include/lacunaryx/lpolynomial.hpp File Reference
#include <basix/vector_sort.hpp>
#include <lacunaryx/lpolynomial_naive.hpp>
Go to the source code of this file.
Classes
- class lpolynomial< C, E, V >
- struct binary_return_type_helper< access_op, lpolynomial< C, E, V >, E >
- struct as_helper< lpolynomial< T, TE, TV >, lpolynomial< F, FE, FV > >
Namespaces
Defines
- #define LPolynomial_variant(C, E) lpolynomial_variant_helper<C,E>::PV
- #define TMPL_DEF
- #define TMPL template<typename C, typename E, typename V>
- #define TMPLK template<typename C, typename E, typename V, typename K>
- #define SE typename signed_of_helper<E>::type
- #define Format format<C>
- #define Table table<C,E>
- #define LPolynomial lpolynomial<C,E,V>
- #define Abs_polynomial lpolynomial<Abs_type(C),E>
- #define Real_polynomial lpolynomial<Real_type(C),E>
- #define Center_polynomial lpolynomial<Center_type(C),E>
- #define Radius_polynomial lpolynomial<Radius_type(C),E>
- #define Lifted_polynomial lpolynomial<Lift_type(C),E>
- #define Projected_polynomial lpolynomial<Project_type(C),E>
- #define Reconstructed_polynomial lpolynomial<Reconstruct_type(C),E>
- #define Bnd Bound_type(C)
Functions
- template<typename C , typename E , typename V > signed_of_helper< E >::type deg (const lpolynomial< C, E, V > &P)
- template<typename C , typename E , typename V > int degree (const lpolynomial< C, E, V > &P)
- template<typename C , typename E , typename V > nat N (const lpolynomial< C, E, V > &P)
- template<typename C , typename E , typename V > format< C > CF (const lpolynomial< C, E, V > &P)
- template<typename C , typename E , typename V > nat hash (const lpolynomial< C, E, V > &c)
- template<typename C , typename E , typename V > nat exact_hash (const lpolynomial< C, E, V > &c)
- template<typename C , typename E , typename V > nat hard_hash (const lpolynomial< C, E, V > &c)
- template<typename C , typename E , typename V > bool operator== (const lpolynomial< C, E, V > &c1, const lpolynomial< C, E, V > &c2)
- template<typename C , typename E , typename V > bool operator!= (const lpolynomial< C, E, V > &c1, const lpolynomial< C, E, V > &c2)
- template<typename C , typename E , typename V > bool exact_eq (const lpolynomial< C, E, V > &c1, const lpolynomial< C, E, V > &c2)
- template<typename C , typename E , typename V > bool exact_neq (const lpolynomial< C, E, V > &c1, const lpolynomial< C, E, V > &c2)
- template<typename C , typename E , typename V > bool hard_eq (const lpolynomial< C, E, V > &c1, const lpolynomial< C, E, V > &c2)
- template<typename C , typename E , typename V > bool hard_neq (const lpolynomial< C, E, V > &c1, const lpolynomial< C, E, V > &c2)
- DEFINE_UNARY_FORMAT_3 (lpolynomial)
- STYPE_TO_TYPE (template< typename C, typename E, typename V >, scalar_type, lpolynomial< C, E, V >, C)
- STYPE_TO_TYPE (template< typename C, typename E, typename V >, monomial_type, lpolynomial< C, E, V >, E)
- UNARY_RETURN_TYPE (template< typename C, typename E, typename V >, abs_op, lpolynomial< C, E, V >, lpolynomial< Abs_type(C), E >)
- UNARY_RETURN_TYPE (template< typename C, typename E, typename V >, ground_op, lpolynomial< C, E, V >, Ground_type(C))
- UNARY_RETURN_TYPE (template< typename C, typename E, typename V >, Re_op, lpolynomial< C, E, V >, lpolynomial< Real_type(C), E >)
- UNARY_RETURN_TYPE (template< typename C, typename E, typename V >, center_op, lpolynomial< C, E, V >, lpolynomial< Center_type(C), E >)
- UNARY_RETURN_TYPE (template< typename C, typename E, typename V >, radius_op, lpolynomial< C, E, V >, lpolynomial< Radius_type(C), E >)
- template<typename C , typename E , typename V > signed_of_helper< E >::type val (const lpolynomial< C, E, V > &P)
- template<typename C , typename E , typename V > vector< C > coefficients (const lpolynomial< C, E, V > &P)
- template<typename C , typename E , typename V > Ground_type (C) ground(const lpolynomial<C
- FV void set_as (lpolynomial< T, TE, TV > &r, const lpolynomial< F, FE, FV > &p)
- template<typename C , typename E , typename V , typename T > void set_as (lpolynomial< C, E, V > &r, const T &x)
- template<typename C , typename E , typename V > iterator< pair< E, C > > iterate (const lpolynomial< C, E, V > &P)
- template<typename C , typename E , typename V > vector< E > supp (const lpolynomial< C, E, V > &P)
- template<typename C , typename E , typename V > generic var (const lpolynomial< C, E, V > &P)
- template<typename C , typename E , typename V > void set_variable_name (const lpolynomial< C, E, V > &P, const generic &x)
- template<typename C , typename E , typename V > syntactic flatten (const lpolynomial< C, E, V > &P, const syntactic &v)
- template<typename C , typename E , typename V > syntactic flatten (const lpolynomial< C, E, V > &P)
