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Chapter 1

Introduction to the Mathemagix language

Why develop or learn yet another programming language? At the start of the Math-

emagix project during the late nineties, the state of the art concerning computer algebra
systems was unsatisfactory at least for two reasons:

• There were no high quality general purpose free computer algebra systems.

• With the notable exception of Axiom and Aldor, there were no computer algebra
system with a language that could be compiled.

In the beginning, the Mathemagix language was very much inspired by Axiom and
Aldor, but as our ideas and implementations evolved, there were more and more differ-
ences. When Axiom and Aldor ultimately became free, our project had reached a stage
in which it was interesting to further develop these new ideas.

In its present state, Mathemagix is a strongly typed functional language for computer
algebra and computer analysis, which can both be intepreted and compiled. Strong typing
means that every expression in the language admits a unique type, including the types
themselves. For instance, the types of 2 and "hello" might be Integer and String, the
type of the function (x:Integer) :-> (x*x:Integer) would be Integer -> Integer,
and the type of Integer would be Class. A language is said to be functional if functions
can be treated as basic objects on the same level as, say, numbers.

The requirement that programs be strongly typed has its pros and cons. On the one hand,
it puts some burden on the user, since the user must carefully specify the type of every
newly introduced symbol. For instance, evaluation of the expression x*y in a shell session
will not work directly, since we first have to specify the types of x and y. Also, there may
be some loss of flexibility. For instance, in more classical computer algebra systems, it is
easy to construct vectors with entries of different types, such as [ 2, "hello", x+y ].
In Mathemagix, such expressions will only make sense if the entries can be casted into a
common supertype.

On the other hand, specifying clean types for all newly introduced notations makes the
semantics of the language far more robust and simplifies the task of writing compilers
for the language which transform the source code into highly efficient executables. For
instance, what do we actually mean by an expression such as x*y? Is this just a symbolic
expression or rather an element of the polynomial ring Z[x, y]? Is the multiplication
necessary commutative, or not? Clean typing of all declarations is a way to make potential
implicit assumptions of this kind more explicit. The increased robustness in the semantics
makes it also easier to develop large mathematical libraries.

Furthermore, whereas the memory layout of data can only be determined at run time for
untyped languages, this kind of information and other assumptions on data are available at
compile time in strongly typed languages. This opens the route to all kinds of optimizations
which usually make strongly typed languages one order of magnitude faster than their
untyped homologues. This is particularly important in the case of Mathemagix: besides
symbolic and algebraic objects, we are also interested in the manipulation of objects of a
more analytic natures, such as the numeric integration of differential equations. In order to
be competitive with standard numerical libraries, an optimizing compiler is a prerequisite.
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Why did we not chose for an existing strongly typed language with an optimizing compiler?
There are a certain number of more traditional languages which we have considered. First
of all, there are the languages OCaml, Haskell, and more recently Scala, which all
belong to the family of so called ML-style languages. We also mentioned the Axiom and
Aldor systems which are based on different paradigms. Other well-known languages which
we considered are C++ and Scheme.

In section 2 of our paper “Overview of the Mathemagix type system”, we have outlined
our main motivations for developing a new language. To go short, we want a language
which adequately reflects the overloading present in traditional mathematical notation.
For instance, depending on the context, the operator + acts on numbers, polynomials,
matrices, etc.

Conceptually speaking, we also believe that the prototype of a function declaration is anal-
ogous to a mathematical definition or the statement of a mathematical theorem, whereas
the the implementation of the function is analogous to giving a proof. The type system of
Mathemagix intends to make the declarations of function prototypes as precise as “opera-
tional part” of the statement of a mathematical definition or theorem. One simple example
of this guiding principle is the following declaration of the cube function:

forall (R: Ring) cube (x: R): R == x*x*x;

This declaration clearly corresponds to a mathematical definition:

Definition. Given a ring R, and an element x∈R, we define the cube of x by cube(x)=
x · x · x.

Notice that this is far more precise than simply declaring cube(x) == x*x*x. Similarly,
the declaration of the function

forall (R: Real_Closed_Field)

complex_roots (p: Polynomial R): Vector Complex R == {

...

}

corresponds to the mathematical theorem that for any real closed field R and any poly-
nomial p ∈ R[x], we may compute the vector of all complex roots of p. Although this
declaration is precise enough from the operational point of view, we may actually refine
the prototype as follows:

forall (R: Real_Closed_Field)

complex_roots (p: Polynomial R): (v: Vector Complex R | #v = deg p) == {

...

