#include <qsc_approximation_fcts.hpp>
Definition at line 1046 of file qsc_approximation_fcts.hpp.
quad_supp_func | ( | ) | [inline] |
Definition at line 1049 of file qsc_approximation_fcts.hpp.
quad_supp_func | ( | support_function< K > | h, | |
normal_vector< K > | n | |||
) | [inline] |
Definition at line 1072 of file qsc_approximation_fcts.hpp.
References support_function< K >::eval(), support_function< K >::eval_diff(), normal_vector< K >::eval_unit(), mmx::linear::LUsolve(), normal_vector< K >::middle(), mmx::shape::N, mmx::pow(), and VECT.
01073 { 01074 // mmout << "b\n"; 01075 VECT N[3]; 01076 N[0]=n.eval_unit(0); 01077 N[1]=n.eval_unit(1); 01078 N[2]=n.middle(); 01079 // mmout << "c\n"; 01080 K Vh[5]; // the values of h and its derivative at the control points 01081 K Mq[25]; // the values of q and its derivative at the control points (expressed in the base of the unknown we want to find 01082 for (int i=0; i<3; i++) 01083 { 01084 VECT nn=N[i]; // 3 first lines : values at n0, n1, n1/2 01085 Vh[i]=h.eval(nn); 01086 Mq[5*i]=std::pow(nn[0],2); // x^2 01087 Mq[5*i+1]=std::pow(nn[1],2); // y^2 01088 Mq[5*i+2]=nn[0]*nn[1]; // x*y CHANGE *2 ?? 01089 Mq[5*i+3]=nn[0]; // x 01090 Mq[5*i+4]=nn[1]; // y 01091 } 01092 // mmout << "d\n"; 01093 for (int i=3; i<5; i++) 01094 { 01095 VECT nn=N[i-3]; // 2 last lines : derivative at n0, n1 01096 Vh[i]=h.eval_diff(nn); 01097 Mq[5*i+0]=-2*nn[0]*nn[1]; // -2*x*y 01098 Mq[5*i+1]=2*nn[0]*nn[1]; // 2*x*y 01099 Mq[5*i+2]=(std::pow(nn[0],2)-std::pow(nn[1],2)); // x^2-y^2 CHANGE *2 ? 01100 Mq[5*i+3]=-nn[1]; // -y 01101 Mq[5*i+4]=nn[0]; // x 01102 } 01103 01104 linear::LUsolve(q,Mq,Vh,5); // Mq*q=Vh ; size 5 01105 // output : q[0]*x^2+q[1]*y^2+q[2]*x*y+q[3]*x+q[4]*y 01106 01107 std::cout << "Valeur de Vh et Mq" << "\n"; 01108 for (int i=0; i<5; i++){ 01109 std::cout << Vh[i] << " = "; 01110 for (int j=0; j<5; j++) 01111 std::cout << Mq[5*i+j] << " "; 01112 std::cout << "\n";} 01113 std::cout << "\n"; 01114 01115 }
Seq< K > Cq | ( | ) | [inline] |
Definition at line 1059 of file qsc_approximation_fcts.hpp.