
References denominator(), numerator(), and Quotient.
00063 { 00064 ASSERT (c != 0, "division by zero"); 00065 return Quotient (numerator (x) / c, denominator (x)); 00066 }
quotient< polynomial<C,V> , polynomial<C,V> > mmx::operator/ | ( | const C & | c, | |
const quotient< polynomial< C, V >, polynomial< C, V > > & | x | |||
) | [inline] |
Definition at line 57 of file quotient_polynomial.hpp.
References denominator(), numerator(), and Quotient.
quotient<NT,DT> mmx::operator/ | ( | const quotient< NT, DT > & | x1, | |
const quotient< NT, DT > & | x2 | |||
) | [inline] |
Definition at line 281 of file quotient.hpp.
References denominator(), DT, gcd(), NT, numerator(), and Quotient.
00281 { 00282 // assumes NT = DT 00283 ASSERT (numerator (x2) != 0, "division by zero"); 00284 NT g1= gcd (numerator (x1), numerator (x2)); 00285 DT g2= gcd (denominator (x1), denominator (x2)); 00286 return Quotient ((numerator (x1) / g1) * (denominator (x2) / g2), 00287 (denominator (x1) / g2) * (numerator (x2) / g1)); 00288 }
Definition at line 274 of file quotient.hpp.
References denominator(), DT, gcd(), numerator(), and Quotient.
Definition at line 266 of file quotient.hpp.
References denominator(), DT, gcd(), numerator(), and Quotient.
polynomial<C,V> mmx::operator/ | ( | const C & | c, | |
const polynomial< C, V > & | P | |||
) | [inline] |
Definition at line 774 of file polynomial.hpp.
References Polynomial.
00774 { 00775 return Polynomial (c) / P; }
polynomial<C,V> mmx::operator/ | ( | const polynomial< C, V > & | P1, | |
const polynomial< C, V > & | P2 | |||
) | [inline] |
Definition at line 592 of file polynomial.hpp.
References C, CF(), div(), N(), Polynomial, and seg().
00592 { 00593 typedef implementation<polynomial_exact_divide,V> Pol; 00594 nat n1= N(P1), n2= N(P2); 00595 ASSERT (n2 != 0, "division by zero"); 00596 if (n1 < n2) return Polynomial (CF(P1)); 00597 nat lq= aligned_size<C,V> (n1-n2+1); 00598 C* q= mmx_formatted_new<C> (lq, CF(P1)); 00599 Pol::div (q, seg (P1), seg (P2), n1, n2); 00600 return Polynomial (q, n1-n2+1, lq, CF(P1)); 00601 }
polynomial<C,V> mmx::operator/ | ( | const polynomial< C, V > & | P, | |
const C & | c | |||
) | [inline] |
Definition at line 582 of file polynomial.hpp.
References C, CF(), N(), Polynomial, and seg().
Definition at line 43 of file matrix_int.hpp.
References promote().
Definition at line 1269 of file matrix.hpp.
References invert().
01269 { 01270 return c * invert (m); }
Definition at line 595 of file matrix.hpp.
Definition at line 607 of file matrix.hpp.
00607 { 00608 return unary_set_scalar<rdiv_op> (m, x); }
bool mmx::operator<= | ( | const matrix< C, V > & | m, | |
const C & | c | |||
) | [inline] |
bool mmx::operator<= | ( | const matrix< C, V > & | m, | |
const matrix< C, V > & | n | |||
) | [inline] |
Definition at line 609 of file matrix.hpp.
bool mmx::operator== | ( | const series< C, V > & | f1, | |
const series< C, V > & | f2 | |||
) | [inline] |
Definition at line 302 of file series.hpp.
bool mmx::operator== | ( | const quotient_series< Series, Monomial > & | f, | |
const quotient_series< Series, Monomial > & | g | |||
) | [inline] |
bool mmx::operator== | ( | const quotient< NT, DT > & | x1, | |
const quotient< NT, DT > & | x2 | |||
) | [inline] |
Definition at line 144 of file quotient.hpp.
References denominator(), and numerator().
00144 { 00145 return numerator (x1) * denominator (x2) == 00146 numerator (x2) * denominator (x1); }
bool mmx::operator== | ( | const K & | c, | |
const matrix< C, V > & | m | |||
) | [inline] |
bool mmx::operator== | ( | const matrix< C, V > & | m, | |
const K & | c | |||
) | [inline] |
bool mmx::operator== | ( | const algebraic_number_extension< C, Ball > & | x, | |
const algebraic_number_extension< C, Ball > & | y | |||
) | [inline] |
Definition at line 78 of file algebraic_number.hpp.
00078 { 00079 return (*x) == (*y); }
bool mmx::operator== | ( | const algebraic_extension< C > & | x, | |
const algebraic_extension< C > & | y | |||
) | [inline] |
Definition at line 58 of file algebraic_extension.hpp.
00058 { 00059 return (*x) == (*y); }
bool mmx::operator== | ( | const algebraic< C, Extension > & | x1, | |
const algebraic< C, Extension > & | x2 | |||
) | [inline] |
Definition at line 126 of file algebraic.hpp.
References is_zero().
00126 { 00127 return is_zero (x1 - x2); }
bool mmx::operator>= | ( | const matrix< C, V > & | m, | |
const C & | c | |||
) | [inline] |
bool mmx::operator>= | ( | const matrix< C, V > & | m, | |
const matrix< C, V > & | n | |||
) | [inline] |
Definition at line 611 of file matrix.hpp.
algebraic_number mmx::over_i | ( | const algebraic_number & | z | ) | [inline] |
Definition at line 402 of file algebraic_number.hpp.
void mmx::pade | ( | const polynomial< C, V > & | P, | |
nat | n, | |||
nat | k, | |||
polynomial< C, V > & | Num, | |||
polynomial< C, V > & | Den | |||
) | [inline] |
Definition at line 867 of file polynomial.hpp.
References CF(), N(), Polynomial, promote(), and reconstruct().
Referenced by minimal_polynomial_bis().
00867 { 00868 typedef implementation<polynomial_gcd,V> Pol; 00869 ASSERT (N (P) <= n+1 && k <= n && k > 0, "invalid argument"); 00870 Polynomial Q (promote (1, CF(P)), n); 00871 Pol::reconstruct (P, Q, k, Num, Den); 00872 }
void mmx::permute_columns | ( | matrix< C, V > & | m, | |
const permutation & | p | |||
) | [inline] |
Definition at line 1119 of file matrix.hpp.
References cols(), is_a_scalar(), rows(), seg(), and tab().
01119 { 01120 // replace m by m * as_matrix (p) 01121 typedef implementation<matrix_permute,V> Mat; 01122 if (is_a_scalar (m)) return; 01123 nat rs= rows (m), cs= cols (m); 01124 Mat::col_permute (tab (m), seg (*p), rs, cs); 01125 }
void mmx::permute_rows | ( | matrix< C, V > & | m, | |
const permutation & | p | |||
) | [inline] |
Definition at line 1128 of file matrix.hpp.
References cols(), is_a_scalar(), rows(), seg(), and tab().
01128 { 01129 // replace m by transpose (as_matrix (p)) * m 01130 typedef implementation<matrix_permute,V> Mat; 01131 if (is_a_scalar (m)) return; 01132 nat rs= rows (m), cs= cols (m); 01133 Mat::row_permute (tab (m), seg (*p), rs, cs); 01134 }
int mmx::pexponent | ( | const polynomial< C, V > & | P1, | |
const polynomial< C, V > & | P2 | |||
) | [inline] |
Definition at line 902 of file series.hpp.
References Series_rep.
Referenced by truncate_mul_monoblock_series_rep< M, V, s, BV, t >::Increase_order(), implementation< series_multiply, U, series_relaxed< W > >::ser_truncate_mul(), implementation< series_multiply, U, series_fast >::ser_truncate_mul(), implementation< series_multiply, U, series_carry_relaxed< W > >::ser_truncate_mul(), and implementation< series_multiply, U, series_carry_blocks< W, s, BV, t > >::ser_truncate_mul().
00902 { 00903 return (Series_rep*) new piecewise_series_rep<C,V> (f, g, pos); 00904 }
modular< modulus<C,V> ,W> mmx::polynomial_modular_root | ( | const polynomial< modular< modulus< C, V >, W > > & | P | ) | [inline] |
Definition at line 135 of file root_modular.hpp.
References derive(), eval(), Modular, N(), and polynomial_modular_roots().
Referenced by ser_polynomial_regular_root_op::op(), and ser_carry_polynomial_regular_root_op::op().
00135 { 00136 // return one of the regular roots of P 00137 // FIXME << to optimize 00138 if (P[0] == Modular (0)) return Modular (0); 00139 //FIXME: should always compute one root 00140 vector<Modular> ans= polynomial_modular_roots (P); 00141 polynomial<Modular> dP = derive(P); 00142 ASSERT (N (ans) != 0, "no root"); 00143 for (nat i= 0; i < N(ans); i++) 00144 if (eval (dP,ans[i]) != Modular (0)) return ans[i]; 00145 ERROR ("no regular root"); 00146 }
vector< modular< modulus<C,V> ,W> > mmx::polynomial_modular_roots | ( | const polynomial< modular< modulus< C, V >, W > > & | P | ) | [inline] |
Definition at line 128 of file root_modular.hpp.
References get_modulus(), N(), and root_modular_naive::roots().
Referenced by polynomial_modular_root().
00128 { 00129 // return all the roots of P 00130 ASSERT (N (P) != 0, "wrong argument"); 00131 return root_modular_naive::roots (P, * get_modulus (P[0])); 00132 }
Definition at line 1184 of file series.hpp.
References Series.
Referenced by ser_polynomial_regular_root_op::set_op(), and ser_carry_polynomial_regular_root_op::set_op().
01184 { 01185 typedef implementation<series_polynomial_regular_root,V> Ser; 01186 if (P[0] == L(0)) return Series (); 01187 return Ser::template pol_root<C,V,L> (P); 01188 }
series<C,V> mmx::polynomial_regular_root_init | ( | const polynomial< L > & | P, | |
const C & | init | |||
) | [inline] |
Definition at line 1191 of file series.hpp.
References Series.
Referenced by ser_polynomial_regular_root_op::op_init().
01191 { 01192 typedef implementation<series_polynomial_regular_root,V> Ser; 01193 if (P[0] == L(0)) return Series (); 01194 return Ser::template pol_root<C,V,L> (P, init); 01195 }
polynomial< C > polynomial_reverse | ( | const vector< C > & | v | ) | [inline] |
matrix<C> mmx::pow_matrix | ( | const algebraic_extension< C > & | ext1, | |
const algebraic_extension< C > & | ext2 | |||
) | [inline] |
Definition at line 218 of file algebraic_extension.hpp.
References CF(), deg(), pow_matrix(), promote(), and rank().
00218 { 00219 // return matrix whose rows represent the powers of a primitive element 00220 nat d1= deg (ext1.mp), d2= deg (ext2.mp); 00221 vector<C> v= fill<C> (promote (0, CF(ext1)), d1*d2); 00222 for (nat i=1; i<1000; i++) { 00223 v[1]= promote (1, CF(ext1)); v[d2]= promote ((int) i, CF(ext1)); 00224 matrix<C> m= pow_matrix (ext1, ext2, v); 00225 if (rank (m) == d1*d2) return m; 00226 } 00227 ERROR ("unexpected situation"); 00228 }
matrix<C> mmx::pow_matrix | ( | const algebraic_extension< C > & | ext1, | |
const algebraic_extension< C > & | ext2, | |||
const vector< C > & | v | |||
) | [inline] |
Definition at line 201 of file algebraic_extension.hpp.
References CF(), deg(), mul_matrix(), and promote().
Referenced by join(), and pow_matrix().
00201 { 00202 // let p (x1, x2) be the bivariate polynomial represented by v 00203 // return the matrix whose rows represent the powers p (x1, x2)^i 00204 nat d1= deg (ext1.mp), d2= deg (ext2.mp); 00205 matrix<C> m= mul_matrix (ext1, ext2, v); 00206 matrix<C> r (promote (0, CF(ext1)), d1*d2+1, d1*d2); 00207 vector<C> aux= fill<C> (promote (0, CF(ext1)), d1*d2); 00208 aux[0]= promote (1, CF(ext1)); 00209 for (nat i1=0; i1<=d1*d2; i1++) { 00210 for (nat i2=0; i2<d1*d2; i2++) 00211 r (i1, i2)= aux[i2]; 00212 aux= aux * m; 00213 } 00214 return r; 00215 }
polynomial<C,V> mmx::pquo | ( | const polynomial< C, V > & | P1, | |
const polynomial< C, V > & | P2 | |||
) | [inline] |
Definition at line 729 of file polynomial.hpp.
References C, CF(), copy(), N(), Polynomial, and seg().
00729 { 00730 typedef implementation<polynomial_divide,V> Pol; 00731 nat n1= N(P1), n2= N(P2); 00732 if (n1 < n2 || n2 == 0) return Polynomial (CF(P1)); 00733 nat lq= aligned_size<C,V> (n1-n2+1); 00734 nat lr= aligned_size<C,V> (n1); 00735 C* q= mmx_formatted_new<C> (lq, CF(P1)); 00736 C* r= mmx_formatted_new<C> (lr, CF(P1)); 00737 Pol::copy (r, seg (P1), n1); 00738 Pol::pquo_rem (q, r, seg (P2), n1, n2); 00739 mmx_delete<C> (r, lr); 00740 return Polynomial (q, n1-n2+1, lq, CF(P1)); 00741 }
nat mmx::precision | ( | const series< C, V > & | f | ) | [inline] |
Definition at line 1249 of file series.hpp.
References precision().
01249 { 01250 return precision (f[0]); 01251 }
nat mmx::precision | ( | const quotient< NT, DT > & | x | ) | [inline] |
Definition at line 104 of file quotient.hpp.
References denominator(), max(), numerator(), and precision().
xnat mmx::precision | ( | const polynomial< C, V > & | p | ) | [inline] |
Definition at line 1443 of file polynomial.hpp.
xnat mmx::precision | ( | const matrix< C, V > & | m | ) | [inline] |
Definition at line 760 of file matrix.hpp.
Referenced by increase_precision(), and precision().
vector< polynomial<C,V> > mmx::prem | ( | const polynomial< C, V > & | p, | |
const vector< polynomial< C, V > > & | q | |||
) | [inline] |
Definition at line 1143 of file polynomial.hpp.
polynomial<C,V> mmx::prem | ( | const polynomial< C, V > & | P1, | |
const polynomial< C, V > & | P2, | |||
polynomial< C, V > & | Q | |||
) | [inline] |
Returns the pseudo-remainder and stores the pseudo-quotient in Q.
Definition at line 760 of file polynomial.hpp.
References C, CF(), copy(), N(), Polynomial, and seg().
00760 { 00761 typedef implementation<polynomial_divide,V> Pol; 00762 nat n1= N(P1), n2= N(P2); 00763 if (n1 < n2 || n2 == 0) return Polynomial (CF(P1)); 00764 nat lq= aligned_size<C,V> (n1-n2+1); 00765 nat lr= aligned_size<C,V> (n1); 00766 C* q= mmx_formatted_new<C> (lq, CF(P1)); 00767 C* r= mmx_formatted_new<C> (lr, CF(P1)); 00768 Pol::copy (r, seg (P1), n1); 00769 Pol::pquo_rem (q, r, seg (P2), n1, n2); 00770 Q= Polynomial (q, n1-n2+1, lq, CF(P1)); 00771 return Polynomial (r, n2 - 1, lr, CF(P1)); 00772 }
polynomial<C,V> mmx::prem | ( | const polynomial< C, V > & | P1, | |
const polynomial< C, V > & | P2 | |||
) | [inline] |
Definition at line 744 of file polynomial.hpp.
References C, CF(), copy(), N(), Polynomial, and seg().
Referenced by implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_dicho_inc< BV > >::half_subresultant(), implementation< polynomial_evaluate, V, polynomial_gcd_ring_dicho_inc< W > >::multi_gcd(), implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_ducos_inc< BV > >::subresultant_sequence(), and implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_naive_inc< W > >::subresultant_sequence().
00744 { 00745 typedef implementation<polynomial_divide,V> Pol; 00746 nat n1= N(P1), n2= N(P2); 00747 if (n1 < n2 || n2 == 0) return P1; 00748 nat lq= aligned_size<C,V> (n1-n2+1); 00749 nat lr= aligned_size<C,V> (n1); 00750 C* q= mmx_formatted_new<C> (lq, CF(P1)); 00751 C* r= mmx_formatted_new<C> (lr, CF(P1)); 00752 Pol::copy (r, seg (P1), n1); 00753 Pol::pquo_rem (q, r, seg (P2), n1, n2); 00754 mmx_delete<C> (q, lq); 00755 return Polynomial (r, n2 - 1, lr, CF(P1)); 00756 }
polynomial<C,V> mmx::primitive_part | ( | const polynomial< C, V > & | P | ) | [inline] |
Definition at line 804 of file polynomial.hpp.
References C, and primitive_part().
00804 { 00805 C c; 00806 return primitive_part (P, c); 00807 }
polynomial<C,V> mmx::primitive_part | ( | const polynomial< C, V > & | P, | |
C & | c | |||
) | [inline] |
Definition at line 793 of file polynomial.hpp.
References C, CF(), contents(), N(), Polynomial, and seg().
Referenced by implementation< polynomial_gcd, V, polynomial_ring_naive< W > >::gcd(), GLUE_116(), GLUE_49(), and primitive_part().
C mmx::primitive_root | ( | nat | n, | |
nat | i, | |||
const format< C > & | fm | |||
) | [inline] |
Definition at line 69 of file fft_roots.hpp.
References primitive_root_helper< C >::op().
I mmx::primitive_root_max_int | ( | nat | b, | |
I | p, | |||
nat & | k, | |||
I & | m | |||
) | [inline] |
Definition at line 100 of file fft_roots.hpp.
References binpow(), I, Modular, Modulus, primitive_root_max_order_int(), and x.
Referenced by primitive_root_helper_modular_int< long int, V, W >::op().
00100 { 00101 // root of maximal order k for radix b modulo p 00102 typedef modulus<I, modulus_int_preinverse<8*sizeof(I)> > Modulus; 00103 typedef modular<Modulus> Modular; 00104 k= primitive_root_max_order_int (b, p, m); 00105 if (k == 1) return I (1); 00106 Modulus tmp= Modular::get_modulus (); 00107 Modular::set_modulus (p); 00108 Modular v; 00109 for (I x = 1; x < p; x++) { 00110 v = binpow (Modular (x), (nat) m); 00111 if (v == 1) continue; 00112 if (binpow (v, k / b) != 1) break; 00113 } 00114 Modular::set_modulus (tmp); 00115 return * v; 00116 }
nat mmx::primitive_root_max_order | ( | nat | b | ) | [inline] |
Definition at line 74 of file fft_roots.hpp.
References primitive_root_helper< C >::max_order().
nat mmx::primitive_root_max_order_int | ( | nat | b, | |
I | p, | |||
I & | m | |||
) | [inline] |
Definition at line 91 of file fft_roots.hpp.
Referenced by primitive_root_helper_modular_int< long int, V, W >::max_order(), and primitive_root_max_int().
quotient_series<Series,Monomial> mmx::project | ( | const quotient_series< Series, Monomial > & | f, | |
const list< Monomial > & | l | |||
) | [inline] |
Definition at line 122 of file quotient_series.hpp.
References Quotient_series.
Referenced by project_helper< matrix< C, V > >::op().