}

This refinement would correspond to the mathematical statement that R[i] is algebraically
closed (and that we may actually compute the roots of polynomials). However, Math-

emagix is only intended to be a compiler and not a mathematical theorem prover.
Therefore, the mathematical property #v = deg p will not be rigourously proven, but
only verified to hold for concrete inputs.

8 Introduction to the Mathemagix language



Chapter 2

Simple examples of Mathemagix programs

2.1. Hello world

Let us start with the famous “hello world” example, which is written as follows in Math-

emagix:

include "basix/fundamental.mmx";

mmout << "Hello world!" << lf;

By default, only very few types are available in Mathemagix. The first line is therefore
needed in order to make various standard types available, such as strings and input/output
ports.

The example program can be run in two ways: by compiling it using the Mathemagix

compiler mmc and then running the resulting executable, or by interpreting it using the
Mathemagix interpreter. In the appendix getting and installingMathemagix it is briefly
described how to download and install Mathemagix. For more information, we refer to
our website www.texmacs.org.

2.1.1. Compiling and running the program

Assuming that the above program was saved in a file hello_world.mmx, we may compile
and execute the program in a shell session as follows:

Shell] mmc hello_world.mmx

Shell] ./hello_world

Hello world!

Shell]

2.1.2. Running the program in the interpreter

Alternatively, we may directly run the program in the Mathemagix interpreter mmi:

Welcome to Mathemagix 1.0.1
This software falls under the GNU General Public License

It comes without any warranty whatsoever

http://www.mathemagix.org

(c) 2010-2012
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Mmx] include "hello_world.mmx"

Hello world!

Mmx]

When including files with external C++ functionality for the first time in the interpreter,
the interpreter first has to compile some glue in order to use this functionality. This
happens in particular for the file basix/fundamental.mmx. Whenever the interpreter is
compiling some glue, it displays a message which disappears as soon as the compilation is
complete.

2.2. Fibonacci sequences

Another classical example is the computation of Fibonacci sequences. A simple implemen-
tation using a recursive function goes as follows:

include "basix/fundamental.mmx";

fib (n: Int): Int ==

if n <= 1 then 1 else fib (n-1) + fib (n-2);

Notice that the programmer has to specify explicit types for the arguments and return
type of the function. In our example both the argument and the return value are machine
integers of type Int. It is also possible to implement a faster non recursive algorithm which
returns an integer of arbitrary precision:

include "numerix/integer.mmx";

fib (n: Int): Integer == {

a: Integer := 1;

b: Integer := 1;

for k: Int in 2 to n do {

c: Integer == a + b;

a := b;

b := c;

}

return b;

}

2.3. Merge sort

One more involved example is to provide a generic implementation of the merge sort
algorithm:
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include "basix/fundamental.mmx";

category Ordered == {

infix <=: (This, This) -> Boolean;

}

forall (T: Ordered)

merge_sort (v: Vector T): Vector T == {

if #v <= 1 then return v;

v1: Vector T == merge_sort v [0, #v quo 2];

v2: Vector T == merge_sort v [#v quo 2, #v];

r : Vector T := [];

i1: Int := 0;

i2: Int := 0;

while i1 < #v1 or i2 < #v2 do

if i1 < #v1 and (i2 >= #v2 or v1[i1] <= v2[i2]) then {

r << [ v1[i1] ];

i1 := i1 + 1;

}

else {

r << [ v2[i2] ];

i2 := i2 + 1;

}

return r;

}

This routine merge_sort can be applied to any vector whose entries are of a type T with
an ordering infix <=: (T, T) -> T. For instance, the instructions

mmout << merge_sort ([ 3, 2, 1, 5, 4, 4, 7 ]) << lf;

mmout << merge_sort ([ "bob", "alice", "carl" ]) << lf;

yield the output

[1, 2, 3, 4, 4, 5, 7]

["alice", "bob", "carl"]
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Chapter 3

Declarations and control structures

3.1. Declaration and scope of variables

Constants are defined using the keyword ==:

welcome: String == "Welcome to Mathemagix!";

ok? : Boolean == sunny? and warm?;

Mutable variables can be defined and modified using the keyword :=, as in the following
example:

i: Int := 1;

while i <= 10 step i := i + 1 do

mmout << 10 << " * " << i << " = " << 10 * i << lf;

The skope of a variable corresponds to the innermost block delimited by { and } in which
the variable is defined. For instance:

i: Int == 1;

if cond? then {

i: Int == 2;

foo (i, i);

}

mmout << i << lf; // i contains 1 at this point

Global variables admit the entire file as their skope. More complex scoping rules which
apply in the case of multiple file projects or in presence of modules will be discussed in the
chapter about programming in the large.

