> <\body> <\tmdoc-title> Bernstein Tensor product polynomials \; These polynomials are represented as an array of coefficients in the tensor product Bernstein basis. The corresponding type is , where is the type of coefficients. The coefficients should be a . Here we describe the main functionnalities available for these polynomials. <\session|mathemagix|default> <\input> <|input> use "realroot" <\unfolded-io> <|unfolded-io> R := QQ['x,'y,'z ] <|unfolded-io> > <\unfolded-io> <|unfolded-io> B := bernstein R <|unfolded-io> > <\unfolded-io> <|unfolded-io> b := B \\ "x^2+x+1" <|unfolded-io> > <\unfolded-io> <|unfolded-io> type(b:\ Generic) <|unfolded-io> BernsteinTensorRingRational> <\unfolded-io> <|unfolded-io> coefficients b <|unfolded-io> 1,,3> <\unfolded-io> <|unfolded-io> b2 := b*b <|unfolded-io> +2*x+x> <\unfolded-io> <|unfolded-io> coefficients(b2) <|unfolded-io> 1,,,,9> <\unfolded-io> <|unfolded-io> diff(b2,0) <|unfolded-io> +4*x> <\unfolded-io> <|unfolded-io> b3 := B\\"x*y^2+x-5" <|unfolded-io> > <\unfolded-io> <|unfolded-io> coefficients b3 <|unfolded-io> -5,-5,-5,-4,-4,-3> <\folded-io> <|folded-io> coefficients (b3, 0) <|folded-io> > <\input> <|input> \; <\initial> <\collection>