00122 { 00123 return Quotient_series (project (f->f, stair_mul (1/f->m, l)), f->m); }
Definition at line 1202 of file series.hpp.
Definition at line 149 of file root_modular.hpp.
Referenced by GLUE_30(), and implementation< series_pth_root, U, series_carry_p_adic< W > >::unsep_root().
Definition at line 1043 of file series.hpp.
References CF(), is_exact_zero(), Series, and Series_rep.
01043 { 01044 if (is_exact_zero (f)) return Series (CF(f)); 01045 return (Series_rep*) new q_difference_series_rep<C,V> (f, q); 01046 }
polynomial<C,V> mmx::q_difference | ( | const polynomial< C, V > & | P, | |
const K & | q | |||
) | [inline] |
Definition at line 1109 of file polynomial.hpp.
References C, CF(), N(), Polynomial, and seg().
Referenced by GLUE_103(), GLUE_109(), GLUE_161(), GLUE_33(), GLUE_44(), GLUE_46(), and implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::shift().
01109 { 01110 typedef implementation<polynomial_linear,V> Pol; 01111 nat n= N(P); 01112 if (n <= 1) return P; 01113 nat l= aligned_size<C,V> (n); 01114 C* r= mmx_formatted_new<C> (l, CF(P)); 01115 Pol::q_difference (r, seg (P), q, n); 01116 return Polynomial (r, n, l, CF(P)); 01117 }
Definition at line 1139 of file series.hpp.
Definition at line 1133 of file series.hpp.
polynomial<C,V> mmx::quo | ( | const polynomial< C, V > & | P1, | |
const polynomial< C, V > & | P2 | |||
) | [inline] |
Definition at line 637 of file polynomial.hpp.
References C, CF(), copy(), N(), Polynomial, and seg().
00637 { 00638 typedef implementation<polynomial_divide,V> Pol; 00639 nat n1= N(P1), n2= N(P2); 00640 if (n1 < n2 || n2 == 0) return Polynomial (CF(P1)); 00641 nat lq= aligned_size<C,V> (n1-n2+1); 00642 nat lr= aligned_size<C,V> (n1); 00643 C* q= mmx_formatted_new<C> (lq, CF(P1)); 00644 C* r= mmx_formatted_new<C> (lr, CF(P1)); 00645 Pol::copy (r, seg (P1), n1); 00646 Pol::quo_rem (q, r, seg (P2), n1, n2); 00647 mmx_delete<C> (r, lr); 00648 return Polynomial (q, n1-n2+1, lq, CF(P1)); 00649 }
polynomial<C,V> mmx::quo | ( | const polynomial< C, V > & | P, | |
const C & | c | |||
) | [inline] |
Definition at line 617 of file polynomial.hpp.
References C, CF(), N(), Polynomial, and seg().
Definition at line 597 of file matrix.hpp.
Referenced by base_integer_transformer< I >::base_integer_transformer(), base_unsigned_integer_transformer< I >::base_unsigned_integer_transformer(), moduli_signed_integer_helper< short int, M, W >::covering(), moduli_unsigned_integer_helper< unsigned int, M, W >::covering(), GLUE_100(), GLUE_35(), GLUE_94(), matrix_carry_mul_quo_series_rep< M, V, X >::next(), vector_carry_mul_quo_series_rep< M, V, X >::next(), polynomial_quo_rem_helper< V, C >::op(), implementation< polynomial_divide, V, polynomial_naive >::quo_rem(), implementation< polynomial_vectorial, V, polynomial_naive >::quo_sc(), modulus_polynomial_reduction_preinverse< X >::reduce_mod(), rem(), square_free(), and implementation< polynomial_divide, V, polynomial_naive >::tquo_rem().
polynomial<Radius_type(C),V> mmx::radius | ( | const polynomial< C, V > & | p | ) | [inline] |
Definition at line 1462 of file polynomial.hpp.
Definition at line 779 of file matrix.hpp.
Referenced by improve_zero().
algebraic_number_extension<C,Ball> mmx::ramify | ( | const algebraic_number_extension< C, Ball > & | ext, | |
nat | p | |||
) | [inline] |
algebraic_extension<C> mmx::ramify | ( | const algebraic_extension< C > & | ext, | |
nat | p | |||
) | [inline] |
vector< polynomial<C, typename series_polynomial_helper<C,V>::PV> > mmx::range | ( | const vector< series< C, V >, W > & | v, | |
nat | start, | |||
nat | end | |||
) | [inline] |
matrix< polynomial<C, typename series_polynomial_helper<C,V>::PV> > mmx::range | ( | const matrix< series< C, V >, U > & | m, | |
nat | start, | |||
nat | end | |||
) | [inline] |
Definition at line 128 of file series_matrix.hpp.
polynomial<C, typename series_polynomial_helper<C,V>::PV> mmx::range | ( | const series< C, V > & | f, | |
nat | start, | |||
nat | end | |||
) | [inline] |
Definition at line 244 of file series.hpp.
References C, CF(), and Polynomial.
00244 { 00245 typedef typename series_polynomial_helper<C,V>::PV PV; 00246 nat n= (end >= start? end - start: 0); 00247 nat l= aligned_size<C,PV> (n); 00248 C* coeffs= mmx_formatted_new<C> (l, CF(f)); 00249 if (end>start) (void) f[end-1]; 00250 for (nat i=0; i<n; i++) coeffs[i]= f[i + start]; 00251 return Polynomial (coeffs, n, l, CF(f)); 00252 }
polynomial<C,V> mmx::range | ( | const polynomial< C, V > & | P, | |
nat | start, | |||
nat | end | |||
) | [inline] |
Definition at line 1253 of file polynomial.hpp.
References C, CF(), and Polynomial.
01253 { 01254 typedef implementation<polynomial_linear,V> Pol; 01255 nat l= aligned_size<C,V> (end-start); 01256 C* r= mmx_formatted_new<C> (l, CF(P)); 01257 for (nat i=start; i<end; i++) r[i-start]= P[i]; 01258 return Polynomial (r, end-start, l, CF(P)); 01259 }
Definition at line 929 of file matrix.hpp.
References CF(), cols(), is_a_scalar(), Matrix, rows(), and tab().
00929 { 00930 typedef implementation<matrix_linear,V> Mat; 00931 if (is_a_scalar (m)) return Matrix (m.scalar(), r2-r1, c2-c1); 00932 nat nrows= rows (m), ncols= cols (m); 00933 nat l= aligned_size<C,V> ((r2-r1) * (c2-c1)); 00934 C* r= mmx_formatted_new<C> (l, CF(m)); 00935 Mat::get_range (r, tab (m), r1, c1, r2, c2, nrows, ncols); 00936 return Matrix (r, r2-r1, c2-c1, CF(m)); 00937 }
vector<M> mmx::range | ( | coprime_moduli_sequence< M, V > & | seq, | |
nat | beg, | |||
nat | end | |||
) | [inline] |
Definition at line 52 of file crt_naive.hpp.
References M.
Referenced by implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_dicho_inc< BV > >::_half_gcd(), implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::_multi_rem(), moduli_helper< integer, M, fft_prime_sequence_int< t > >::covering(), crt_blocks_transformer< WL, WH, s, V >::crt_blocks_transformer(), implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_ducos_inc< BV > >::defected_prem(), GLUE_10(), GLUE_11(), GLUE_12(), GLUE_25(), GLUE_39(), GLUE_7(), GLUE_72(), GLUE_9(), GLUE_93(), implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_dicho_inc< BV > >::half_subresultant_rec(), image(), join(), kernel(), lshiftz(), modulus< polynomial< C, V >, modulus_polynomial_power_of_the_variable< W > >::modulus(), modulus_polynomial_mul_power_of_the_variable< X, W >::mul_mod(), range(), modulus_polynomial_reduction_preinverse< X >::reduce_mod(), implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_dicho_inc< BV > >::subresultant_compose(), implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_dicho_inc< BV > >::subresultant_sequence(), implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::tinterpolate(), and truncate().
nat mmx::rank | ( | const matrix< C, V > & | m | ) | [inline] |
Definition at line 1295 of file matrix.hpp.
References cols(), is_non_scalar(), rows(), and tab().
Referenced by GLUE_124(), GLUE_49(), GLUE_73(), and pow_matrix().
01295 { 01296 typedef implementation<matrix_image,V> Mat; 01297 ASSERT (is_non_scalar (m), "non-scalar matrix expected"); 01298 return Mat::rank (tab(m), rows(m), cols(m)); 01299 }
polynomial<Real_type(C),V> mmx::Re | ( | const polynomial< C, V > & | p | ) | [inline] |
Definition at line 1456 of file polynomial.hpp.
Definition at line 773 of file matrix.hpp.
algebraic_real mmx::Re | ( | const algebraic_number & | z | ) | [inline] |
Definition at line 422 of file algebraic_number.hpp.
References conj(), algebraic_number_extension< C, Ball >::ext, field(), normalize(), value(), algebraic_number_extension< C, Ball >::x, and x.
Referenced by abs(), GLUE_73(), and Im().
00422 { 00423 algebraic_number x= normalize ((z + conj (z)) / rational (2)); 00424 algebraic_complex_extension cext= field (x); 00425 algebraic_real_extension rext (cext.ext, Re (cext.x)); 00426 return algebraic_real (rext, value (x)); 00427 }
const C& mmx::read | ( | const matrix< C, V > & | m, | |
nat | i, | |||
nat | j | |||
) | [inline] |
Definition at line 194 of file matrix.hpp.
Referenced by binary_helper< algebraic_number_extension< C, Ball > >::read(), binary_helper< algebraic_extension< C > >::read(), and solve_lde().
polynomial<Reconstruct_type(C)> mmx::reconstruct | ( | const polynomial< C, V > & | p | ) | [inline] |
Definition at line 1402 of file polynomial.hpp.
bool mmx::reconstruct | ( | const polynomial< C, V > & | P, | |
const polynomial< C, V > & | Q, | |||
nat | k, | |||
polynomial< C, V > & | Num, | |||
polynomial< C, V > & | Den | |||
) | [inline] |
Definition at line 849 of file polynomial.hpp.
References CF(), deg(), gcd(), N(), Polynomial, promote(), and reconstruct().
00850 { 00851 typedef implementation<polynomial_gcd,V> Pol; 00852 if (deg (Q) <= 0) { 00853 if (deg (P) < (int) k) { 00854 Num= P; 00855 Den= Polynomial (promote (1, CF(P))); 00856 return true; 00857 } 00858 else return false; 00859 } 00860 nat n= deg (Q); 00861 ASSERT (N (P) <= n+1 && k <= n && k > 0, "invalid argument"); 00862 Pol::reconstruct (P, Q, k, Num, Den); 00863 return deg (gcd (Num, Den)) == 1; 00864 }
quotient<polynomial<C,V>,polynomial<C,V> > mmx::reconstruct | ( | const modular< modulus< polynomial< C, V >, MoV >, MaV > & | x | ) | [inline] |
Definition at line 333 of file modular_polynomial.hpp.
References get_modulus(), N(), Quotient, reconstruct(), and x.
00333 { 00334 polynomial<C,V> num, den, q= *get_modulus (x); 00335 nat k= N(q) >> 1; 00336 bool b= reconstruct (*x, q, k, num, den); 00337 ASSERT (b, "rational reconstruction failed"); 00338 return Quotient (num, den); }
Definition at line 699 of file matrix.hpp.
Referenced by is_reconstructible(), pade(), implementation< polynomial_gcd, V, polynomial_naive >::reconstruct(), implementation< polynomial_euclidean, V, polynomial_dicho< BV > >::reconstruct(), and reconstruct().
Definition at line 167 of file series.hpp.
References Series_rep.
Referenced by binary_recursive_series(), binary_scalar_recursive_series(), fixed_point_series(), fixed_point_series_vector(), implementation< polynomial_gcd, X, polynomial_series< BV > >::inv_mod_polynomial_series(), nullary_recursive_series(), implementation< series_polynomial_regular_root, U, series_naive >::pol_root(), implementation< series_separable_root, U, series_naive >::sep_root(), implementation< series_divide, U, series_naive >::ser_div(), implementation< series_divide, U, series_carry_naive >::ser_div(), implementation< series_matrix_divide, U, series_naive >::ser_ldiv(), implementation< series_vector_divide, U, series_naive >::ser_ldiv(), implementation< series_matrix_divide, U, series_naive >::ser_ldiv_sc(), implementation< series_vector_divide, U, series_naive >::ser_ldiv_sc(), implementation< series_matrix_divide, U, series_naive >::ser_ldiv_sc_vec(), implementation< series_matrix_divide, U, series_naive >::ser_ldiv_vec(), implementation< series_divide, U, series_naive >::ser_quo(), implementation< series_divide, U, series_carry_naive >::ser_rdiv_sc(), implementation< series_compose, U, series_naive >::ser_reverse(), implementation< series_slp_polynomial_regular_root, U, series_naive >::slp_pol_root(), unary_polynomial_recursive_series(), and unary_recursive_series().
00167 { 00168 return (Series_rep*) new recursive_container_series_rep<C,V> (f); 00169 }
void mmx::reduce | ( | unknown< C, V > & | c1, | |
unknown< C, V > & | c2 | |||
) | [inline] |
Definition at line 287 of file series_implicit.hpp.
References better_pivot(), C, is_exact_zero(), min(), and UC.
Referenced by insert_and_reduce().
00287 { 00288 // Triangulation of two "rows" c1 and c2 00289 // On exit, the simplest "row" is put into c1 00290 //mmerr << " reduce " << c1 << ", " << c2 << "\n"; 00291 if (is_exact_zero (c1)) return; 00292 if (is_exact_zero (c2)) { swap (c1, c2); return; } 00293 ASSERT (c1->f == c2->f, "incompatible unknown coefficients"); 00294 if (c1->i2 < c2->i2) return; 00295 if (c2->i2 < c1->i2) { swap (c1, c2); return; } 00296 if (better_pivot (c1->s[c1->i2 - 1 - c1->i1], 00297 c2->s[c2->i2 - 1 - c2->i1])) swap (c1, c2); 00298 C lambda= c1->s[c1->i2 - 1 - c1->i1] / c2->s[c2->i2 - 1 - c2->i1]; 00299 nat i1= min (c1->i1, c2->i1); 00300 nat i2= c1->i2; 00301 C* s= mmx_new<C> (i2-i1-1); 00302 for (nat i= i1; i<i2-1; i++) 00303 s[i-i1]= 00304 (i >= c1->i1? c1->s[i - c1->i1]: C(0)) - 00305 lambda * (i >= c2->i1? c2->s[i - c2->i1]: C(0)); 00306 c1= UC (c1->f, c1->b - lambda * c2->b, s, i1, i2-1); 00307 }
Definition at line 1151 of file series.hpp.
References CF(), is_exact_zero(), quo(), and Series.
01151 { 01152 if (is_exact_zero (f)) return Series (CF(f)); 01153 return f - g * quo (f, g); 01154 }
Definition at line 1145 of file series.hpp.
vector< polynomial<C,V> > mmx::rem | ( | const polynomial< C, V > & | p, | |
const vector< polynomial< C, V > > & | q | |||
) | [inline] |
Definition at line 1137 of file polynomial.hpp.
polynomial<C,V> mmx::rem | ( | const polynomial< C, V > & | P1, | |
const polynomial< C, V > & | P2, | |||
polynomial< C, V > & | Q | |||
) | [inline] |
Returns the remainder and stores the quotient in Q.
Definition at line 690 of file polynomial.hpp.
References C, CF(), copy(), N(), Polynomial, and seg().
00690 { 00691 typedef implementation<polynomial_divide,V> Pol; 00692 nat n1= N(P1), n2= N(P2); 00693 if (n1 < n2 || n2 == 0) return P1; 00694 nat lq= aligned_size<C,V> (n1-n2+1); 00695 nat lr= aligned_size<C,V> (n1); 00696 C* q= mmx_formatted_new<C> (lq, CF(P1)); 00697 C* r= mmx_formatted_new<C> (lr, CF(P1)); 00698 Pol::copy (r, seg (P1), n1); 00699 Pol::quo_rem (q, r, seg (P2), n1, n2); 00700 Q= Polynomial (q, n1-n2+1, lq, CF(P1)); 00701 return Polynomial (r, n2 - 1, lr, CF(P1)); 00702 }
polynomial<C,V> mmx::rem | ( | const polynomial< C, V > & | P1, | |
const polynomial< C, V > & | P2 | |||
) | [inline] |
Definition at line 669 of file polynomial.hpp.
References C, CF(), copy(), N(), Polynomial, and seg().
00669 { 00670 typedef implementation<polynomial_divide,V> Pol; 00671 nat n1= N(P1), n2= N(P2); 00672 if (n1 < n2 || n2 == 0) return P1; 00673 nat lq= aligned_size<C,V> (n1-n2+1); 00674 nat lr= aligned_size<C,V> (n1); 00675 C* q= mmx_formatted_new<C> (lq, CF(P1)); 00676 C* r= mmx_formatted_new<C> (lr, CF(P1)); 00677 Pol::copy (r, seg (P1), n1); 00678 Pol::quo_rem (q, r, seg (P2), n1, n2); 00679 mmx_delete<C> (q, lq); 00680 return Polynomial (r, n2 - 1, lr, CF(P1)); 00681 }
polynomial<C,V> mmx::rem | ( | const polynomial< C, V > & | P, | |
const C & | c | |||
) | [inline] |
Definition at line 627 of file polynomial.hpp.
References C, CF(), N(), Polynomial, and seg().
Definition at line 599 of file matrix.hpp.
Referenced by implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_dicho_inc< BV > >::_half_gcd(), annihilator(), compose(), ser_polynomial_regular_root_op::def(), ser_carry_polynomial_regular_root_op::def(), DEFINE_VARIANT(), implementation< base_transform, V, base_signed< W > >::direct(), implementation< base_transform, V, base_naive >::direct(), implementation< base_transform, V, base_dicho< W > >::direct(), div(), divides(), GLUE_101(), GLUE_36(), GLUE_95(), implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_dicho_inc< BV > >::half_subresultant(), implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_dicho_inc< BV > >::half_subresultant_rec(), inv_mod_polynomial_series_rep< C, U, V, W >::initialize(), join(), implementation< crt_project, V, crt_naive >::mod(), mul(), implementation< polynomial_evaluate, V, polynomial_naive >::multi_gcd(), implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::multi_gcd(), truncate_mul_series_rep< M, V >::next(), matrix_carry_mul_quo_series_rep< M, V, X >::next(), vector_carry_mul_quo_series_rep< M, V, X >::next(), mul_series_rep< M, V >::next(), ser_carry_polynomial_regular_root_op::op(), modulus_polynomial_reduction_preinverse< X >::reduce_mod(), implementation< polynomial_vectorial, V, polynomial_naive >::rem_sc(), shift1(), shift2(), and square().
class matrix_rep< C, matrix_fixed< V, RS, CS > > mmx::REP_STRUCT_1 | ( | C | ) | [inline] |
Definition at line 291 of file matrix.hpp.
References C, cols(), FMatrix, Format, is_a_scalar(), is_non_scalar(), Matrix, rows(), tab(), and val().