- template<typename C , typename E , typename V > int sign (const lpolynomial< C, E, V > &P)
- template<typename C , typename E , typename V > int compare (const lpolynomial< C, E, V > &P1, const lpolynomial< C, E, V > &P2)
- template<typename Op , typename C , typename E , typename V > bool unary_hash (const lpolynomial< C, E, V > &P)
- template<typename Op , typename C , typename E , typename V > bool binary_test (const lpolynomial< C, E, V > &P1, const lpolynomial< C, E, V > &P2)
- PR_IDENTITY_OP_SUGAR (template< typename C, typename E, typename V >, lpolynomial< C, E, V >) COMPARE_SUGAR(template< typename C
- template<typename C , typename E , typename V > lpolynomial< C, E, V > operator- (const lpolynomial< C, E, V > &P)
- template<typename C , typename E , typename V > lpolynomial< C, E, V > operator+ (const lpolynomial< C, E, V > &P, const lpolynomial< C, E, V > &Q)
- template<typename C , typename E , typename V > lpolynomial< C, E, V > operator+ (const lpolynomial< C, E, V > &P, const C &c)
- template<typename C , typename E , typename V > lpolynomial< C, E, V > operator+ (const C &c, const lpolynomial< C, E, V > &P)
- template<typename C , typename E , typename V > lpolynomial< C, E, V > operator- (const lpolynomial< C, E, V > &P, const lpolynomial< C, E, V > &Q)
- template<typename C , typename E , typename V > lpolynomial< C, E, V > operator- (const lpolynomial< C, E, V > &P, const C &c)
- template<typename C , typename E , typename V > lpolynomial< C, E, V > operator- (const C &c, const lpolynomial< C, E, V > &P)
- template<typename C , typename E , typename V > lpolynomial< C, E, V > operator* (const lpolynomial< C, E, V > &P, const lpolynomial< C, E, V > &Q)
- template<typename C , typename E , typename V > lpolynomial< C, E, V > operator* (const lpolynomial< C, E, V > &P, const C &c)
- template<typename C , typename E , typename V > lpolynomial< C, E, V > operator* (const C &c, const lpolynomial< C, E, V > &P)
- template<typename C , typename E , typename V > lpolynomial< C, E, V > square (const lpolynomial< C, E, V > &P)
- template<typename C , typename E , typename V > lpolynomial< C, E, V > operator/ (const lpolynomial< C, E, V > &P, const lpolynomial< C, E, V > &Q)
- template<typename C , typename E , typename V > lpolynomial< C, E, V > operator/ (const lpolynomial< C, E, V > &P, const C &c)
- ARITH_SCALAR_INT_SUGAR (template< typename C, typename E, typename V >, lpolynomial< C, E, V >) template< typename C
- V lpolynomial< C, E, V > __binpow (const lpolynomial< C, E, V > &P, const integer &n)
- template<typename C , typename E , typename V > lpolynomial< C, E, V > _binpow (const lpolynomial< C, E, V > &P, const integer &n)
- template<typename C , typename E , typename V > lpolynomial< C, E, V > binpow (const lpolynomial< C, E, V > &Q, const integer &n)
- template<typename C , typename E , typename V > lpolynomial< C, E, V > derive (const lpolynomial< C, E, V > &P)
- template<typename C , typename E , typename V > lpolynomial< C, E, V > xderive (const lpolynomial< C, E, V > &P)
- template<typename C , typename E , typename V > C eval (const lpolynomial< C, E, V > &P, const C &c)
Variables
- E
- F
- TE
- FE
- TV
- V
- lpolynomial< C, E, V > EQUAL_SCALAR_SUGAR (template< typename C, typename E, typename V >, lpolynomial< C, E, V >, C) COMPARE_SCALAR_SUGAR(template< typename C
- lpolynomial< C, E, V > lpolynomial< C, E, V >
- lpolynomial< C, E, V > C EQUAL_INT_SUGAR (template< typename C, typename E, typename V >, lpolynomial< C, E, V >) COMPARE_INT_SUGAR(template< typename C
- lpolynomial< C, E, V > C
lpolynomial< C, E, V > EQUAL_SCALAR_SUGAR_BIS (template< typename C, typename E, typename V >, lpolynomial< C, E, V >, C) COMPARE_SCALAR_SUGAR_BIS(template< typename C
Define Documentation
#define Abs_polynomial lpolynomial<Abs_type(C),E> |
#define Bnd Bound_type(C) |
#define Center_polynomial lpolynomial<Center_type(C),E> |
#define Lifted_polynomial lpolynomial<Lift_type(C),E> |
#define LPolynomial lpolynomial<C,E,V> |
#define LPolynomial_variant |
( |
C, |
|
|
E |
|
) |
lpolynomial_variant_helper<C,E>::PV |
#define Projected_polynomial lpolynomial<Project_type(C),E> |
#define Radius_polynomial lpolynomial<Radius_type(C),E> |
#define Real_polynomial lpolynomial<Real_type(C),E> |
#define Reconstructed_polynomial lpolynomial<Reconstruct_type(C),E> |
#define SE typename signed_of_helper<E>::type |
Definition at line 35 of file lpolynomial.hpp.
Referenced by mmx::derive(), lpolynomial< C, E, V >::lpolynomial(), mmx::operator*(), mmx::operator+(), mmx::operator-(), mmx::operator/(), mmx::set_as(), mmx::square(), and mmx::xderive().
#define TMPL template<typename C, typename E, typename V> |
#define TMPLK template<typename C, typename E, typename V, typename K> |