#include <series.hpp>
Definition at line 953 of file series.hpp.
integrate_series_rep | ( | const series< C, V > & | f2 | ) | [inline] |
Definition at line 957 of file series.hpp.
References promote().
00957 : 00958 Series_rep (CF(f2)), f (f2), c (promote (0, CF(f2))) {} integrate_series_rep (const Series& f2, const C& c2):
integrate_series_rep | ( | const series< C, V > & | f2, | |
const C & | c2 | |||
) | [inline] |
Definition at line 959 of file series.hpp.
00959 : 00960 Series_rep (CF(f2)), f (f2), c (c2) {} syntactic expression (const syntactic& z) const {
syntactic expression | ( | const syntactic & | z | ) | const [inline] |
Definition at line 961 of file series.hpp.
References mmx::flatten(), mmx::integrate(), mmx::integrate_init(), and promote().
00961 { 00962 if (c == promote (0, c)) return integrate (flatten (f, z)); 00963 else return integrate_init (flatten (f, z), flatten (c)); }
void Increase_order | ( | nat | l | ) | [inline] |
Definition at line 964 of file series.hpp.
References mmx::increase_order(), and max().
00964 { 00965 Series_rep::Increase_order (l); 00966 increase_order (f, max (0, ((int) l) - 1)); }
C next | ( | ) | [inline] |
Definition at line 967 of file series.hpp.
References mmx::invert(), and promote().
00967 { 00968 if (this->n == 0) return c; 00969 return invert (promote ((int) this->n, c)) * f[this->n - 1]; }