00291 { 00292 C* a; 00293 public: 00294 inline matrix_rep (C* a2, nat, nat, bool, const Format& fm): 00295 Format (fm), a (a2) {} 00296 inline virtual ~matrix_rep () { mmx_delete<C> (a, RS::val * CS::val); } 00297 friend class FMatrix; 00298 friend nat cols LESSGTR (const FMatrix& m); 00299 friend nat rows LESSGTR (const FMatrix& m); 00300 friend C* tab LESSGTR (const FMatrix& m); 00301 friend bool is_a_scalar LESSGTR (const Matrix& m); 00302 friend bool is_non_scalar LESSGTR (const Matrix& m); 00303 };
class series_rep REP_STRUCT_1 | ( | C | ) | [inline] |
Definition at line 42 of file series.hpp.
References C, Format, promote(), and Series.
00042 { 00043 public: // should be protected 00044 C* a; // coefficients 00045 nat n; // number of computed coefficients 00046 nat l; // number of allocated coefficients 00047 // a[n],...,a[l-1] may be used by relaxed computations 00048 00049 inline series_rep (const Format& fm): 00050 Format (fm), a (mmx_new<C> (0)), n (0), l (0) {} 00051 inline virtual ~series_rep () { mmx_delete<C> (a, l); } 00052 inline C zero () { return promote (0, this->tfm ()); } 00053 inline C one () { return promote (1, this->tfm ()); } 00054 inline Series me () const; 00055 virtual C next () = 0; 00056 virtual syntactic expression (const syntactic& z) const = 0; 00057 00058 public: 00059 virtual void Set_order (nat l2); 00060 virtual void Increase_order (nat l2=0); 00061 virtual inline bool test_exact_zero () const { return false; } 00062 friend class Series; 00063 };
Definition at line 879 of file series.hpp.
References CF(), is_exact_zero(), Series, and Series_rep.
00879 { 00880 if (is_exact_zero (f)) return Series (CF(f)); 00881 return (Series_rep*) new restrict_series_rep<C,V> (f, start, end); 00882 }
C mmx::resultant | ( | const polynomial< C, V > & | P, | |
const polynomial< C, V > & | Q | |||
) | [inline] |
Definition at line 1007 of file polynomial.hpp.
References binpow(), C, CF(), degree(), Polynomial, and promote().
Referenced by discriminant(), GLUE_105(), GLUE_40(), and GLUE_99().
01007 { 01008 typedef implementation<polynomial_subresultant,V> Pol; 01009 int n= degree (P), m= degree (Q); 01010 if (n < 0 || m < 0) return promote (0, CF(P)); 01011 if (m == 0) return binpow (Q[0], n); 01012 if (n == 0) { 01013 C r= binpow (P[0], m); 01014 return (n & 1) ? -r : r; 01015 } 01016 Polynomial d; 01017 C zero= promote (0, CF(P)), one= promote (1, CF(P)); 01018 vector<Polynomial> 01019 res (Polynomial (one), 1), 01020 co_P (Polynomial (zero), 0), 01021 co_Q (Polynomial (zero), 0); 01022 Pol::subresultant_sequence (P, Q, res, co_P, co_Q, 01023 d, d, d, d, d, d, 0); 01024 return res[0][0]; 01025 }
Definition at line 1218 of file series.hpp.
polynomial<C,V> mmx::reverse | ( | const polynomial< C, V > & | P | ) | [inline] |
Definition at line 1287 of file polynomial.hpp.
References C, CF(), N(), Polynomial, and seg().
Referenced by GLUE_160(), GLUE_26(), GLUE_32(), GLUE_45(), GLUE_8(), minimal_polynomial_bis(), polynomial_mul_helper< V, C, K >::op(), polynomial_reverse(), and implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::tinterpolate().
01287 { 01288 typedef implementation<polynomial_linear,V> Pol; 01289 typedef implementation<vector_linear,V> Vec; 01290 nat n= N(P); 01291 nat l= aligned_size<C,V> (n); 01292 C* r= mmx_formatted_new<C> (l, CF(P)); 01293 Vec::vec_reverse (r, seg (P), n); 01294 return Polynomial (r, n, l, CF(P)); 01295 }
void mmx::reverse_cols | ( | matrix< C, V > & | m | ) | [inline] |
Definition at line 1075 of file matrix.hpp.
References cols(), is_non_scalar(), rows(), and tab().
01075 { 01076 typedef implementation<matrix_linear,V> Mat; 01077 ASSERT (is_non_scalar (m), "non-scalar matrix expected"); 01078 Mat::col_reverse (tab (m), rows (m), cols (m)); 01079 }
Definition at line 299 of file algebraic.hpp.
References Algebraic, CF(), field(), normalize(), Polynomial, promote(), and ramify().
vector<C> mmx::row | ( | const matrix< C, V > & | m, | |
nat | i | |||
) | [inline] |
Definition at line 1018 of file matrix.hpp.
Referenced by annihilator(), GLUE_40(), GLUE_41(), GLUE_61(), GLUE_73(), and row_vectors().
void mmx::row_div | ( | matrix< C, V > & | m, | |
C | c, | |||
nat | i | |||
) | [inline] |
Definition at line 1098 of file matrix.hpp.
Referenced by implementation< matrix_determinant, V, matrix_bareiss< W > >::bareiss_pivoting(), and implementation< matrix_orthogonalization, V, matrix_naive >::row_orthonormalize().
matrix<C,V> mmx::row_echelon | ( | const matrix< C, V > & | m, | |
matrix< C, V > & | k, | |||
bool | reduced = false | |||
) | [inline] |
Definition at line 1215 of file matrix.hpp.
References column_echelon(), Matrix, and transpose().
01215 { 01216 Matrix c= column_echelon (transpose (m), k, reduced); 01217 k= transpose (k); 01218 return transpose (c); 01219 }
Definition at line 1205 of file matrix.hpp.
References column_echelon(), and transpose().
Referenced by annihilator(), GLUE_115(), GLUE_40(), GLUE_64(), and row_reduced_echelon().
01205 { 01206 return transpose (column_echelon (transpose (m), reduced)); 01207 }
Definition at line 1045 of file matrix.hpp.
References CF(), N(), and promote().
01045 { 01046 if (N(v) == 0) return matrix<C> (promote (0, get_format1 (CF(v)))); 01047 matrix<C> r (promote (0, get_format1 (CF(v))), N(v), N(v[0])); 01048 for (nat i=0; N(v)>i; i++) { 01049 ASSERT (N(v[i]) == N(v[0]), "unequal row lengths"); 01050 for (nat j=0; j<N(v[0]); j++) 01051 r (i, j)= v[i][j]; 01052 } 01053 return r; 01054 }
void mmx::row_mul | ( | matrix< C, V > & | m, | |
C | c, | |||
nat | i | |||
) | [inline] |
Definition at line 1097 of file matrix.hpp.
Definition at line 1340 of file matrix.hpp.
References CF(), cols(), copy(), is_non_scalar(), Matrix, promote(), rows(), seg(), and tab().
01340 { 01341 typedef implementation<matrix_orthogonalization,V> Mat; 01342 ASSERT (is_non_scalar (m), "non-scalar matrix expected"); 01343 Matrix c= copy (m); 01344 vector<C> n (promote (0, CF(m)), rows(m)); 01345 l= Matrix (promote (0, CF(m)), rows(m), rows(m)); 01346 Mat::row_orthogonalize (tab(c), rows(m), cols(m), tab(l), seg(n)); 01347 return c; 01348 }
Definition at line 1380 of file matrix.hpp.
References CF(), cols(), copy(), is_non_scalar(), Matrix, promote(), rows(), and tab().
01380 { 01381 typedef implementation<matrix_orthogonalization,V> Mat; 01382 ASSERT (is_non_scalar (m), "non-scalar matrix expected"); 01383 Matrix c= copy (m); 01384 l= Matrix (promote (0, CF(m)), rows(m), rows(m)); 01385 Mat::row_orthonormalize (tab(c), rows(m), cols(m), tab(l)); 01386 return c; 01387 }
Definition at line 1362 of file matrix.hpp.
References cols(), copy(), is_non_scalar(), Matrix, rows(), and tab().
Definition at line 1222 of file matrix.hpp.
References row_echelon().
01222 { 01223 return row_echelon (m, k, true); 01224 }
Definition at line 1210 of file matrix.hpp.
References row_echelon().
Referenced by GLUE_117(), GLUE_42(), GLUE_66(), and wrap_row_reduced_echelon_with_transform().
01210 { 01211 return row_echelon (m, true); 01212 }
vector<vector<C> > mmx::row_vectors | ( | const matrix< C > & | m | ) | [inline] |
nat mmx::rows | ( | const matrix< C, matrix_fixed< V, RS, CS > > & | m | ) | [inline] |
nat rows | ( | const matrix< C, V > & | m | ) | [inline] |
Definition at line 184 of file matrix.hpp.
Referenced by access(), as_matrix(), asmatrix(), binary_map(), binary_map_scalar(), binary_test(), cofactor(), column(), column_echelon(), column_orthogonalization(), column_orthonormalization(), column_reduced_echelon(), as_helper< matrix< T, TV >, matrix< F, FV > >::cv(), fast_helper< matrix< C, V > >::dd(), delete_col(), delete_row(), det(), binary_helper< matrix< C, V > >::disassemble(), extend(), first_minor(), flatten(), get_matrix_format(), GLUE_35(), GLUE_68(), GLUE_7(), GLUE_8(), horizontal_join(), image(), matrix_series_rep< C, V, U >::Increase_order(), invert(), matrix_iterator_rep< C, V >::is_busy(), is_evaluable(), is_reconstructible(), is_square_matrix(), kernel(), krylov(), lshiftz(), map(), matrix< M >::matrix(), matrix_new(), N(), nbrow(), matrix_series_rep< C, V, U >::next(), nullary_set(), operator!=(), matrix< M >::operator()(), operator*(), operator<=(), operator==(), operator>=(), permute_columns(), permute_rows(), range(), rank(), REP_STRUCT_1(), reverse_cols(), row_orthogonalization(), row_orthonormalization(), row_vectors(), implementation< matrix_vectorial, V, matrix_naive >::set(), project_helper< matrix< C, V > >::set_op(), lift_helper< matrix< C, V > >::set_op(), solve_lde(), solve_lde_init(), swap_col(), swap_row(), transpose(), unary_hash(), unary_map(), unary_set(), unary_set_scalar(), fast_helper< matrix< C, V > >::uu(), vertical_join(), and binary_helper< matrix< C, V > >::write().
void mmx::rows_linsub | ( | matrix< C, V > & | m, | |
nat | i, | |||
C | ci, | |||
nat | j, | |||
C | cj | |||
) | [inline] |
Definition at line 1101 of file matrix.hpp.
Definition at line 856 of file series.hpp.
References CF(), is_exact_zero(), Series, and Series_rep.
Referenced by ser_carry_separable_root_op::binpow_no_tangent(), ser_carry_pth_root_reg_op::binpow_no_tangent_normalized(), ser_polynomial_regular_root_op::def(), ser_carry_polynomial_regular_root_op::def(), ser_carry_pth_root_reg_op::def(), GLUE_117(), GLUE_149(), GLUE_22(), GLUE_23(), GLUE_34(), GLUE_36(), GLUE_77(), GLUE_90(), reverse_series_rep< C, V >::initialize(), div_series_rep< M, V >::initialize(), ldiv_mat_series_rep< M, V >::initialize(), ldiv_vec_series_rep< M, V >::initialize(), inv_mod_polynomial_series_rep< C, U, V, W >::initialize(), implementation< matrix_multiply, V, matrix_balanced< W > >::mat_rshift(), modulus_polynomial_mul_preinverse< X, W >::mul_mod(), mul_series_rep< M, V >::mul_series_rep(), subst_mul_series_rep< C, V, UV >::next(), slp_polynomial_regular_root_series_rep< M, V, L >::rec_prod(), slp_polynomial_regular_root_series_rep< M, V, L >::rec_square(), modulus_polynomial_reduction_preinverse< X >::reduce_mod(), slp_polynomial_regular_root_series_rep< M, V, L >::slp_polynomial_regular_root_series_rep(), and implementation< series_pth_root, U, series_carry_p_adic< W > >::unsep_root().
00856 { 00857 if (is_exact_zero (f)) return Series (CF(f)); 00858 return (Series_rep*) new lshiftz_series_rep<C,V> (f, -shift); 00859 }
const C * seg | ( | const polynomial< C, V > & | P | ) | [inline] |
Definition at line 194 of file polynomial.hpp.
C * seg | ( | polynomial< C, V > & | P | ) | [inline] |
Definition at line 193 of file polynomial.hpp.
Referenced by implementation< polynomial_evaluate, V, polynomial_naive >::annulator(), big_add(), big_mul(), binary_map_scalar(), column_orthogonalization(), combine_crt(), compose(), contents(), crt_dicho_transformer< C, S, V >::crt_dicho_transformer(), decode_kronecker(), derive(), dilate(), nrelax_mul_series_rep< C, V >::direct_transform(), base_dicho_transformer< C, S, V >::direct_transform(), implementation< polynomial_evaluate, V, polynomial_naive >::evaluate(), evaluate(), expand(), implementation< polynomial_gcd, V, polynomial_naive >::gcd(), graeffe(), integrate(), implementation< polynomial_evaluate, V, polynomial_naive >::interpolate(), inverse_base(), inverse_crt(), base_dicho_transformer< C, S, V >::inverse_transform(), invert_hi(), invert_lo(), lshiftz(), implementation< polynomial_evaluate, V, polynomial_naive >::multi_rem(), operator*(), operator+(), polynomial< C, V >::operator+=(), operator-(), polynomial< C, V >::operator-=(), operator/(), permute_columns(), permute_rows(), polynomial< L >::polynomial(), pquo(), prem(), primitive_part(), q_difference(), quo(), implementation< polynomial_gcd, V, polynomial_naive >::reconstruct(), rem(), reverse(), row_orthogonalization(), set_as(), lift_helper< polynomial< C, V > >::set_op(), shift(), skew_div(), square(), implementation< polynomial_subresultant_base, V, polynomial_naive >::subresultant_sequence(), implementation< polynomial_evaluate, V, polynomial_naive >::tevaluate(), implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::tevaluate(), implementation< polynomial_evaluate, V, polynomial_naive >::tinterpolate(), tmul(), tquo(), trem(), unary_map(), and xderive().
Definition at line 1168 of file series.hpp.
modular< modulus<C,V> ,W> mmx::separable_root | ( | const modular< modulus< C, V >, W > & | a, | |
nat | r | |||
) | [inline] |
Definition at line 118 of file root_modular.hpp.
References N(), and separable_roots().
Referenced by GLUE_29(), ser_separable_root_op::op(), ser_carry_separable_root_op::op(), ser_separable_root_op::set_op(), and ser_carry_separable_root_op::set_op().
00118 { 00119 // return one r th roots of a 00120 // FIXME << to optimize 00121 if (a == 1) return a; 00122 vector<Modular> ans= separable_roots (a, r); 00123 ASSERT (N (ans) != 0, "no root"); 00124 return ans [0]; 00125 }
Definition at line 1174 of file series.hpp.
Referenced by ser_separable_root_op::op_init(), and ser_carry_separable_root_op::op_init().
vector< modular< modulus<C,V> ,W> > mmx::separable_roots | ( | const modular< modulus< C, V >, W > & | a, | |
nat | r | |||
) | [inline] |
Definition at line 109 of file root_modular.hpp.
References C, get_modulus(), Modular, and root_modular_naive::roots().
Referenced by nth_roots(), and separable_root().
00109 { 00110 // return all the r th roots of a 00111 C p= * get_modulus (a); 00112 ASSERT (Modular (r) != 0, "wrong argument"); 00113 polynomial<Modular> x_r (C(1),r); 00114 return root_modular_naive::roots (x_r - a, p); 00115 }
Definition at line 1019 of file series.hpp.
References mmx_bit_precision, and shift().
Referenced by GLUE_162(), GLUE_34(), and GLUE_47().
01019 { 01020 return shift (s, sh, mmx_bit_precision); 01021 }
void mmx::set_accuracy | ( | matrix< C, V > & | m | ) | [inline] |
Definition at line 563 of file matrix.hpp.
void mmx::set_as | ( | series< C, V > & | r, | |
const T & | x | |||
) | [inline] |
void mmx::set_as | ( | series< T, TV > & | r, | |
const series< F, FV > & | f | |||
) | [inline] |
Definition at line 541 of file series.hpp.
References CF().
00541 { 00542 r= series<T,TV> (f, CF(r)); 00543 }
void mmx::set_as | ( | polynomial< C, V > & | r, | |
const T & | x | |||
) | [inline] |
Definition at line 266 of file polynomial.hpp.
References normalize(), seg(), and set_as().
void mmx::set_as | ( | polynomial< T, TV > & | r, | |
const polynomial< F, FV > & | p | |||
) | [inline] |
void mmx::set_as | ( | matrix< C, V > & | r, | |
const T & | x | |||
) | [inline] |
void mmx::set_as | ( | matrix< T, TV > & | r, | |
const matrix< F, FV > & | m | |||
) | [inline] |
Definition at line 252 of file matrix.hpp.
References CF().
Referenced by implementation< matrix_determinant, V, matrix_bareiss< W > >::bareiss_pivoting(), implementation< matrix_determinant, V, matrix_naive >::det(), implementation< matrix_determinant, V, matrix_bareiss< W > >::det(), implementation< polynomial_gcd, V, polynomial_naive >::gcd(), set_as(), and implementation< polynomial_subresultant, V, polynomial_naive >::subresultant_sequence().
00252 { 00253 r= matrix<T,TV> (m, CF(r)); 00254 }
void mmx::set_cancel_order | ( | const series< C, V > & | , | |
const nat & | n | |||
) | [inline] |
Definition at line 122 of file series.hpp.
Referenced by GLUE_120(), GLUE_3(), GLUE_4(), GLUE_5(), and GLUE_86().
00122 { 00123 return Series::set_cancel_order (n); }
void mmx::set_catalan | ( | matrix< C, V > & | m | ) | [inline] |
Definition at line 557 of file matrix.hpp.
void mmx::set_default | ( | matrix< C, V > & | m | ) | [inline] |
Definition at line 553 of file matrix.hpp.
void mmx::set_euler | ( | matrix< C, V > & | m | ) | [inline] |
Definition at line 556 of file matrix.hpp.
void mmx::set_formula_output | ( | const series< C, V > & | , | |
const bool & | b | |||
) | [inline] |
Definition at line 124 of file series.hpp.
Referenced by GLUE_121(), GLUE_4(), GLUE_5(), GLUE_6(), and GLUE_87().
00124 { 00125 return Series::set_formula_output (b); }
void mmx::set_fuzz | ( | matrix< C, V > & | m | ) | [inline] |
Definition at line 560 of file matrix.hpp.
void mmx::set_imaginary | ( | matrix< C, V > & | m | ) | [inline] |
Definition at line 558 of file matrix.hpp.
void mmx::set_imaginary | ( | algebraic_number & | z | ) | [inline] |
Definition at line 388 of file algebraic_number.hpp.
00388 { 00389 typedef ball<complex<floating<> > > B; 00390 polynomial<rational> mp (vec<rational> (1, 0, 1)); 00391 polynomial<rational> i (vec<rational> (0, 1)); 00392 algebraic_complex_extension ext (mp, imaginary_cst<B> ()); 00393 z= algebraic_number (ext, i); 00394 }
void mmx::set_infinity | ( | matrix< C, V > & | m | ) | [inline] |
Definition at line 564 of file matrix.hpp.
void mmx::set_largest | ( | matrix< C, V > & | m | ) | [inline] |
Definition at line 562 of file matrix.hpp.
void mmx::set_log2 | ( | matrix< C, V > & | m | ) | [inline] |
Definition at line 555 of file matrix.hpp.
void mmx::set_maximal | ( | matrix< C, V > & | m | ) | [inline] |
Definition at line 565 of file matrix.hpp.
void mmx::set_minimal | ( | matrix< C, V > & | m | ) | [inline] |
Definition at line 566 of file matrix.hpp.
void mmx::set_nan | ( | matrix< C, V > & | m | ) | [inline] |
Definition at line 559 of file matrix.hpp.
void mmx::set_output_order | ( | const series< C, V > & | , | |
const nat & | n | |||
) | [inline] |
Definition at line 120 of file series.hpp.
