T mmx::numerics::add_dw | ( | const T & | a, | |
const T & | b | |||
) | [inline] |
Definition at line 70 of file rounding_mode.hpp.
00070 { rounding<T> r(rounding<T>::rnd_dw()); return a+b; };
T mmx::numerics::add_up | ( | const T & | a, | |
const T & | b | |||
) | [inline] |
Definition at line 71 of file rounding_mode.hpp.
00071 { rounding<T> r(rounding<T>::rnd_up()); return a+b; };
unsigned mmx::numerics::bitprec | ( | const T & | e, | |
const T & | l = T(1.0) | |||
) | [inline] |
Definition at line 29 of file numerics_hdwi.hpp.
Referenced by binary_sleeve_subdivision< K >::run(), binary_sleeve_subdivision< K >::run_loop(), and binary_subdivision< K >::run_loop().
T mmx::numerics::div_dw | ( | const T & | a, | |
const T & | b | |||
) | [inline] |
Definition at line 68 of file rounding_mode.hpp.
00068 { rounding<T> r(rounding<T>::rnd_dw()); return a/b; };
T mmx::numerics::div_up | ( | const T & | a, | |
const T & | b | |||
) | [inline] |
Definition at line 69 of file rounding_mode.hpp.
00069 { rounding<T> r(rounding<T>::rnd_up()); return a/b; };
int mmx::numerics::get_cw | ( | ) | [inline] |
Definition at line 15 of file rounding_mode.hpp.
int mmx::numerics::get_rnd | ( | ) | [inline] |
Definition at line 16 of file rounding_mode.hpp.
void mmx::numerics::hsal | ( | unsigned & | ha, | |
unsigned_t & | a, | |||
unsigned & | hb, | |||
unsigned_t & | b | |||
) | [inline] |
Definition at line 108 of file numerics_hdwi.hpp.
References sal().
T mmx::numerics::mul_dw | ( | const T & | a, | |
const T & | b | |||
) | [inline] |
Definition at line 72 of file rounding_mode.hpp.
00072 { rounding<T> r(rounding<T>::rnd_dw()); return a*b; };
T mmx::numerics::mul_up | ( | const T & | a, | |
const T & | b | |||
) | [inline] |
Definition at line 73 of file rounding_mode.hpp.
00073 { rounding<T> r(rounding<T>::rnd_up()); return a*b; };
static int mmx::numerics::rnd_dw | ( | ) | [inline, static] |
Definition at line 19 of file rounding_mode.hpp.
Referenced by binary_sleeve_subdivision< K >::dwsplit(), solver< Ring, Bspline >::first_root(), binary_convert< K, Approximate >::get(), binary_sleeve_subdivision< K >::init_pol(), binary_sleeve_subdivision< K >::Loop(), parallel< system >::process(), and binary_sleeve_subdivision< K >::solve_bernstein().
static int mmx::numerics::rnd_nr | ( | ) | [inline, static] |
Definition at line 20 of file rounding_mode.hpp.
static int mmx::numerics::rnd_up | ( | ) | [inline, static] |
Definition at line 18 of file rounding_mode.hpp.
Referenced by solver< Ring, Bspline >::first_root(), binary_convert< K, Approximate >::get(), binary_sleeve_subdivision< K >::init_pol(), parallel< system >::process(), binary_sleeve_subdivision< K >::solve_bernstein(), Cauchy< C >::upper_bound(), and binary_sleeve_subdivision< K >::upsplit().
static int mmx::numerics::rnd_z | ( | ) | [inline, static] |
Definition at line 21 of file rounding_mode.hpp.
void mmx::numerics::sal | ( | unsigned_t & | a, | |
unsigned | n | |||
) | [inline] |
Definition at line 82 of file numerics_hdwi.hpp.
References assert.
Referenced by hsal().
00083 { 00084 assert(n<=hdwi<unsigned_t>::nbit); 00085 if ( a & 1 ) 00086 { 00087 unsigned_t msk(hdwi<unsigned_t>::nmax); 00088 msk >>= (hdwi<unsigned_t>::nbit-n); 00089 a <<= n; 00090 a |= msk; 00091 } 00092 else 00093 { 00094 // std::cout << "SAL( " << n << ") \n"; 00095 // std::cout << a << std::endl; 00096 a <<= n; 00097 // std::cout << a << std::endl; 00098 }; 00099 00100 };
void mmx::numerics::set_cw | ( | int | cw | ) | [inline] |
Definition at line 17 of file rounding_mode.hpp.
T mmx::numerics::sub_dw | ( | const T & | a, | |
const T & | b | |||
) | [inline] |
Definition at line 74 of file rounding_mode.hpp.
00074 { rounding<T> r(rounding<T>::rnd_dw()); return a-b; };
T mmx::numerics::sub_up | ( | const T & | a, | |
const T & | b | |||
) | [inline] |
Definition at line 75 of file rounding_mode.hpp.
00075 { rounding<T> r(rounding<T>::rnd_up()); return a-b; };