Referenced by GLUE_119(), GLUE_2(), GLUE_3(), GLUE_4(), and GLUE_85().
00120 { 00121 return Series::set_output_order (n); }
void mmx::set_pi | ( | matrix< C, V > & | m | ) | [inline] |
Definition at line 554 of file matrix.hpp.
Referenced by primitive_root_helper< C >::op().
void mmx::set_smallest | ( | matrix< C, V > & | m | ) | [inline] |
Definition at line 561 of file matrix.hpp.
void mmx::set_variable_name | ( | const series< C, V > & | , | |
const generic & | x | |||
) | [inline] |
Definition at line 118 of file series.hpp.
References set_variable_name(), and x.
00118 { 00119 return Series::set_variable_name (x); }
void mmx::set_variable_name | ( | const polynomial< C, V > & | P, | |
const generic & | x | |||
) | [inline] |
Definition at line 310 of file polynomial.hpp.
References x.
Referenced by GLUE_1(), GLUE_118(), GLUE_2(), GLUE_3(), GLUE_58(), GLUE_78(), GLUE_84(), and set_variable_name().
00310 { 00311 (void) P; return Polynomial::set_variable_name (x); }
Definition at line 1253 of file series.hpp.
polynomial<C,V> mmx::sharpen | ( | const polynomial< C, V > & | p | ) | [inline] |
Definition at line 1468 of file polynomial.hpp.
Definition at line 785 of file matrix.hpp.
Referenced by improve_zero().
Definition at line 1013 of file series.hpp.
References CF(), is_exact_zero(), Series, and Series_rep.
01013 { 01014 if (is_exact_zero (f)) return Series (CF(f)); 01015 return (Series_rep*) new shift_series_rep<C,V> (f, q, order); 01016 }
polynomial<C,V> mmx::shift | ( | const polynomial< C, V > & | P, | |
int | i | |||
) | [inline] |
polynomial<C,V> mmx::shift | ( | const polynomial< C, V > & | P, | |
const C & | sh | |||
) | [inline] |
Definition at line 1093 of file polynomial.hpp.
References C, CF(), N(), Polynomial, and seg().
Referenced by implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::expand(), GLUE_107(), GLUE_113(), GLUE_163(), GLUE_35(), GLUE_46(), GLUE_48(), fft_triadic_threads_transformer< C, FFTER, thr >::inverse_transform_triadic(), fft_triadic_naive_transformer< C, VV >::inverse_transform_triadic(), lshiftz(), lshiftz_series_matrix(), lshiftz_series_vector(), implementation< polynomial_multiply, V, polynomial_schonhage_triadic_inc< W, Th > >::mul(), implementation< polynomial_multiply, V, polynomial_schonhage_strassen_inc< W, Th > >::mul(), implementation< polynomial_multiply, V, polynomial_schonhage_strassen_inc< W, Th > >::mul_negative_cyclic(), implementation< polynomial_multiply, V, polynomial_schonhage_triadic_inc< W, Th > >::mul_triadic(), rshiftz(), series_shift_default(), and shift().
01093 { 01094 typedef implementation<polynomial_compose,V> Pol; 01095 nat n= N(P); 01096 if (n <= 1 || sh == 0) return P; 01097 nat l= aligned_size<C,V> (n); 01098 C* r= mmx_formatted_new<C> (l, CF(P)); 01099 Pol::shift (r, seg (P), sh, n); 01100 return Polynomial (r, n, l, CF(P)); 01101 }
vector<C> mmx::shift1 | ( | const algebraic_extension< C > & | ext1, | |
const algebraic_extension< C > & | ext2, | |||
const vector< C > & | v | |||
) | [inline] |
Definition at line 140 of file algebraic_extension.hpp.
References CF(), deg(), Element, lshiftz(), promote(), and rem().
Referenced by mul_matrix().
00140 { 00141 // multiply the bivariate polynomial represented by v with x1 00142 nat d1= deg (ext1.mp), d2= deg (ext2.mp); 00143 vector<C> r= fill<C> (promote (0, CF(ext1)), d1*d2); 00144 for (nat i2=0; i2<d2; i2++) { 00145 vector<C> c= fill<C> (promote (0, CF(ext1)), d1); 00146 for (nat i1=0; i1<d1; i1++) 00147 c[i1]= v[i1*d2 + i2]; 00148 Element p= rem (lshiftz (Element (c), 1), ext1.mp); 00149 for (nat i1=0; i1<d1; i1++) 00150 r[i1*d2 + i2]= p[i1]; 00151 } 00152 return r; 00153 }
vector<C> mmx::shift2 | ( | const algebraic_extension< C > & | ext1, | |
const algebraic_extension< C > & | ext2, | |||
const vector< C > & | v | |||
) | [inline] |
Definition at line 156 of file algebraic_extension.hpp.
References CF(), deg(), Element, lshiftz(), promote(), and rem().
Referenced by mul_matrix().
00156 { 00157 // multiply the bivariate polynomial represented by v with x2 00158 nat d1= deg (ext1.mp), d2= deg (ext2.mp); 00159 vector<C> r= fill<C> (promote (0, CF(ext1)), d1*d2); 00160 for (nat i1=0; i1<d1; i1++) { 00161 vector<C> c= fill<C> (promote (0, CF(ext1)), d2); 00162 for (nat i2=0; i2<d2; i2++) 00163 c[i2]= v[i1*d2 + i2]; 00164 Element p= rem (lshiftz (Element (c), 1), ext2.mp); 00165 for (nat i2=0; i2<d2; i2++) 00166 r[i1*d2 + i2]= p[i2]; 00167 } 00168 return r; 00169 }
bool shrink | ( | const polynomial< C > & | p, | |
Ball & | x | |||
) | [inline] |
Definition at line 155 of file algebraic_number.hpp.
References add_additive_error(), Ball, copy(), improve_zero(), and mmx_bit_precision.
Referenced by join(), normalize(), and shrink_check().
00155 { 00156 nat old_precision= mmx_bit_precision; 00157 mmx_bit_precision *= 2; 00158 Ball x2= copy (x); 00159 bool r= improve_zero (p, x2); 00160 mmx_bit_precision= old_precision; 00161 x= copy (x2); 00162 add_additive_error (x); 00163 return r; 00164 }
void mmx::shrink_check | ( | const polynomial< C > & | p, | |
Ball & | x | |||
) | [inline] |
Definition at line 167 of file algebraic_number.hpp.
References shrink().
Referenced by algebraic_number_extension< C, Ball >::algebraic_number_extension().
int mmx::sign | ( | const series< C, V > & | f | ) | [inline] |
Definition at line 345 of file series.hpp.
References sign().
00345 { 00346 for (nat n=0; n< Series::get_cancel_order (); n++) { 00347 int sgn= sign (f[n]); 00348 if (sgn != 0) return sgn; 00349 } 00350 return 0; 00351 }
int mmx::sign | ( | const quotient< NT, DT > & | x | ) | [inline] |
Definition at line 302 of file quotient.hpp.
References denominator(), numerator(), and sign().
int mmx::sign | ( | const polynomial< C, V > & | P | ) | [inline] |
int mmx::sign | ( | const algebraic_number_extension< C, Ball > & | ext, | |
const typename algebraic_number_extension< C, Ball >::El & | p1 | |||
) | [inline] |
Definition at line 271 of file algebraic_number.hpp.
References annihilator(), Ball, deg(), derive(), eval(), is_non_zero(), mmx_bit_precision, Polynomial, and sign().
00271 { 00272 if (deg (p1) <= 0) return sign (ext.ext, p1); 00273 Ball y= eval (ext, p1); 00274 if (is_non_zero (y)) return sign (y); 00275 Polynomial ann= annihilator (ext, p1); 00276 if (ann[0] == 0 && is_non_zero (eval (derive (ann), y))) return 0; 00277 nat old_precision= mmx_bit_precision; 00278 mmx_bit_precision *= 2; 00279 int r= sign (ext, p1); 00280 mmx_bit_precision= old_precision; 00281 return r; 00282 }
int mmx::sign | ( | const algebraic_extension< C > & | ext, | |
const typename algebraic_extension< C >::El & | p1 | |||
) | [inline] |
int mmx::sign | ( | const algebraic< C, Extension > & | x | ) | [inline] |
Definition at line 119 of file series_elementary.hpp.
vector<vector<C> > mmx::singleton_vector | ( | const vector< C > & | v | ) | [inline] |
Definition at line 122 of file series_sugar.hpp.
References N().
00122 { 00123 nat n= N(v); 00124 vector<vector<C> > r= fill<vector<C> > (n); 00125 for (nat i=0; i<n; i++) r[i]= vec<C> (v[i]); 00126 return r; 00127 }
nat mmx::size_bound | ( | const typename Baser::base & | a, | |
Baser & | baser | |||
) | [inline] |
Definition at line 154 of file base_naive.hpp.
Referenced by direct_base().
polynomial<C,V> mmx::skew_div | ( | const polynomial< C, V > & | P, | |
const C & | c, | |||
bool | left | |||
) | [inline] |
Definition at line 604 of file polynomial.hpp.
References C, CF(), N(), Polynomial, and seg().
00604 { 00605 typedef implementation<polynomial_linear,V> Pol; 00606 if (left) { 00607 nat n= N(P); 00608 nat l= aligned_size<C,V> (n); 00609 C* r= mmx_formatted_new<C> (n, CF(P)); 00610 Pol::div_sc (r, seg (P), c, n); 00611 return Polynomial (r, n, l, CF(P)); 00612 } 00613 else return P / c; 00614 }
static series<M,V> mmx::slp_polynomial_regular_root | ( | const generic & | f, | |
const generic & | x, | |||
const M & | y0 | |||
) | [inline, static] |
Definition at line 781 of file series_carry_naive.hpp.
References x.
00781 { 00782 typedef implementation<series_slp_polynomial_regular_root,V> Ser; 00783 return Ser::template slp_pol_root<M,V,L> (f, x, y0); 00784 }
series<C,V> mmx::solve_lde | ( | const vector< series< C, V >, W > & | f, | |
const vector< C, W > & | c | |||
) | [inline] |
Definition at line 186 of file series_vector.hpp.
References read(), and solve_lde_init().
00186 { 00187 return read (solve_lde_init (f, c), 0); 00188 }
Definition at line 147 of file series_matrix.hpp.
References as_matrix(), as_series(), C, cols(), is_square_matrix(), Matrix, rows(), and solve_matrix_lde_init().
00147 { 00148 ASSERT (is_square_matrix (f), "square matrix expected"); 00149 Matrix c (C(1), rows (f), cols (f)); 00150 return as_matrix (solve_matrix_lde_init (as_series (f), c)); 00151 }
vector< series<C,V> ,W> mmx::solve_lde_init | ( | const vector< series< C, V >, W > & | f, | |
const vector< C, W > & | c | |||
) | [inline] |
Definition at line 181 of file series_vector.hpp.
References as_series(), as_vector(), and solve_vector_lde_init().
00181 { 00182 return as_vector (solve_vector_lde_init (as_series (f), c)); 00183 }
matrix< series<C,V> ,U> mmx::solve_lde_init | ( | const matrix< series< C, V >, U > & | f, | |
const matrix< C, U > & | c | |||
) | [inline] |
Definition at line 154 of file series_matrix.hpp.
References as_matrix(), as_series(), is_square_matrix(), rows(), and solve_matrix_lde_init().
Referenced by solve_lde().
00154 { 00155 ASSERT (is_square_matrix (f), "square matrix expected"); 00156 ASSERT (rows (f) == rows (c), "unequal matrix dimensions"); 00157 return as_matrix (solve_matrix_lde_init (as_series (f), c)); 00158 }
series< matrix<C,U> ,V> mmx::solve_matrix_lde_init | ( | const series< matrix< C, U >, V > & | f, | |
const matrix< C, U > & | c | |||
) | [inline] |
Definition at line 142 of file series_matrix.hpp.
Referenced by solve_lde(), and solve_lde_init().
series< vector<C,W> ,V> mmx::solve_vector_lde_init | ( | const series< vector< C, W >, V > & | f, | |
const vector< C, W > & | c | |||
) | [inline] |
Definition at line 176 of file series_vector.hpp.
Referenced by solve_lde_init().
Definition at line 520 of file series_implicit.hpp.
References VSeries_rep.
Referenced by implicit_series(), and implicit_vector_series().
00520 { 00521 return (VSeries_rep*) new solver_container_series_rep<C,V> (f); 00522 }
Definition at line 29 of file series_elementary.hpp.
References CF(), is_exact_zero(), and Series.
00029 { 00030 if (is_exact_zero (f)) return Series (CF(f)); 00031 return unary_recursive_series<sqrt_op> (f); 00032 }
Definition at line 308 of file algebraic.hpp.
References root().
Referenced by abs(), implementation< matrix_orthogonalization, V, matrix_naive >::col_orthonormalize(), GLUE_20(), GLUE_21(), GLUE_37(), GLUE_63(), GLUE_64(), ramify(), and implementation< matrix_orthogonalization, V, matrix_naive >::row_orthonormalize().
Definition at line 35 of file series_elementary.hpp.
polynomial<C,V> mmx::square | ( | const polynomial< C, V > & | P | ) | [inline] |
Definition at line 545 of file polynomial.hpp.
References C, CF(), N(), Polynomial, seg(), and square().
00545 { 00546 typedef implementation<polynomial_multiply,V> Pol; 00547 nat n= N(P); 00548 if (n == 0) return P; 00549 nat l= aligned_size<C,V> (2*n-1); 00550 C* r= mmx_formatted_new<C> (l, CF(P)); 00551 Pol::square (r, seg (P), n); 00552 return Polynomial (r, 2*n-1, l, CF(P)); 00553 }
Ball algebraic_number_extension<C,Ball>::El mmx::square | ( | const algebraic_number_extension< C, Ball > & | ext, | |
const typename algebraic_number_extension< C, Ball >::El & | p1 | |||
) | [inline] |
Definition at line 232 of file algebraic_number.hpp.
References square().
00232 { 00233 return square (ext.ext, p1); 00234 }
algebraic_extension<C>::El mmx::square | ( | const algebraic_extension< C > & | ext, | |
const typename algebraic_extension< C >::El & | p1 | |||
) | [inline] |
Definition at line 249 of file algebraic.hpp.
References Algebraic, field(), and value().
Referenced by slp_polynomial_regular_root_series_rep< M, V, L >::_eval(), slp_polynomial_regular_root_series_rep< M, V, L >::_eval2(), base_integer_transformer< I >::base_integer_transformer(), base_unsigned_integer_transformer< I >::base_unsigned_integer_transformer(), ser_carry_separable_root_op::binpow_no_tangent(), ser_carry_pth_root_reg_op::binpow_no_tangent_normalized(), ser_polynomial_regular_root_op::def(), ser_carry_polynomial_regular_root_op::def(), ser_carry_pth_root_reg_op::def(), derive(), mul_series_rep< M, V >::get_power_of_p(), GLUE_10(), GLUE_11(), GLUE_12(), GLUE_127(), GLUE_14(), GLUE_2(), GLUE_20(), GLUE_21(), GLUE_42(), GLUE_50(), GLUE_54(), GLUE_62(), GLUE_65(), GLUE_75(), GLUE_8(), GLUE_84(), GLUE_93(), GLUE_95(), implementation< polynomial_graeffe, V, polynomial_unrolled< W, m > >::graeffe(), implementation< polynomial_graeffe, V, polynomial_naive >::graeffe(), reverse_series_rep< C, V >::initialize(), slp_polynomial_regular_root_series_rep< M, V, L >::rec_square(), slp_polynomial_regular_root_series_rep< M, V, L >::slp_polynomial_regular_root_series_rep(), implementation< polynomial_multiply, V, polynomial_balanced_tft< W > >::square(), implementation< polynomial_multiply, V, polynomial_tft_inc< W, Th > >::square(), implementation< polynomial_multiply, V, polynomial_tangent< CV > >::square(), implementation< polynomial_multiply, V, polynomial_quotient< W > >::square(), implementation< polynomial_multiply, V, polynomial_modular< W > >::square(), implementation< polynomial_multiply, V, polynomial_kronecker< W > >::square(), implementation< polynomial_multiply, V, polynomial_karatsuba< W > >::square(), implementation< polynomial_multiply, V, polynomial_complex< CV > >::square(), implementation< polynomial_multiply, V, polynomial_balanced< W > >::square(), square(), square_kronecker(), square_kronecker_int(), square_kronecker_mod_int(), and xderive().
polynomial<C> mmx::square_free | ( | const polynomial< C > & | p | ) | [inline] |
void mmx::square_kronecker | ( | signed short int * | dest, | |
const signed short int * | src, | |||
nat | n | |||
) |
Definition at line 214 of file kronecker_int.cpp.
void mmx::square_kronecker | ( | polynomial< C, V > * | dest, | |
const polynomial< C, V > * | s, | |||
nat | n | |||
) | [inline] |
Definition at line 84 of file kronecker_polynomial.hpp.
References decode_kronecker(), encode_kronecker(), max_polynomial_size(), Polynomial, and x.
00084 { 00085 typedef implementation<polynomial_linear,V> Pol; 00086 if (n == 0) return; 00087 if (n == 1) { dest[0]= square_op::op (s[0]); return; } 00088 nat m = (max_polynomial_size (s, n) << 1) - 1; 00089 Polynomial x; 00090 encode_kronecker (x, s, n, m); 00091 x= square_op::op (x); 00092 decode_kronecker (dest, x, (n << 1) - 1, m); }
void mmx::square_kronecker | ( | modular< modulus< I, MoV >, modular_local > * | dest, | |
const modular< modulus< I, MoV >, modular_local > * | s, | |||
nat | n | |||
) | [inline] |
Definition at line 85 of file kronecker_modular_int.hpp.
References C, get_modulus(), I, and square_kronecker_mod().
00085 { 00086 nat ls= default_aligned_size<I> (n); 00087 nat spc= ls + default_aligned_size<I> (2 * n - 1); 00088 I* t= mmx_new<I> (spc), * r= t + ls; 00089 for (nat i= 0; i < n; i++) t[i]= * s[i]; 00090 I p= * get_modulus (s[0]); 00091 square_kronecker_mod (r, t, n, p); 00092 for (nat i= 0; i < 2 * n - 1; i++) dest[i]= C (* r[i], p, true); 00093 mmx_delete<I> (t, spc); 00094 }
void mmx::square_kronecker | ( | modular< modulus< I, MoV >, MaV > * | dest, | |
const modular< modulus< I, MoV >, MaV > * | s, | |||
nat | n | |||
) | [inline] |
Definition at line 59 of file kronecker_modular_int.hpp.
References I, and square_kronecker_mod().
00059 { 00060 square_kronecker_mod ((I*) (void*) dest, 00061 (const I*) (const void*) s, n, 00062 * C::get_modulus()); 00063 }
void square_kronecker | ( | integer * | dest, | |
const integer * | src1, | |||
nat | n1 | |||
) |
Definition at line 169 of file kronecker_integer.cpp.
References decode_kronecker(), encode_kronecker(), max_bit_size(), and square().
00169 { 00170 if (n == 0) return; 00171 for (nat i= 0; i < 2 * n - 1; i++) dest[i]= 0; 00172 while (n > 0 && src[n-1] == 0) n--; 00173 if (n == 0) return; 00174 if (n == 1) { dest[0]= square (src[0]); return; } 00175 00176 xnat bits1= max_bit_size (src, n); 00177 xnat bits = (bits1 << 1) + bit_size (integer (n)) + 1; 00178 00179 integer aux1; 00180 encode_kronecker (aux1, src, n, bits); 00181 integer aux= square (aux1); 00182 decode_kronecker (dest, n+n-1, bits, aux); 00183 }
void square_kronecker | ( | unsigned long long int * | dest, | |
const unsigned long long int * | src1, | |||
nat | n1 | |||
) |
Definition at line 221 of file kronecker_int.cpp.
void square_kronecker | ( | long long int * | dest, | |
const long long int * | src1, | |||
nat | n1 | |||
) |
Definition at line 220 of file kronecker_int.cpp.
void square_kronecker | ( | unsigned long int * | dest, | |
const unsigned long int * | src1, | |||
nat | n1 | |||
) |
Definition at line 219 of file kronecker_int.cpp.
void square_kronecker | ( | long int * | dest, | |
const long int * | src1, | |||
nat | n1 | |||
) |
Definition at line 218 of file kronecker_int.cpp.
void square_kronecker | ( | unsigned int * | dest, | |
const unsigned int * | src1, | |||
nat | n1 | |||
) |
Definition at line 217 of file kronecker_int.cpp.
void square_kronecker | ( | int * | dest, | |
const int * | src1, | |||
nat | n1 | |||
) |
Definition at line 216 of file kronecker_int.cpp.
void square_kronecker | ( | unsigned short int * | dest, | |
const unsigned short int * | src1, | |||
nat | n1 | |||
) |
Definition at line 215 of file kronecker_int.cpp.
void mmx::square_kronecker | ( | short int * | dest, | |
const short int * | src1, | |||
nat | n1 | |||
) |
void square_kronecker | ( | unsigned char * | dest, | |
const unsigned char * | src1, | |||
nat | n1 | |||
) |
Definition at line 213 of file kronecker_int.cpp.
void square_kronecker | ( | signed char * | dest, | |
const signed char * | src1, | |||
nat | n1 | |||
) |
Definition at line 212 of file kronecker_int.cpp.
Referenced by implementation< polynomial_multiply, V, polynomial_kronecker< W > >::square().
static void mmx::square_kronecker_int | ( | I * | dest, | |
const I * | src, | |||
nat | n | |||
) | [inline, static] |
Definition at line 194 of file kronecker_int.cpp.
References decode_kronecker(), encode_kronecker(), I, and square().
00194 { 00195 if (n == 0) return; 00196 for (nat i= 0; i < 2 * n - 1; i++) dest[i]= 0; 00197 while (n > 0 && src[n-1] == 0) n--; 00198 if (n == 0) return; 00199 if (n == 1) { dest[0]= square (src[0]); return; } 00200 00201 xnat bits= 16 * sizeof (I) + bit_size (n); 00202 integer aux1; 00203 encode_kronecker (aux1, src, n, bits); 00204 integer aux= square (aux1); 00205 decode_kronecker (dest, 2*n - 1, bits, aux); 00206 }
void square_kronecker_mod | ( | unsigned long long int * | dest, | |
const unsigned long long int * | src1, | |||
nat | n1, | |||
const unsigned long long int & | p | |||
) |
Definition at line 160 of file kronecker_modular_int.cpp.
void square_kronecker_mod | ( | long long int * | dest, | |
const long long int * | src1, | |||
nat | n1, | |||
const long long int & | p | |||
) |
Definition at line 159 of file kronecker_modular_int.cpp.
void square_kronecker_mod | ( | unsigned long int * | dest, | |
const unsigned long int * | src1, | |||
nat | n1, | |||
const unsigned long int & | p | |||
) |
Definition at line 158 of file kronecker_modular_int.cpp.
void square_kronecker_mod | ( | long int * | dest, | |
const long int * | src1, | |||
nat | n1, | |||
const long int & | p | |||
) |
Definition at line 157 of file kronecker_modular_int.cpp.
void square_kronecker_mod | ( | unsigned int * | dest, | |
const unsigned int * | src1, | |||
nat | n1, | |||
const unsigned int & | p | |||
) |
Definition at line 156 of file kronecker_modular_int.cpp.
void square_kronecker_mod | ( | int * | dest, | |
const int * | src1, | |||
nat | n1, | |||
const int & | p | |||
) |
Definition at line 155 of file kronecker_modular_int.cpp.
void square_kronecker_mod | ( | unsigned short int * | dest, | |
const unsigned short int * | src1, | |||
nat | n1, | |||
const unsigned short int & | p | |||
) |
Definition at line 154 of file kronecker_modular_int.cpp.
void square_kronecker_mod | ( | short int * | dest, | |
const short int * | src1, | |||
nat | n1, | |||
const short int & | p | |||
) |
Definition at line 153 of file kronecker_modular_int.cpp.
void square_kronecker_mod | ( | unsigned char * | dest, | |
const unsigned char * | src1, | |||
nat | n1, | |||
const unsigned char & | p | |||
) |
Definition at line 152 of file kronecker_modular_int.cpp.
void square_kronecker_mod | ( | signed char * | dest, | |
const signed char * | src1, | |||
nat | n1, | |||
const signed char & | p | |||
) |
Definition at line 151 of file kronecker_modular_int.cpp.
Referenced by square_kronecker().
static void mmx::square_kronecker_mod_int | ( | I * | dest, | |
const I * | src, | |||
nat | n, | |||
const I & | p | |||
) | [inline, static] |
Definition at line 134 of file kronecker_modular_int.cpp.
References decode_kronecker_mod(), encode_kronecker(), and square().
00134 { 00135 if (n == 0) return; 00136 for (nat i= 0; i < 2 * n - 1; i++) dest[i]= 0; 00137 while (n > 0 && src[n-1] == 0) n--; 00138 if (n == 0) return; 00139 if (n == 1) { dest[0]= square (src[0]); return; } 00140 00141 xnat bits= 2 * bit_size (p-1) + bit_size (n); 00142 integer aux1; 00143 encode_kronecker (aux1, src, n, bits); 00144 integer aux= square (aux1); 00145 decode_kronecker_mod (dest, 2*n - 1, bits, aux, p); 00146 }
mmx::STRICT_COMPARE_SUGAR | ( | template< typename C, typename V > | , | |
matrix< C, V > | ||||
) |
mmx::STYPE_TO_TYPE | ( | template< typename C, typename V, typename W > | , | |
as_vector_type | , | |||
series< vector< C, W >, V > | , | |||
vector< series< C, V >, W > | ||||
) |
mmx::STYPE_TO_TYPE | ( | template< typename C, typename V, typename U > | , | |
as_matrix_type | , | |||
series< matrix< C, U >, V > | , | |||
matrix< series< C, V >, U > | ||||
) |
mmx::STYPE_TO_TYPE | ( | template< typename C, typename V > | , | |
monomial_type | , | |||
polynomial< C, V > | , | |||
nat | ||||
) |
mmx::STYPE_TO_TYPE | ( | template< typename C, typename V > | , | |
scalar_type | , | |||
polynomial< C, V > | , | |||
C | ||||
) |
mmx::STYPE_TO_TYPE | ( | template< typename C, typename V > | , | |
scalar_type | , | |||
matrix< C, V > | , | |||
C | ||||
) |
mmx::STYPE_TO_TYPE | ( | template< typename C, typename Extension > | , | |
scalar_type | , | |||
algebraic< C, Extension > | , | |||
C | ||||
) |
polynomial<C,V> mmx::subresultant | ( | const polynomial< C, V > & | P, | |
const polynomial< C, V > & | Q, | |||
int | k | |||
) | [inline] |
Definition at line 988 of file polynomial.hpp.
References C, CF(), deg(), max(), min(), Polynomial, and promote().
00988 { 00989 typedef implementation<polynomial_subresultant,V> Pol; 00990 if (k < 0) return promote (0, P); 00991 int n= deg (P), m= deg (Q); 00992 nat l= max (min (n, m), 0); 00993 ASSERT ((nat) k < l, "index out of range"); 00994 Polynomial d; 00995 C zero= promote (0, CF(P)), one= promote (1, CF(P)); 00996 vector<Polynomial> 00997 res (Polynomial (zero), l), 00998 co_P (Polynomial (zero), 0), 00999 co_Q (Polynomial (zero), 0); 01000 res [k]= Polynomial (one); 01001 Pol::subresultant_sequence (P, Q, res, co_P, co_Q, 01002 d, d, d, d, d, d, 0); 01003 return res[k]; 01004 }
polynomial<C,V> mmx::subresultant | ( | const polynomial< C, V > & | P, | |
const polynomial< C, V > & | Q, | |||
int | k, | |||
polynomial< C, V > & | coP | |||
) | [inline] |
Definition at line 967 of file polynomial.hpp.
References C, CF(), deg(), max(), min(), Polynomial, and promote().
00968 { 00969 typedef implementation<polynomial_subresultant,V> Pol; 00970 int n= deg (P), m= deg (Q); 00971 nat l= max (min (n, m), 0); 00972 ASSERT (k < l, "index out of range"); 00973 Polynomial d; 00974 C zero= promote (0, CF(P)), one= promote (1, CF(P)); 00975 vector<Polynomial> 00976 res (Polynomial (zero), l), 00977 co_P (Polynomial (zero), l), 00978 co_Q (Polynomial (zero), 0); 00979 res [k]= Polynomial (one); 00980 co_P[k]= Polynomial (one); 00981 Pol::subresultant_sequence (P, Q, res, co_P, co_Q, 00982 d, d, d, d, d, d, 0); 00983 coP= co_P[k]; 00984 return res[k]; 00985 }
polynomial<C,V> mmx::subresultant | ( | const polynomial< C, V > & | P, | |
const polynomial< C, V > & | Q, | |||
int | k, | |||
polynomial< C, V > & | coP, | |||
polynomial< C, V > & | coQ | |||
) | [inline] |
Definition at line 945 of file polynomial.hpp.
References C, CF(), deg(), max(), min(), Polynomial, and promote().
Referenced by GLUE_103(), GLUE_38(), GLUE_97(), implementation< polynomial_subresultant_base, V, polynomial_ring_naive< W > >::subresultant(), and implementation< polynomial_subresultant_base, V, polynomial_ring_naive< W > >::subresultant_sequence().
00946 { 00947 typedef implementation<polynomial_subresultant,V> Pol; 00948 int n= deg (P), m= deg (Q); 00949 nat l= max (min (n, m), 0); 00950 ASSERT (k < l, "index out of range"); 00951 C zero= promote (0, CF(P)), one= promote (1, CF(P)); 00952 Polynomial d; 00953 vector<Polynomial> 00954 res (Polynomial (zero), l), 00955 co_P (Polynomial (zero), l), 00956 co_Q (Polynomial (zero), l); 00957 res [k]= Polynomial (one); 00958 co_P[k]= Polynomial (one); 00959 co_Q[k]= Polynomial (one); 00960 Pol::subresultant_sequence (P, Q, res, co_P, co_Q, 00961 d, d, d, d, d, d, 0); 00962 coP= co_P[k]; coQ= co_Q[k]; 00963 return res[k]; 00964 }
vector< polynomial<C,V> > mmx::subresultants | ( | const polynomial< C, V > & | P, | |
const polynomial< C, V > & | Q | |||
) | [inline] |
Definition at line 930 of file polynomial.hpp.
References C, CF(), deg(), max(), min(), Polynomial, and promote().
00930 { 00931 typedef implementation<polynomial_subresultant,V> Pol; 00932 int n= deg (P), m= deg (Q); nat l= max (min (n, m), 0); 00933 Polynomial d; 00934 C zero= promote (0, CF(P)), one= promote (1, CF(P)); 00935 vector<Polynomial> 00936 res (Polynomial(one), l), 00937 co_P (Polynomial (zero), 0), 00938 co_Q (Polynomial (zero), 0); 00939 Pol::subresultant_sequence (P, Q, res, co_P, co_Q, 00940 d, d, d, d, d, d, 0); 00941 return res; 00942 }
vector< polynomial<C,V> > mmx::subresultants | ( | const polynomial< C, V > & | P, | |
const polynomial< C, V > & | Q, | |||
vector< polynomial< C, V > > & | co_P | |||
) | [inline] |
Definition at line 916 of file polynomial.hpp.
References C, CF(), deg(), max(), min(), Polynomial, and promote().
00917 { 00918 typedef implementation<polynomial_subresultant,V> Pol; 00919 int n= deg (P), m= deg (Q); nat l= max (min (n, m), 0); 00920 Polynomial d; 00921 C zero= promote (0, CF(P)), one= promote (1, CF(P)); 00922 vector<Polynomial> res (Polynomial (one), l), co_Q (Polynomial (zero), 0); 00923 co_P= vector<Polynomial> (Polynomial (one), l); 00924 Pol::subresultant_sequence (P, Q, res, co_P, co_Q, 00925 d, d, d, d, d, d, 0); 00926 return res; 00927 }
vector< polynomial<C,V> > mmx::subresultants | ( | const polynomial< C, V > & | P, | |
const polynomial< C, V > & | Q, | |||
vector< polynomial< C, V > > & | co_P, | |||
vector< polynomial< C, V > > & | co_Q | |||
) | [inline] |
Definition at line 902 of file polynomial.hpp.
References C, CF(), deg(), max(), min(), Polynomial, and promote().
Referenced by wrap_subresultants().
00903 { 00904 typedef implementation<polynomial_subresultant,V> Pol; 00905 int n= deg (P), m= deg (Q); nat l= max (min (n, m), 0); 00906 C one= promote (1, CF(P)); 00907 Polynomial d; vector<Polynomial> res (Polynomial (one), l); 00908 co_P= vector<Polynomial> (Polynomial (one), l); 00909 co_Q= vector<Polynomial> (Polynomial (one), l); 00910 Pol::subresultant_sequence (P, Q, res, co_P, co_Q, 00911 d, d, d, d, d, d, 0); 00912 return res; 00913 }
Definition at line 250 of file series_implicit.hpp.
Referenced by solver_series_rep< C, V >::next(), subst_mul_series_rep< C, V, UV >::next(), known_series_rep< C, V, UV >::next(), and operator*().
00250 { 00251 //mmerr << " substitute " << c << "\n"; 00252 if (c->i1 == c->i2 || c->i1 >= c->f->n * c->f->m) return c; 00253 nat i1= min (c->f->n * c->f->m, c->i2); 00254 nat d= i1 - c->i1; 00255 nat n= c->i2 - i1; 00256 C* s= mmx_new<C> (n); 00257 C b= c->b; 00258 for (nat i=0; i<d; i++) { 00259 nat k= (i + c->i1) / c->f->m; 00260 nat j= (i + c->i1) % c->f->m; 00261 b += c->s[i] * c->f->a[k][j]; 00262 } 00263 for (nat i=0; i<n; i++) 00264 s[i]= c->s[i + d]; 00265 return UC (c->f, b, s, i1, c->i2); 00266 }
void mmx::swap_col | ( | matrix< C, V > & | m, | |
nat | i, | |||
nat | j | |||
) | [inline] |
Definition at line 1066 of file matrix.hpp.
References cols(), is_non_scalar(), rows(), and tab().
01066 { 01067 typedef implementation<matrix_linear,V> Mat; 01068 ASSERT (is_non_scalar (m), "non-scalar matrix expected"); 01069 nat mrows= rows (m), mcols= cols (m); 01070 ASSERT (i < mcols && j < mcols, "out of range"); 01071 Mat::col_swap (tab (m), i, j, mrows, mcols); 01072 }
void mmx::swap_row | ( | matrix< C, V > & | m, | |
nat | i, | |||
nat | j | |||
) | [inline] |
Definition at line 1057 of file matrix.hpp.
References cols(), is_non_scalar(), rows(), and tab().
01057 { 01058 typedef implementation<matrix_linear,V> Mat; 01059 ASSERT (is_non_scalar (m), "non-scalar matrix expected"); 01060 nat mrows= rows (m), mcols= cols (m); 01061 ASSERT (i < mrows && j < mrows, "out of range"); 01062 Mat::row_swap (tab (m), i, j, mrows, mcols); 01063 }
const C * tab | ( | const matrix< C, V > & | m | ) | [inline] |
Definition at line 195 of file matrix.hpp.
C * tab | ( | matrix< C, V > & | m | ) | [inline] |
Definition at line 196 of file matrix.hpp.
References is_non_scalar().
Referenced by binary_map(), binary_map_scalar(), binary_test(), column_echelon(), column_orthogonalization(), column_orthonormalization(), column_reduced_echelon(), as_helper< matrix< T, TV >, matrix< F, FV > >::cv(), fast_helper< matrix< C, V > >::dd(), det(), binary_helper< matrix< C, V > >::disassemble(), image(), invert(), kernel(), map(), matrix< M >::matrix(), implementation< matrix_multiply, V, matrix_crt< W > >::mul(), nullary_set(), operator*(), permute_columns(), permute_rows(), range(), rank(), REP_STRUCT_1(), reverse_cols(), row_orthogonalization(), row_orthonormalization(), project_helper< matrix< C, V > >::set_op(), lift_helper< matrix< C, V > >::set_op(), swap_col(), swap_row(), transpose(), unary_map(), unary_set(), unary_set_scalar(), fast_helper< matrix< C, V > >::uu(), and binary_helper< matrix< C, V > >::write().
00196 { 00197 VERIFY (is_non_scalar (m), "non-scalar matrix expected"); 00198 m.secure(); return m->a; }
quotient_series<Series,Monomial> mmx::tail | ( | const quotient_series< Series, Monomial > & | f, | |
const list< Monomial > & | l | |||
) | [inline] |
Definition at line 126 of file quotient_series.hpp.
References Quotient_series.
Referenced by nrelax_mul_series_rep< C, V >::direct_transform(), level_info< C >::level_info(), and level_info< C >::~level_info().
00126 { 00127 return Quotient_series (tail (f->f, stair_mul (1/f->m, l)), f->m); }
Definition at line 124 of file series_elementary.hpp.
Definition at line 814 of file matrix.hpp.
References CF(), is_non_scalar(), N(), and promote().
Referenced by GLUE_45(), GLUE_51(), and GLUE_90().
00814 { 00815 ASSERT (is_non_scalar (v), "non-scalar vector expected"); 00816 ASSERT (is_non_scalar (w), "non-scalar vector expected"); 00817 matrix<C> m (promote (0, CF(v)), N(v), N(w)); 00818 for (nat i=0; i<N(v); i++) 00819 for (nat j=0; j<N(w); j++) 00820 m (i, j)= v[i] * w[j]; 00821 return m; 00822 }
series<C,V> mmx::ternary_scalar_series | ( | const series< C, V > & | f, | |
const X & | x, | |||
const Y & | y | |||
) | [inline] |
Definition at line 564 of file series.hpp.
References Series_rep.
00564 { 00565 typedef implementation<series_scalar_abstractions,V> Ser; 00566 typedef typename Ser::template ternary_scalar_series_rep<Op,C,V,X,Y> 00567 Ternary_rep; 00568 return (Series_rep*) new Ternary_rep (f, x, y); 00569 }
polynomial<C,typename polynomial_variant_helper< C >::PV > mmx::tevaluate | ( | const vector< C > & | v, | |
const vector< C > & | x, | |||
nat | l | |||
) | [inline] |
Definition at line 1210 of file polynomial.hpp.
01210 { 01211 return tevaluate_bis<C,typename Polynomial_variant(C) > (v, x, l); 01212 }
polynomial<C,typename polynomial_variant_helper< C >::PV > mmx::tevaluate | ( | const C & | v, | |
const C & | x, | |||
nat | n | |||
) | [inline] |
Definition at line 1188 of file polynomial.hpp.
Referenced by implementation< polynomial_evaluate, V, polynomial_naive >::tevaluate(), and tevaluate_bis().
01188 { 01189 return tevaluate_bis<C,typename Polynomial_variant(C) > (v, x, n); 01190 }
polynomial<C,V> mmx::tevaluate_bis | ( | const vector< C > & | v, | |
const vector< C > & | x, | |||
nat | l | |||
) | [inline] |
Definition at line 1204 of file polynomial.hpp.
01204 { 01205 typedef implementation<polynomial_evaluate,V> Pol; 01206 return Pol::template tevaluate<Polynomial> (v, x, l); 01207 }
polynomial<C,V> mmx::tevaluate_bis | ( | const C & | v, | |
const C & | x, | |||
nat | n | |||
) | [inline] |
Definition at line 1179 of file polynomial.hpp.
References C, Polynomial, and tevaluate().
01179 { 01180 typedef implementation<polynomial_evaluate,V> Pol; 01181 nat l= aligned_size<C,V> (n); 01182 C* buf= mmx_formatted_new<C> (l, get_format (v)); 01183 Pol::tevaluate (v, buf, x, n); 01184 return Polynomial (buf, n, l, get_format (v)); 01185 }
algebraic_number mmx::times_i | ( | const algebraic_number & | z | ) | [inline] |
Definition at line 397 of file algebraic_number.hpp.
Referenced by gaussian(), GLUE_76(), and primitive_root_helper< C >::op().
vector<C> mmx::tinterpolate | ( | const polynomial< C, V > & | p, | |
const vector< C > & | x | |||
) | [inline] |
Definition at line 1226 of file polynomial.hpp.
Referenced by implementation< polynomial_evaluate, V, polynomial_naive >::tinterpolate().
01226 { 01227 typedef implementation<polynomial_evaluate,V> Pol; 01228 return Pol::tinterpolate (p, x); 01229 }
polynomial<C,V> mmx::tmul | ( | int | d2, | |
const polynomial< C, V > & | P1, | |||
const polynomial< C, V > & | P2 | |||
) | [inline] |
Transposed multiplication. The returned polynomial has degree at most d2.
Definition at line 524 of file polynomial.hpp.
References C, CF(), copy(), max(), N(), Polynomial, and seg().
Referenced by implementation< polynomial_multiply, V, polynomial_kronecker< W > >::tmul(), implementation< polynomial_multiply, V, polynomial_karatsuba< W > >::tmultiply(), implementation< polynomial_divide, V, polynomial_ring_dicho_inc< W > >::tquo_rem(), and implementation< polynomial_divide, V, polynomial_dicho< BV > >::tquo_rem().
00524 { 00525 typedef implementation<polynomial_multiply,V> Pol; 00526 nat n2 = max (0, d2 + 1), n1= N(P1), n= N(P2); 00527 if (n1 == 0 || n2 == 0) return Polynomial (CF(P1)); 00528 ASSERT (n < n1 + n2, "bad dimension in tmul"); 00529 nat l2= aligned_size<C,V> (n2); 00530 C* r= mmx_formatted_new<C> (l2, CF(P1)); 00531 if (n != n1 + n2 - 1) { 00532 nat l= aligned_size<C,V> (n1+n2-1); 00533 C* s2= mmx_formatted_new<C> (l, CF(P1)); 00534 Pol::copy (s2, seg (P2), n); 00535 Pol::clear (s2 + n, n1+n2-n-1); 00536 Pol::tmul (r, seg (P1), s2, n1, n2); 00537 mmx_delete<C> (s2, l); 00538 } 00539 else 00540 Pol::tmul (r, seg (P1), seg (P2), n1, n2); 00541 return Polynomial (r, n2, l2, CF(P1)); 00542 }
series< modular<modulus<Lift_type(M)>, modular_global_series_carry_monoblock <M,s,BV> > ,BV> mmx::to_monoblock | ( | const series< M, V > & | f, | |
const series_carry_monoblock_transformer< M, V, s, BV > & | blocker | |||
) | [inline] |
Definition at line 179 of file series_carry_blocks.hpp.
Referenced by ldiv_mat_monoblock_series_rep< M, V >::Increase_order(), ldiv_vec_monoblock_series_rep< M, V >::Increase_order(), binary_scalar_recursive_monoblock_series_rep< Op, M, V, s, BV, t, X >::Increase_order(), truncate_mul_monoblock_series_rep< M, V, s, BV, t >::Increase_order(), binary_monoblock_series_rep< Op, M, V, s, BV, t >::Increase_order(), and mul_series_rep< M, V >::mul_series_rep().
polynomial<C,V> mmx::tquo | ( | int | d1, | |
const polynomial< C, V > & | P1, | |||
const polynomial< C, V > & | P2 | |||
) | [inline] |
Transposed quotient in the division in degree d1 by P2.
Definition at line 653 of file polynomial.hpp.
References C, CF(), copy(), max(), N(), Polynomial, and seg().
00653 { 00654 typedef implementation<polynomial_divide,V> Pol; 00655 nat n1= max (0, d1+1), n= N(P1), n2= N(P2); 00656 ASSERT (n <= n1-n2+1, "bad dimension in tquo"); 00657 if (n1 < n2 || n2 == 0) return Polynomial (CF(P1)); 00658 nat l= aligned_size<C,V> (n1); 00659 C* q= mmx_formatted_new<C> (l, CF(P1)); 00660 C* r= mmx_formatted_new<C> (l, CF(P1)); 00661 Pol::clear (r, n1); 00662 Pol::copy (r+n2-1, seg (P1), n); 00663 Pol::tquo_rem (q, r, seg (P2), n1, n2); 00664 mmx_delete<C> (r, l); 00665 return Polynomial (q, n1, l, CF(P1)); 00666 }
Definition at line 918 of file matrix.hpp.
References CF(), cols(), is_a_scalar(), Matrix, rows(), and tab().
Referenced by GLUE_12(), GLUE_13(), GLUE_42(), GLUE_75(), join(), and row_echelon().
00918 { 00919 typedef implementation<matrix_linear,V> Mat; 00920 if (is_a_scalar (m)) return m; 00921 nat nrows= rows (m), ncols= cols (m); 00922 nat l= aligned_size<C,V> (nrows * ncols); 00923 C* r= mmx_formatted_new<C> (l, CF(m)); 00924 Mat::transpose (r, tab (m), nrows, ncols); 00925 return Matrix (r, ncols, nrows, CF(m)); 00926 }
permutation transposition | ( | nat | i, | |
nat | j, | |||
nat | n | |||
) |
Definition at line 20 of file permutation.cpp.
References id_vector().
Referenced by GLUE_3().
00020 { 00021 vector<nat> v= id_vector (n); 00022 v[i]= j; 00023 v[j]= i; 00024 return permutation (v); 00025 }
polynomial<C,V> mmx::trem | ( | int | d1, | |
const polynomial< C, V > & | P1, | |||
const polynomial< C, V > & | P2 | |||
) | [inline] |
Transposed remainder in the division in degree d1 by P2.
Definition at line 706 of file polynomial.hpp.
References C, CF(), copy(), max(), N(), Polynomial, and seg().
00706 { 00707 typedef implementation<polynomial_divide,V> Pol; 00708 nat n1= max (0, d1+1), n= N(P1), n2= N(P2); 00709 ASSERT (n <= n2-1, "bad dimension in trem"); 00710 if (n1 < n2 || n2 == 0) return P1; 00711 nat l= aligned_size<C,V> (n1); 00712 C* q= mmx_formatted_new<C> (l, CF(P1)); 00713 C* r= mmx_formatted_new<C> (l, CF(P1)); 00714 Pol::copy (r, seg (P1), n); 00715 Pol::clear (r+n, n1-n); 00716 Pol::tquo_rem (q, r, seg (P2), n1, n2); 00717 mmx_delete<C> (r, l); 00718 return Polynomial (q, n1, l, CF(P1)); 00719 }
series<C,V> series<C,V> series<vector<C,W>,V> mmx::trig | ( | const series< vector< C, W >, V > & | f | ) | [inline] |
Extension mmx::trivial_extension | ( | const format< C > & | fm | ) | [inline] |
Definition at line 54 of file algebraic.hpp.
References trivial_extension_helper< FT, C, Extension >::ext().
Extension mmx::trivial_extension | ( | ) | [inline] |
Definition at line 48 of file algebraic.hpp.
References trivial_extension_helper< FT, C, Extension >::ext().
mmx::TRUE_IDENTITY_OP_SUGAR | ( | template< typename C, typename V > | , | |
unknown< C, V > | ||||
) |
mmx::TRUE_IDENTITY_OP_SUGAR | ( | template< typename C, typename V > | , | |
polynomial< C, V > | ||||
) |
mmx::TRUE_IDENTITY_OP_SUGAR | ( | template< typename C, typename V > | , | |
matrix< C, V > | ||||
) |
polynomial<C,V> mmx::truncate | ( | const polynomial< C, V > & | p, | |
nat | sigma | |||
) | [inline] |
Definition at line 1272 of file series.hpp.
References range().
01272 { return range (p, 0, sigma); }
polynomial<C, typename series_polynomial_helper<C,V>::PV> mmx::truncate | ( | const series< C, V > & | f, | |
nat | n | |||
) | [inline] |
Definition at line 234 of file series.hpp.
References C, CF(), and Polynomial.
00234 { 00235 typedef typename series_polynomial_helper<C,V>::PV PV; 00236 nat l= aligned_size<C,PV> (n); 00237 C* coeffs= mmx_formatted_new<C> (l, CF(f)); 00238 if (n>0) (void) f[n-1]; 00239 for (nat i=0; i<n; i++) coeffs[i]= f[i]; 00240 return Polynomial (coeffs, n, l, CF(f)); 00241 }
Definition at line 732 of file matrix.hpp.
Referenced by ldiv_mat_monoblock_series_rep< M, V >::Increase_order(), ldiv_vec_monoblock_series_rep< M, V >::Increase_order(), slp_polynomial_regular_root_monoblock_series_rep< M, V, L >::Increase_order(), binary_scalar_recursive_monoblock_series_rep< Op, M, V, s, BV, t, X >::Increase_order(), and unary_polynomial_recursive_monoblock_series_rep< Op, M, V, s, BV, t, L >::Increase_order().
series<C,V> mmx::truncate_mul | ( | const series< C, V > & | f, | |
const series< C, V > & | g, | |||
nat | nf, | |||
nat | ng | |||
) | [inline] |
Definition at line 1102 of file series.hpp.
Referenced by truncate_mul_monoblock_series_rep< M, V, s, BV, t >::Increase_order(), mul_series_rep< M, V >::mul_series_rep(), truncate_mul_monoblock_series_rep< M, V, s, BV, t >::truncate_mul_monoblock_series_rep(), and truncate_mul_series_rep< M, V >::truncate_mul_series_rep().
series<M,V> mmx::truncate_mul_monoblock_series | ( | const series< M, V > & | f, | |
const series< M, V > & | g, | |||
nat | nf, | |||
nat | ng | |||
) | [inline] |
Definition at line 271 of file series_carry_blocks.hpp.
References Series_rep.
00272 { 00273 typedef truncate_mul_monoblock_series_rep<M,V,s,BV,t> Mul_rep; 00274 return (Series_rep*) new Mul_rep (f, g, nf, ng); }
nat mmx::unary_hash | ( | const unknown< C, V > & | c | ) | [inline] |
Definition at line 125 of file series_implicit.hpp.
V nat mmx::unary_hash | ( | const series< C, V > & | s | ) |
Definition at line 283 of file series.hpp.
nat mmx::unary_hash | ( | const polynomial< C, V > & | p | ) | [inline] |
Definition at line 274 of file polynomial.hpp.
References N().
00274 { 00275 register nat i, h= 642531, n= N(p); 00276 for (i=0; i<n; i++) 00277 h= (h<<1) ^ (h<<5) ^ (h>>27) ^ Op::op (p[i]); 00278 return h; 00279 }
nat mmx::unary_hash | ( | const matrix< C, V > & | m | ) | [inline] |
polynomial<Unary_return_type(Op,C),V> mmx::unary_map | ( | const polynomial< C, V > & | p | ) | [inline] |
Definition at line 1345 of file polynomial.hpp.
References C, CF(), N(), seg(), and Unary_return_type().
01345 { 01346 typedef implementation<vector_linear,V> Vec; 01347 typedef Unary_return_type(Op,C) T; 01348 nat n= N(p); 01349 nat l= aligned_size<T,V> (n); 01350 format<T> fm= unary_map<Op> (CF(p)); 01351 T* r= mmx_formatted_new<T> (l, fm); 01352 Vec::template vec_unary<Op> (r, seg (p), n); 01353 return polynomial<T,V> (r, n, l, fm); 01354 }
Definition at line 424 of file matrix.hpp.
References C, CF(), cols(), is_a_scalar(), rows(), matrix< C, V >::scalar(), tab(), and Unary_return_type().
00424 { 00425 typedef implementation<vector_linear,V> Vec; 00426 typedef Unary_return_type(Op,C) T; 00427 format<T> fm= unary_map<Op> (CF(m)); 00428 if (is_a_scalar (m)) return matrix<T,V> (Op::op (m.scalar())); 00429 nat nrows= rows (m); 00430 nat ncols= cols (m); 00431 nat l= aligned_size<T,V> (nrows * ncols); 00432 T* r= mmx_formatted_new<T> (l, fm); 00433 Vec::template vec_unary<Op> (r, tab (m), nrows*ncols); 00434 return matrix<T,V> (r, nrows, ncols, fm); 00435 }
Definition at line 576 of file series.hpp.
References Series_rep.
00576 { 00577 typedef implementation<series_map_as_abstractions,V> Ser; 00578 typedef typename Ser:: 00579 template unary_map_as_series_rep<Op,C,V,S,SV> Map_as_rep; 00580 return (Series_rep*) new Map_as_rep (f); 00581 }
series<M,V> mmx::unary_polynomial_recursive_monoblock_series | ( | const polynomial< L > & | P, | |
const M & | init | |||
) | [inline] |
Definition at line 324 of file series_carry_blocks.hpp.
References Series_rep.
00325 { 00326 typedef unary_polynomial_recursive_monoblock_series_rep<Op,M,V,s,BV,t,L> 00327 Op_rep; 00328 return (Series_rep*) new Op_rep (P, init); }
Definition at line 317 of file series_carry_blocks.hpp.
References Series_rep.
Referenced by implementation< series_polynomial_regular_root, U, series_carry_monoblock< W, s, BV, t > >::pol_root(), and implementation< series_polynomial_regular_root, U, series_carry_monoblock< W, s, BV, t > >::pol_root_init().
00317 { 00318 typedef unary_polynomial_recursive_monoblock_series_rep<Op,M,V,s,BV,t,L> 00319 Op_rep; 00320 return (Series_rep*) new Op_rep (P); }
series<C,V> mmx::unary_polynomial_recursive_series | ( | const polynomial< L > & | P, | |
const C & | init | |||
) | [inline] |
Definition at line 677 of file series.hpp.
References recursive(), Series, and Series_rep.
00677 { 00678 typedef implementation<series_recursive_abstractions,V> Ser; 00679 typedef typename Ser:: 00680 template unary_polynomial_recursive_series_rep<Op,C,V,L> Unary; 00681 Series_rep* rep= new Unary (P, init); 00682 return recursive (Series (rep)); 00683 }
Definition at line 668 of file series.hpp.
References recursive(), Series, and Series_rep.
Referenced by implementation< series_polynomial_regular_root, U, series_carry_naive >::pol_root().
00668 { 00669 typedef implementation<series_recursive_abstractions,V> Ser; 00670 typedef typename Ser:: 00671 template unary_polynomial_recursive_series_rep<Op,C,V,L> Unary; 00672 Series_rep* rep= new Unary (P); 00673 return recursive (Series (rep)); 00674 }
Definition at line 634 of file series.hpp.
References recursive(), Series, and Series_rep.
00634 { 00635 typedef implementation<series_recursive_abstractions,V> Ser; 00636 typedef typename Ser::template unary_recursive_series_rep<Op,C,V> Unary; 00637 Series_rep* rep= new Unary (f, c); 00638 return recursive (Series (rep)); 00639 }
Definition at line 626 of file series.hpp.
References recursive(), Series, and Series_rep.
00626 { 00627 typedef implementation<series_recursive_abstractions,V> Ser; 00628 typedef typename Ser::template unary_recursive_series_rep<Op,C,V> Unary; 00629 Series_rep* rep= new Unary (f); 00630 return recursive (Series (rep)); 00631 }
mmx::UNARY_RETURN_TYPE | ( | template< typename C, typename V > | , | |
complete_op | , | |||
quotient< polynomial< C, V >, polynomial< C, V > > | , | |||
series< C > | ||||
) |
mmx::UNARY_RETURN_TYPE | ( | template< typename C, typename V > | , | |
complete_op | , | |||
polynomial< C, V > | , | |||
series< C > | ||||
) |
mmx::UNARY_RETURN_TYPE | ( | template< typename C, typename V > | , | |
complete_op | , | |||
series< C, V > | , | |||
series< C, V > | ||||
) |
mmx::UNARY_RETURN_TYPE | ( | template< typename NT, typename DT > | , | |
denominator_op | , | |||
quotient< NT, DT > | , | |||
DT | ||||
) |
mmx::UNARY_RETURN_TYPE | ( | template< typename NT, typename DT > | , | |
numerator_op | , | |||
quotient< NT, DT > | , | |||
NT | ||||
) |
mmx::UNARY_RETURN_TYPE | ( | template< typename C, typename V > | , | |
reconstruct_op | , | |||
polynomial< C, V > | , | |||
polynomial< Reconstruct_type(C)> | ||||
) |
mmx::UNARY_RETURN_TYPE | ( | template< typename C, typename V > | , | |
project_op | , | |||
polynomial< C, V > | , | |||
polynomial< Project_type(C)> | ||||
) |
mmx::UNARY_RETURN_TYPE | ( | template< typename C, typename V > | , | |
lift_op | , | |||
polynomial< C, V > | , | |||
polynomial< Lift_type(C)> | ||||
) |
mmx::UNARY_RETURN_TYPE | ( | template< typename C, typename V > | , | |
radius_op | , | |||
polynomial< C, V > | , | |||
polynomial< Radius_type(C), V > | ||||
) |
mmx::UNARY_RETURN_TYPE | ( | template< typename C, typename V > | , | |
center_op | , | |||
polynomial< C, V > | , | |||
polynomial< Center_type(C), V > | ||||
) |
mmx::UNARY_RETURN_TYPE | ( | template< typename C, typename V > | , | |
abs_op | , | |||
polynomial< C, V > | , | |||
polynomial< Abs_type(C), V > | ||||
) |
mmx::UNARY_RETURN_TYPE | ( | template< typename C, typename V > | , | |
Re_op | , | |||
polynomial< C, V > | , | |||
polynomial< Real_type(C), V > | ||||
) |
mmx::UNARY_RETURN_TYPE | ( | template< typename C, typename V, typename MoV, typename MaV > | , | |
reconstruct_op | , | |||
modular< modulus< polynomial< C, V >, MoV >, MaV > | , | |||
quotient< polynomial< C, V >, polynomial< C, V > > | ||||
) |
Unary_return_type | ( | Op | , | |
C | ||||
) | const [inline] |
Referenced by unary_map().
mmx::UNARY_RETURN_TYPE | ( | template< typename C, typename V > | , | |
complete_op | , | |||
matrix< C, V > | , | |||
matrix< Complete_type(C)> | ||||
) |
mmx::UNARY_RETURN_TYPE | ( | template< typename C, typename V > | , | |
reconstruct_op | , | |||
matrix< C, V > | , | |||
matrix< Reconstruct_type(C)> | ||||
) |
mmx::UNARY_RETURN_TYPE | ( | template< typename C, typename V > | , | |
project_op | , | |||
matrix< C, V > | , | |||
matrix< Project_type(C)> | ||||
) |
mmx::UNARY_RETURN_TYPE | ( | template< typename C, typename V > | , | |
lift_op | , | |||
matrix< C, V > | , | |||
matrix< Lift_type(C)> | ||||
) |
mmx::UNARY_RETURN_TYPE | ( | template< typename C, typename V > | , | |
radius_op | , | |||
matrix< C, V > | , | |||
matrix< Radius_type(C), V > | ||||
) |
mmx::UNARY_RETURN_TYPE | ( | template< typename C, typename V > | , | |
center_op | , | |||
matrix< C, V > | , | |||
matrix< Center_type(C), V > | ||||
) |
mmx::UNARY_RETURN_TYPE | ( | template< typename C, typename V > | , | |
Re_op | , | |||
matrix< C, V > | , | |||
matrix< Real_type(C), V > | ||||
) |
mmx::UNARY_RETURN_TYPE | ( | template< typename C, typename V > | , | |
abs_op | , | |||
matrix< C, V > | , | |||
matrix< Abs_type(C), V > | ||||
) |
mmx::UNARY_RETURN_TYPE | ( | STMPL | , | |
abs_op | , | |||
algebraic_number | , | |||
algebraic_real | ||||
) |
mmx::UNARY_RETURN_TYPE | ( | STMPL | , | |
Re_op | , | |||
algebraic_number | , | |||
algebraic_real | ||||
) |
Definition at line 690 of file series.hpp.
References Series_rep.
00690 { 00691 typedef implementation<series_abstractions,V> Ser; 00692 typedef typename Ser::template unary_series_rep<Op,C,V> Unary; 00693 return (Series_rep*) new Unary (f); 00694 }
Definition at line 481 of file matrix.hpp.
References cols(), extend(), is_a_scalar(), is_non_scalar(), rows(), matrix< C, V >::scalar(), and tab().
00481 { 00482 typedef implementation<vector_linear,V> Vec; 00483 if (is_a_scalar (m) || is_a_scalar (n)) { 00484 if (is_non_scalar (m)) 00485 return unary_set<Op> (m, extend (n, m)); 00486 else if (is_non_scalar (n)) 00487 m= extend (m, n); 00488 else { 00489 Op::set_op (m.scalar(), n.scalar()); 00490 return m; 00491 } 00492 } 00493 nat nrows= rows (m); 00494 nat ncols= cols (m); 00495 ASSERT (rows (n) == nrows, "unequal number of rows"); 00496 ASSERT (cols (n) == ncols, "unequal number of columns"); 00497 Vec::template vec_unary<Op> (tab (m), tab (n), nrows*ncols); 00498 return m; 00499 }
Definition at line 502 of file matrix.hpp.
References cols(), is_a_scalar(), rows(), matrix< C, V >::scalar(), and tab().
Definition at line 346 of file series_implicit.hpp.
References USeries_rep.
Referenced by solver_series_rep< C, V >::me().
00346 { 00347 return (USeries_rep*) new unknown_series_rep<C> (f, k); 00348 }
algebraic_number_extension<C,Ball> mmx::upgrade | ( | const algebraic_number_extension< C, Ball > & | ext1, | |
const algebraic_number_extension< C, Ball > & | ext2, | |||
typename algebraic_number_extension< C, Ball >::El & | p1, | |||
typename algebraic_number_extension< C, Ball >::El & | p2 | |||
) | [inline] |
algebraic_extension<C> mmx::upgrade | ( | const algebraic_extension< C > & | ext1, | |
const algebraic_extension< C > & | ext2, | |||
typename algebraic_extension< C >::El & | p1, | |||
typename algebraic_extension< C >::El & | p2 | |||
) | [inline] |
Definition at line 295 of file algebraic_extension.hpp.
References CF(), compose(), Element, Extension, hard_eq(), join(), and promote().
00297 { 00298 if (hard_eq (ext1, ext2)) return ext1; 00299 Element z1= promote (0, CF(ext1)), z2= promote (0, CF(ext1)); 00300 Extension ext= join (ext1, ext2, z1, z2); 00301 if (!hard_eq (ext1, ext)) p1= compose (ext, p1, z1); 00302 if (!hard_eq (ext2, ext)) p2= compose (ext, p2, z2); 00303 return ext; 00304 }
void mmx::upgrade | ( | algebraic< C, Extension > & | a1, | |
algebraic< C, Extension > & | a2 | |||
) | [inline] |
Definition at line 170 of file algebraic.hpp.
References Algebraic, Element, Extension, field(), hard_neq(), and value().
Referenced by lcommon(), operator*(), operator+(), operator-(), operator/(), and rcommon().
polynomial<Center_type(C),V> mmx::upper | ( | const polynomial< C, V > & | p | ) | [inline] |
Definition at line 1466 of file polynomial.hpp.
Definition at line 783 of file matrix.hpp.
int mmx::val | ( | const series< C, V > & | f | ) | [inline] |
Definition at line 338 of file series.hpp.
int mmx::val | ( | const quotient_series< Series, Monomial > & | f, | |
const typename Series::variable_type & | v | |||
) | [inline] |
Definition at line 117 of file quotient_series.hpp.
References val().
00117 { 00118 return val (f->f, v) * f->m[v]; }
int mmx::val | ( | const polynomial< C, V > & | P | ) | [inline] |
Definition at line 361 of file polynomial.hpp.
References N().
Referenced by cols(), divides(), REP_STRUCT_1(), rows(), implementation< polynomial_subresultant_base, V, polynomial_naive >::subresultant_sequence(), and val().
00361 { 00362 for (nat i=0; i<N(P); i++) 00363 if (P[i] != 0) return (int) i; 00364 return (int) (((nat) (-1)) >> 1); 00365 }
Extension::El mmx::value | ( | const algebraic< C, Extension > & | x | ) | [inline] |
Definition at line 95 of file algebraic.hpp.
Referenced by abs(), annihilator(), as_ball(), conj(), binary_helper< algebraic< C, Extension > >::disassemble(), exact_eq(), exact_hash(), probable_prime_sequence_int< s >::extend(), fft_prime_sequence_int< s >::extend(), flatten(), hard_eq(), hard_hash(), hash(), invert(), is_zero(), modulus_multiplier_int_preinverse_helper< size >::mul(), normalize(), operator*(), operator+(), operator-(), operator/(), Re(), modulus_multiplier_int_preinverse_helper< size >::set(), sign(), size_bound_in_base_helper< C, I >::size(), square(), upgrade(), and binary_helper< algebraic< C, Extension > >::write().
00095 { return x.p; }
Definition at line 834 of file matrix.hpp.
References CF(), is_non_scalar(), N(), and promote().
Referenced by GLUE_46(), GLUE_52(), GLUE_83(), and GLUE_91().
generic mmx::var | ( | const series< C, V > & | f | ) | [inline] |
Definition at line 175 of file series.hpp.
generic mmx::var | ( | const polynomial< C, V > & | P | ) | [inline] |
Definition at line 307 of file polynomial.hpp.
Referenced by flatten().
table<bool, typename Series::variable_type > mmx::variables | ( | const quotient_series< Series, Monomial > & | f | ) | [inline] |
Definition at line 115 of file quotient_series.hpp.
Definition at line 899 of file matrix.hpp.
References CF(), cols(), is_non_scalar(), Matrix, promote(), and rows().
Referenced by GLUE_14(), GLUE_15(), GLUE_44(), GLUE_77(), and krylov().
00899 { 00900 ASSERT (is_non_scalar (m1) || is_non_scalar (m2), 00901 "non-scalar matrix expected"); 00902 if (!is_non_scalar (m1)) 00903 return vertical_join (Matrix (m1.scalar(), cols (m2), cols (m2)), m2); 00904 if (!is_non_scalar (m2)) 00905 return vertical_join (m1, Matrix (m2.scalar(), cols (m1), cols (m1))); 00906 ASSERT (cols (m1) == cols (m2), "unequal number of columns"); 00907 Matrix r (promote (0, CF(m1)), rows (m1) + rows (m2), cols (m1)); 00908 for (nat j=0; j<cols(m1); j++) { 00909 for (nat i=0; i<rows(m1); i++) 00910 r(i,j)= m1(i,j); 00911 for (nat i=0; i<rows(m2); i++) 00912 r(i+rows(m1),j)= m2(i,j); 00913 } 00914 return r; 00915 }
mmx::WRAP_BINARY_IMPL | ( | STMPL | , | |
permutation | , | |||
vector< nat > | , | |||
"Per" | , | |||
"Permutation" | ||||
) | const |
vector< generic > wrap_column_reduced_echelon_with_permutation | ( | const matrix< C > & | m | ) | [inline] |
Definition at line 59 of file glue_matrix_rational.cpp.
References column_reduced_echelon().
Referenced by GLUE_121(), GLUE_46(), and GLUE_70().
00059 { 00060 permutation permut; 00061 generic tp=as<generic> (column_reduced_echelon (m, permut)); 00062 return vec (tp, as<generic> (permut)); 00063 }
vector< generic > wrap_column_reduced_echelon_with_transform | ( | const matrix< C > & | m | ) | [inline] |
Definition at line 66 of file glue_matrix_rational.cpp.
References column_reduced_echelon().
Referenced by GLUE_120(), GLUE_45(), and GLUE_69().
00066 { 00067 matrix<C> k; 00068 generic tp=as<generic> (column_reduced_echelon (m, k)); 00069 return vec (tp, as<generic> (k)); 00070 }
vector< generic > wrap_row_reduced_echelon_with_transform | ( | const matrix< C > & | m | ) | [inline] |
Definition at line 73 of file glue_matrix_rational.cpp.
References row_reduced_echelon().
Referenced by GLUE_119(), GLUE_44(), and GLUE_68().
00073 { 00074 matrix<C> k; 00075 generic tp=as<generic> (row_reduced_echelon (m, k)); 00076 return vec (tp, as<generic> (k)); 00077 }
vector< generic > wrap_subresultants | ( | const polynomial< C > & | f, | |
const polynomial< C > & | g | |||
) | [inline] |
Definition at line 56 of file glue_series_rational.cpp.
References subresultants().
Referenced by GLUE_104(), GLUE_39(), and GLUE_98().
00056 { 00057 return as<vector<generic> > (subresultants (f, g)); }
mmx::WRAP_WRAPPED_IMPL | ( | inline | , | |
permutation | ||||
) |
mmx::WRAP_WRAPPED_IMPL | ( | template< typename C > | inline, | |
multiplier< C > | ||||
) |
Definition at line 947 of file series.hpp.
References CF(), is_exact_zero(), Series, and Series_rep.
00947 { 00948 if (is_exact_zero (f)) return Series (CF(f)); 00949 return (Series_rep*) new xderive_series_rep<C,V> (f); 00950 }
Definition at line 324 of file quotient.hpp.
References denominator(), numerator(), Quotient, square(), and xderive().
00324 { 00325 return Quotient (xderive (numerator (x)) * denominator (x) - 00326 numerator (x) * xderive (denominator (x)), 00327 square (denominator (x)), 00328 true); 00329 }
polynomial<C,V> mmx::xderive | ( | const polynomial< C, V > & | P | ) | [inline] |
Definition at line 1060 of file polynomial.hpp.
References C, CF(), N(), Polynomial, and seg().
Referenced by xderive_series_rep< C, V >::expression(), GLUE_114(), GLUE_146(), GLUE_20(), GLUE_30(), GLUE_31(), GLUE_33(), GLUE_85(), GLUE_94(), and xderive().
01060 { 01061 typedef implementation<polynomial_linear,V> Pol; 01062 nat n= N(P); 01063 nat l= aligned_size<C,V> (n); 01064 C* r= mmx_formatted_new<C> (l, CF(P)); 01065 Pol::xderive (r, seg (P), n); 01066 return Polynomial (r, n, l, CF(P)); 01067 }
static polynomial_carry_variant_helper< mmx_modular(integer) >::PV & arg_1 |
Definition at line 74 of file glue_p_adic_modular_integer.cpp.
Referenced by GLUE_1(), GLUE_10(), GLUE_100(), GLUE_102(), GLUE_103(), GLUE_104(), GLUE_105(), GLUE_106(), GLUE_107(), GLUE_108(), GLUE_109(), GLUE_11(), GLUE_110(), GLUE_112(), GLUE_113(), GLUE_114(), GLUE_115(), GLUE_116(), GLUE_117(), GLUE_118(), GLUE_119(), GLUE_12(), GLUE_120(), GLUE_121(), GLUE_122(), GLUE_123(), GLUE_124(), GLUE_125(), GLUE_126(), GLUE_127(), GLUE_128(), GLUE_129(), GLUE_13(), GLUE_130(), GLUE_132(), GLUE_134(), GLUE_136(), GLUE_137(), GLUE_138(), GLUE_139(), GLUE_140(), GLUE_141(), GLUE_142(), GLUE_145(), GLUE_146(), GLUE_147(), GLUE_148(), GLUE_149(), GLUE_150(), GLUE_151(), GLUE_153(), GLUE_154(), GLUE_155(), GLUE_156(), GLUE_157(), GLUE_158(), GLUE_159(), GLUE_160(), GLUE_161(), GLUE_162(), GLUE_163(), GLUE_168(), GLUE_169(), GLUE_19(), GLUE_2(), GLUE_20(), GLUE_21(), GLUE_22(), GLUE_23(), GLUE_24(), GLUE_25(), GLUE_26(), GLUE_27(), GLUE_28(), GLUE_3(), GLUE_30(), GLUE_31(), GLUE_32(), GLUE_33(), GLUE_34(), GLUE_35(), GLUE_36(), GLUE_37(), GLUE_38(), GLUE_4(), GLUE_40(), GLUE_47(), GLUE_48(), GLUE_5(), GLUE_54(), GLUE_57(), GLUE_58(), GLUE_59(), GLUE_6(), GLUE_61(), GLUE_62(), GLUE_63(), GLUE_64(), GLUE_65(), GLUE_66(), GLUE_67(), GLUE_68(), GLUE_69(), GLUE_7(), GLUE_70(), GLUE_71(), GLUE_72(), GLUE_73(), GLUE_74(), GLUE_75(), GLUE_76(), GLUE_77(), GLUE_78(), GLUE_8(), GLUE_84(), GLUE_85(), GLUE_86(), GLUE_87(), GLUE_88(), GLUE_89(), GLUE_9(), GLUE_90(), GLUE_91(), GLUE_92(), GLUE_93(), GLUE_94(), GLUE_95(), GLUE_96(), GLUE_97(), and GLUE_98().
const int& arg_2 |
Definition at line 126 of file glue_matrix_modular_integer.cpp.
Referenced by GLUE_1(), GLUE_101(), GLUE_102(), GLUE_103(), GLUE_104(), GLUE_105(), GLUE_106(), GLUE_107(), GLUE_108(), GLUE_109(), GLUE_11(), GLUE_110(), GLUE_111(), GLUE_112(), GLUE_113(), GLUE_118(), GLUE_12(), GLUE_128(), GLUE_129(), GLUE_13(), GLUE_130(), GLUE_131(), GLUE_133(), GLUE_135(), GLUE_139(), GLUE_14(), GLUE_140(), GLUE_143(), GLUE_144(), GLUE_151(), GLUE_152(), GLUE_154(), GLUE_155(), GLUE_156(), GLUE_157(), GLUE_159(), GLUE_16(), GLUE_174(), GLUE_176(), GLUE_178(), GLUE_18(), GLUE_2(), GLUE_23(), GLUE_24(), GLUE_27(), GLUE_28(), GLUE_29(), GLUE_3(), GLUE_33(), GLUE_34(), GLUE_35(), GLUE_36(), GLUE_37(), GLUE_38(), GLUE_39(), GLUE_43(), GLUE_50(), GLUE_52(), GLUE_54(), GLUE_58(), GLUE_63(), GLUE_64(), GLUE_65(), GLUE_66(), GLUE_67(), GLUE_68(), GLUE_69(), GLUE_70(), GLUE_71(), GLUE_72(), GLUE_73(), GLUE_75(), GLUE_76(), GLUE_77(), GLUE_78(), GLUE_79(), GLUE_80(), GLUE_82(), GLUE_83(), GLUE_84(), GLUE_86(), GLUE_87(), GLUE_89(), GLUE_90(), GLUE_93(), GLUE_94(), GLUE_95(), GLUE_96(), GLUE_97(), GLUE_98(), and GLUE_99().
Definition at line 114 of file series.hpp.
Referenced by implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_dicho_inc< BV > >::_half_gcd(), implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::_multi_rem(), implementation< polynomial_evaluate, V, polynomial_naive >::annulator(), implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::annulator(), as_p_expansion(), binary_helper< matrix< C, V > >::assemble(), implementation< matrix_determinant, V, matrix_bareiss< W > >::bareiss_pivoting(), big_add(), binary_map_scalar(), implementation< matrix_vectorial, V, matrix_naive >::clear_range(), implementation< matrix_linear, V, matrix_naive >::col_combine_sub(), implementation< matrix_echelon, V, matrix_ring_naive< W > >::col_echelon(), implementation< matrix_echelon, V, matrix_naive >::col_echelon(), implementation< matrix_orthogonalization, V, matrix_naive >::col_orthogonalize(), implementation< matrix_orthogonalization, V, matrix_naive >::col_orthonormalize(), implementation< crt_transform, V, crt_dicho< W > >::combine(), combine_crt(), implementation< polynomial_compose, V, polynomial_naive >::compose(), compose(), fft_threads_transformer< C, FFTER, thr >::copy(), moduli_signed_integer_helper< short int, M, W >::covering(), moduli_unsigned_integer_helper< unsigned int, M, W >::covering(), crt_naive_transformer< C, S, V >::crt_naive_transformer(), as_helper< polynomial< modular< modulus< C, U1 >, U2 >, V >, Lift_type(modular< modulus< C, U1 >, U2 >)>::cv(), fast_helper< series< C, V > >::dd(), decode_kronecker(), decode_modular_int(), ser_polynomial_regular_root_op::def(), ser_separable_root_op::def(), implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_ducos_inc< BV > >::defected_prem(), implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_naive_inc< W > >::defected_prem(), DEFINE_VARIANT(), root_modular_naive::degree_one_factorization(), fft_blocks_transformer< C, FFTER, log2_outer_block_size, log2_block_number, log2_inner_block_size, threshold >::delocate(), derive(), implementation< matrix_determinant, V, matrix_ring_naive< W > >::det(), implementation< matrix_determinant, V, matrix_naive >::det(), implementation< matrix_determinant, V, matrix_bareiss< W > >::det(), fft_naive_transformer< C, V >::dfft(), fft_blocks_transformer< C, FFTER, log2_outer_block_size, log2_block_number, log2_inner_block_size, threshold >::dfft(), dilate(), implementation< base_transform, V, base_signed< W > >::direct(), implementation< base_transform, V, base_naive >::direct(), implementation< base_transform, V, base_dicho< W > >::direct(), fkt_package< V >::direct_fkt(), nrelax_mul_series_rep< C, V >::direct_transform(), crt_naive_transformer< C, S, V >::direct_transform(), crt_dicho_transformer< C, S, V >::direct_transform(), implementation< polynomial_exact_divide, V, polynomial_polynomial< W > >::div(), implementation< polynomial_exact_divide, V, polynomial_naive >::div(), encode_kronecker(), implementation< polynomial_euclidean, V, polynomial_naive >::euclidean_sequence(), implementation< polynomial_evaluate, V, polynomial_naive >::evaluate(), implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::evaluate(), outer_fft_task_rep::execute(), implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::expand(), expand(), coprime_moduli_sequence_polynomial::extend(), fft_prime_sequence_int< s >::extend(), extract_mod(), implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::factorials(), fft_threads_transformer< C, FFTER, thr >::fft(), flatten(), series_carry_monoblock_transformer< M, W, s, BV >::from_monoblock(), binary_polynomial_helper< C, V >::full_type_name(), binary_helper< matrix< C, V > >::full_type_name(), binary_helper< algebraic_number_extension< C, Ball > >::full_type_name(), binary_helper< algebraic_extension< C > >::full_type_name(), binary_helper< algebraic< C, Extension > >::full_type_name(), implementation< polynomial_gcd, V, polynomial_ring_naive< W > >::gcd(), implementation< polynomial_gcd, V, polynomial_naive >::gcd(), implementation< polynomial_euclidean, V, polynomial_naive >::gcd(), implementation< polynomial_euclidean, V, polynomial_dicho< BV > >::gcd(), gcd(), get_matrix_format(), get_vector_format(), implementation< polynomial_graeffe, V, polynomial_unrolled< W, m > >::graeffe(), implementation< polynomial_graeffe, V, polynomial_naive >::graeffe(), graeffe(), implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_dicho_inc< BV > >::half_subresultant(), implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_dicho_inc< BV > >::half_subresultant_rec(), fft_naive_transformer< C, V >::ifft(), fft_blocks_transformer< C, FFTER, log2_outer_block_size, log2_block_number, log2_inner_block_size, threshold >::ifft(), implementation< matrix_image, V, matrix_naive >::image(), reverse_series_rep< C, V >::initialize(), div_series_rep< M, V >::initialize(), rdiv_sc_series_rep< M, V, X >::initialize(), inv_mod_polynomial_series_rep< C, U, V, W >::initialize(), integrate(), implementation< polynomial_evaluate, V, polynomial_naive >::interpolate(), implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::interpolate(), implementation< crt_transform, V, crt_dicho< W > >::inverse(), implementation< base_transform, V, base_dicho< W > >::inverse(), inverse_base(), inverse_crt(), fkt_package< V >::inverse_fkt(), fkt_package< V >::inverse_fkt_step(), fft_triadic_threads_transformer< C, FFTER, thr >::inverse_transform_triadic(), implementation< matrix_invert, V, matrix_ring_naive< W > >::invert(), implementation< matrix_invert, V, matrix_naive >::invert(), implementation< polynomial_divide, V, polynomial_naive >::invert_hi(), implementation< polynomial_divide, V, polynomial_dicho< BV > >::invert_hi(), invert_hi(), implementation< polynomial_divide, V, polynomial_dicho< BV > >::invert_lo(), invert_lo(), implementation< matrix_invert, V, matrix_naive >::invert_lower_triangular(), implementation< polynomial_gcd, X, polynomial_series< BV > >::invert_mod(), implementation< polynomial_gcd, V, polynomial_ring_naive< W > >::invert_mod(), implementation< polynomial_gcd, V, polynomial_naive >::invert_mod(), join(), implementation< matrix_kernel, V, matrix_naive >::kernel(), root_modular_naive::linear_splitting(), lshiftz(), implementation< matrix_multiply_base, V, matrix_strassen< W > >::mat_load(), implementation< matrix_multiply_base, V, matrix_strassen< W > >::mat_save(), matrix< M >::matrix(), matrix_new(), implementation< polynomial_multiply, V, polynomial_balanced_tft< W > >::mul(), implementation< polynomial_multiply, V, polynomial_tft_inc< W, Th > >::mul(), implementation< polynomial_multiply, V, polynomial_tangent< CV > >::mul(), implementation< polynomial_multiply, V, polynomial_schonhage_triadic_inc< W, Th > >::mul(), implementation< polynomial_multiply, V, polynomial_schonhage_inc< W, Th, Th_rec > >::mul(), implementation< polynomial_multiply, V, polynomial_quotient< W > >::mul(), implementation< polynomial_multiply, V, polynomial_modular< W > >::mul(), implementation< polynomial_multiply, V, polynomial_kronecker< W > >::mul(), implementation< polynomial_multiply, V, polynomial_complex< CV > >::mul(), implementation< polynomial_multiply, V, polynomial_balanced< W > >::mul(), multiplier_helper< C, void, m >::mul(), multiplier_helper< C, D, m >::mul(), implementation< matrix_multiply, V, matrix_quotient< W > >::mul(), implementation< matrix_multiply, V, matrix_crt< W > >::mul(), implementation< matrix_multiply, V, matrix_complex< CV > >::mul(), implementation< matrix_multiply, V, matrix_balanced< W > >::mul(), mul_kronecker(), implementation< polynomial_multiply, V, polynomial_schonhage_triadic_inc< W, Th > >::mul_triadic(), implementation< polynomial_evaluate, V, polynomial_naive >::multi_mod(), implementation< polynomial_evaluate, V, polynomial_naive >::multi_rem(), implementation< polynomial_multiply, V, polynomial_karatsuba< W > >::multiply(), vector_access_series_rep< C, V, W >::next(), truncate_mul_series_rep< C, V >::next(), mul_series_rep< C, V >::next(), unary_map_as_series_rep< Op, C, V, S, SV >::next(), matrix_series_rep< C, V, U >::next(), solver_series_rep< C, V >::next(), unknown_series_rep< C, V >::next(), nrelax_mul_series_rep< C, V >::next(), carry_mul_sc_series_rep< M, V, X >::next(), q_difference_series_rep< C, V >::next(), shift_series_rep< C, V >::next(), iterator_series_rep< C, V >::next(), mul_series_rep< M, V >::next(), REP_STRUCT< Series, Monomial >::normalize(), quotient_normalization_helper< polynomial< C, V >, polynomial< C, V > >::normalize(), nth_roots(), nullary_recursive_series(), polynomial_quo_rem_helper< V, C >::op(), primitive_root_helper< C >::op(), operator*(), operator+(), operator-(), operator/(), implementation< polynomial_divide, V, polynomial_dicho< BV > >::pinvert_hi(), implementation< series_polynomial_regular_root, U, series_naive >::pol_root(), polynomial< L >::polynomial(), pquo(), implementation< polynomial_divide, V, polynomial_ring_dicho_inc< W > >::pquo_rem(), implementation< polynomial_divide, V, polynomial_naive >::pquo_rem(), implementation< polynomial_divide, V, polynomial_dicho< BV > >::pquo_rem(), prem(), primitive_part(), implementation< matrix_iterate, V, matrix_naive >::project_iterate_mul(), implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::q_binomial(), q_difference(), quo(), implementation< polynomial_divide, V, polynomial_ring_dicho_inc< W > >::quo_rem(), implementation< polynomial_divide, V, polynomial_naive >::quo_rem(), implementation< polynomial_divide, V, polynomial_dicho< BV > >::quo_rem(), range(), implementation< matrix_image, V, matrix_ring_naive< W > >::rank(), implementation< matrix_image, V, matrix_naive >::rank(), binary_helper< polynomial< C, V > >::read(), binary_helper< matrix< C, V > >::read(), implementation< polynomial_gcd, V, polynomial_naive >::reconstruct(), implementation< polynomial_euclidean, V, polynomial_naive >::reconstruct(), implementation< polynomial_euclidean, V, polynomial_dicho< BV > >::reconstruct(), reduce(), fft_blocks_transformer< C, FFTER, log2_outer_block_size, log2_block_number, log2_inner_block_size, threshold >::relocate(), rem(), REP_STRUCT_1(), resultant(), reverse(), root_modular_naive::roots(), implementation< matrix_linear, V, matrix_naive >::row_combine_sub(), implementation< matrix_orthogonalization, V, matrix_naive >::row_orthogonalize(), implementation< matrix_orthogonalization, V, matrix_naive >::row_orthonormalize(), implementation< series_separable_root, U, series_naive >::sep_root(), separable_roots(), multiplier_helper< C, void, m >::set(), nrelax_mul_series_rep< C, V >::Set_order(), implementation< matrix_vectorial, V, matrix_naive >::set_range(), crt_dicho_transformer< C, S, V >::setup_inverse(), implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::shift(), shift(), binary_polynomial_helper< C, V >::short_type_name(), binary_helper< matrix< C, V > >::short_type_name(), binary_helper< algebraic_number_extension< C, Ball > >::short_type_name(), binary_helper< algebraic_extension< C > >::short_type_name(), binary_helper< algebraic< C, Extension > >::short_type_name(), matrix_crt_multiply_helper< C >::size(), skew_div(), solve_lde(), implementation< polynomial_multiply, V, polynomial_tft_inc< W, Th > >::square(), implementation< polynomial_multiply, V, polynomial_tangent< CV > >::square(), implementation< polynomial_multiply, V, polynomial_quotient< W > >::square(), implementation< polynomial_multiply, V, polynomial_modular< W > >::square(), implementation< polynomial_multiply, V, polynomial_kronecker< W > >::square(), implementation< polynomial_multiply, V, polynomial_karatsuba< W > >::square(), implementation< polynomial_multiply, V, polynomial_complex< CV > >::square(), square(), square_kronecker(), implementation< polynomial_subresultant_base, V, polynomial_ring_naive< W > >::subresultant(), subresultant(), implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_dicho_inc< BV > >::subresultant_compose(), implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_ducos_inc< BV > >::subresultant_sequence(), implementation< polynomial_subresultant_base, V, polynomial_gcd_ring_naive_inc< W > >::subresultant_sequence(), implementation< polynomial_subresultant_base, V, polynomial_ring_naive< W > >::subresultant_sequence(), implementation< polynomial_subresultant_base, V, polynomial_naive >::subresultant_sequence(), subresultants(), substitute(), implementation< polynomial_evaluate, V, polynomial_naive >::tevaluate(), implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::tevaluate(), tevaluate_bis(), implementation< polynomial_evaluate, V, polynomial_naive >::tinterpolate(), implementation< polynomial_evaluate, V, polynomial_dicho< BV > >::tinterpolate(), tmul(), implementation< polynomial_multiply, V, polynomial_karatsuba< W > >::tmultiply(), tquo(), implementation< polynomial_divide, V, polynomial_ring_dicho_inc< W > >::tquo_rem(), implementation< polynomial_divide, V, polynomial_naive >::tquo_rem(), implementation< polynomial_divide, V, polynomial_dicho< BV > >::tquo_rem(), trem(), truncate(), unary_map(), unknown_series_rep< C, V >::unknown_series_rep(), implementation< series_pth_root, U, series_carry_p_adic< W > >::unsep_root(), fast_helper< polynomial< C, V > >::uu(), fast_helper< matrix< C, V > >::uu(), implementation< vector_abstractions, Z, vector_aligned< V, W > >::vec_unary_big(), and xderive().
series<C,V> COMPARE_INT_SUGAR(template< typename C, typename V >, series< C, V >) EQUAL_SCALAR_SUGAR(template< typename C |
series<C,V> C COMPARE_SCALAR_SUGAR(template< typename C, typename V >, series< C, V >,C) EQUAL_SCALAR_SUGAR_BIS(template< typename C |
series<C,V> C C COMPARE_SCALAR_SUGAR_BIS(template< typename C, typename V >, series< C, V >,C)template< typename C |
polynomial<C,V> COMPARE_SUGAR(template< typename C, typename V >, polynomial< C, V >) EQUAL_SCALAR_SUGAR(template< typename C |
Definition at line 539 of file matrix.hpp.
Referenced by decode_modular_int(), encode_modular_int(), implementation< polynomial_gcd, V, polynomial_ring_naive< W > >::gcd(), map(), multiplier_helper< C, D, m >::mul(), implementation< matrix_multiply_base, V, matrix_strassen< W > >::mul(), implementation< matrix_multiply_base, V, matrix_naive >::mul(), implementation< matrix_multiply_base, V, matrix_modular< MV > >::mul(), matrix_multiply_helper< Op, D, S1, S2, r, l, c >::mul(), implementation< matrix_multiply_base, Z, matrix_aligned< V, W > >::mul(), matrix_multiply_helper< Op, D, S1, S2, r, l, c >::mul_stride(), implementation< polynomial_gcd, V, polynomial_ring_naive< W > >::reconstruct(), multiplier_helper< C, D, m >::set(), and implementation< matrix_structured_multiply, V, matrix_naive >::smul().
Definition at line 90 of file quotient.hpp.
Referenced by binary_helper< quotient< NT, DT > >::full_type_name(), is_evaluable(), operator*(), operator+(), operator-(), operator/(), quotient< NT, DT >::quotient(), binary_helper< quotient< NT, DT > >::read(), and binary_helper< quotient< NT, DT > >::short_type_name().
series<C,V> INV_HYPER_SUGAR(template< typename C, typename V >, series< C, V >) ARG_HYPER_SUGAR(template< typename C |
xnat mmx_bit_precision |
Referenced by increase_precision(), is_zero(), join(), normalize(), series_shift_default(), shrink(), and sign().
Definition at line 87 of file quotient_series.hpp.
Referenced by operator+(), operator-(), operator/(), and operator==().
Definition at line 90 of file quotient.hpp.
Referenced by binary_helper< quotient< NT, DT > >::full_type_name(), is_evaluable(), operator+(), operator-(), operator/(), binary_helper< quotient< NT, DT > >::read(), and binary_helper< quotient< NT, DT > >::short_type_name().
polynomial< C, V > C polynomial< C, V > polynomial< C, V > |
Definition at line 397 of file polynomial.hpp.
Definition at line 90 of file quotient.hpp.
quotient_series< Series, Monomial > |
Definition at line 87 of file quotient_series.hpp.
Definition at line 90 of file quotient.hpp.
nat str |
Definition at line 53 of file matrix_quotient.hpp.
Definition at line 58 of file polynomial_schonhage.hpp.
Referenced by implementation< polynomial_multiply, V, polynomial_tft_inc< W, Th > >::mul(), implementation< polynomial_multiply, V, polynomial_schonhage_strassen_inc< W, Th > >::mul_negative_cyclic(), implementation< polynomial_multiply, V, polynomial_schonhage_strassen_inc< W, Th > >::mul_negative_cyclic_truncated(), implementation< polynomial_multiply, V, polynomial_schonhage_triadic_inc< W, Th > >::mul_triadic(), and implementation< polynomial_multiply, V, polynomial_tft_inc< W, Th > >::square().
Definition at line 58 of file polynomial_schonhage.hpp.
Referenced by coprime_moduli_sequence_polynomial::extend(), implementation< polynomial_gcd, X, polynomial_series< BV > >::invert_mod(), implementation< matrix_multiply_base, V, matrix_modular< MV > >::mul(), implementation< series_polynomial_regular_root, U, series_carry_monoblock< W, s, BV, t > >::pol_root(), implementation< series_polynomial_regular_root, U, series_carry_monoblock< W, s, BV, t > >::pol_root_init(), implementation< series_separable_root, U, series_carry_monoblock< W, s, BV, t > >::sep_root(), implementation< series_separable_root, U, series_carry_monoblock< W, s, BV, t > >::sep_root_init(), implementation< series_matrix_divide, U, series_carry_monoblock< W, s, BV, t > >::ser_ldiv(), implementation< series_vector_divide, U, series_carry_monoblock< W, s, BV, t > >::ser_ldiv(), and implementation< series_pth_root_reg, U, series_carry_monoblock< W, s, BV, t > >::unsep_root_reg().
Definition at line 347 of file quotient.hpp.
Referenced by slp_polynomial_regular_root_series_rep< M, V, L >::_derive(), slp_polynomial_regular_root_series_rep< M, V, L >::_eps(), abs(), as_p_expansion(), binary_helper< matrix< C, V > >::assemble(), binary_helper< algebraic_number_extension< C, Ball > >::assemble(), binary_helper< algebraic_extension< C > >::assemble(), ser_carry_separable_root_op::binpow_no_tangent(), as_helper< polynomial< modular< modulus< C, U1 >, U2 >, V >, Lift_type(modular< modulus< C, U1 >, U2 >)>::cv(), decode_kronecker(), root_modular_naive::degree_one_factorization(), implementation< base_transform, V, base_signed< W > >::direct(), implementation< base_transform, V, base_naive >::direct(), encode_kronecker(), binary_scalar_recursive_series_rep< Op, C, V, X >::expression(), carry_mul_sc_series_rep< M, V, X >::expression(), matrix_carry_mul_quo_series_rep< M, V, X >::expression(), vector_carry_mul_quo_series_rep< M, V, X >::expression(), coprime_moduli_sequence_polynomial::extend(), flatten(), improve_zero(), slp_polynomial_regular_root_monoblock_series_rep< M, V, L >::Increase_order(), increase_precision(), binary_scalar_recursive_series_rep< Op, C, V, X >::initialize(), slp_polynomial_regular_root_series_rep< M, V, L >::initialize(), fft_truncated_transformer< C, Ffter >::inverse_transform(), fft_threads_transformer< C, FFTER, thr >::inverse_transform(), fft_naive_transformer< C, V >::inverse_transform(), fft_blocks_transformer< C, FFTER, log2_outer_block_size, log2_block_number, log2_inner_block_size, threshold >::inverse_transform(), is_reconstructible(), join(), implementation< matrix_kernel, V, matrix_naive >::kernel(), root_modular_naive::linear_splitting(), matrix_carry_mul_quo_series_rep< M, V, X >::matrix_carry_mul_quo_series_rep(), carry_mul_sc_series_rep< M, V, X >::next(), matrix_carry_mul_quo_series_rep< M, V, X >::next(), vector_carry_mul_quo_series_rep< M, V, X >::next(), primitive_root_max_int(), Re(), reconstruct(), modulus_multiplier_int_preinverse_helper< size >::set(), global_variables< S >::set_variable_name(), series< vector< C >, V >::set_variable_name(), global_variables< polynomial< quotient< polynomial< C, V1 >, polynomial< C, V1 > >, V2 > >::set_variable_name(), global_variables< polynomial< polynomial< polynomial< C, V1 >, V2 >, V3 > >::set_variable_name(), global_variables< polynomial< polynomial< C, V1 >, V2 > >::set_variable_name(), global_variables< P >::set_variable_name(), set_variable_name(), polynomial< L >::set_variable_name(), implementation< series_slp_polynomial_regular_root, U, series_naive >::slp_pol_root(), implementation< series_slp_polynomial_regular_root, U, series_carry_monoblock< W, s, BV, t > >::slp_pol_root(), slp_polynomial_regular_root(), slp_polynomial_regular_root_monoblock_series_rep< M, V, L >::slp_polynomial_regular_root_monoblock_series_rep(), square_kronecker(), and vector_carry_mul_quo_series_rep< M, V, X >::vector_carry_mul_quo_series_rep().