Regular identifiers should match the regular expression [a-zA-Z_]+[a-zA-Z0-9_$?]*.
That is, the names of constants, variables, function names, macros and types should

• only contain letters, digits and the special characters _, $ and ? ; and

• start with a letter or _ or $.

In addition, it is customary to use lowercase identifiers for constants, variables and func-
tions, and to capitalize the first letter of each word in identifiers for types (e.g. Integer
or Sparse_Vector). Moreover, identifiers for boolean variables and predicates are usually
suffixed by ?.
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Besides regular identifiers,Mathemagix supports various special identifiers, such as infix
+ for addition. These will be discussed in more detail in the section about identifiers.

3.2. Declaration of simple functions

The declaration of functions will be discussed in more detail in the chapter about functions.
Simple function declarations admit the following syntax:

function_name (arg_1: Type_1, ..., arg_n: Type_n): Ret_Type == body;

For instance:

cube (n: Int): Int == n*n*n;

It should be noticed that this declaration is actually equivalent to the following declaration
of cube as a “function constant”:

cube: Int -> Int == (n: Int) :-> (n*n*n: Int);

As in the case of ordinary variables, functions can be mutable:

foo (n: Int): Int := n*n;

foo := (n: Int) :-> (n*n*n: Int);

The return statement can be used to exit the function with a given return value. For
instance:

search_index (item: Int, v: Vector Int): Int == {

for i: Int in 0..#v do

if v[i] = item then return i;

return -1;

}

3.3. Macros

Mathemagix provides the keyword ==> for the declaration of macros. Since names of
types can sometimes be rather long, macros are often used in order to abbreviate them.
For instance:

POL ==> Polynomial Rational;

p: POL == polynomial (1, 2, 3);

Since such abbreviations are usually local to a file, it is customary to declare all macros at
the start of the file and to use the private keyword in order to keep them private to the
file. For instance:
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include "numerix/rational.mmx";

include "algebrabix/polynomial.mmx";

include "algebrabix/matrix.mmx";

private {

POL ==> Polynomial Rational;

MAT ==> Matrix Rational;

}

// new routines on rational polynomials and matrices

It is also customary to capitalize all letters in names of macros.

Remark 3.1. Macros with arguments are not yet supported by the compiler, but planned.

3.4. Conditional statements

Conditional statements are of one of following two forms

if condition? then then_body

if condition? then then_body else else_body

The bodies of the then-part and the else-part can either be single instructions or blocks of
instructions braced into {...}. For instance, we may write

if done? then {

clean_up ();

return;

}

fib (n: Int): Int == {

if i <= 1 then return 1;

else return fib (n-1) + fib (n-2);

}

Notice that the if-then-else construct can also be used as an expression:

mmout << "Take a " << (if warm? then "shirt" else "jacket") << lf;

3.5. Simple pattern matching

It often occurs that a list of actions has to be undertaken depending on the value of some
expression. This kind dispatching can be achieved using the match instruction which has
the syntax

match expression with match_body
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where match_body is a sequence of cases of the following form:

case case_pattern do case_body

For instance:

fib (n: Int): Int ==

match n with {

case 0 do return 1;

case 1 do return 1;

case _ do return fib (n-1) + fib (n-2);

}

This is a simple example of the general mechanism of pattern matching, which will be
discussed in more details in the chapter about abstract data types.

3.6. Loops

Loops are constructed as follows:

loop_modulator_1 ... loop_modulator_n do loop_body

where the loop modulators are among one of the following five types:

for variable: T in values

for instruction

while condition?

until contition?

step instruction

A simple example of how to use the for-in modular is the following:

for i: Int in 1 to 10 do

mmout << i << " * " 10 << " = " << i * 10 << lf;

The expression 1 to 10 is an example of a “generator”. For more information on such
objects, we refer to the section on generators. The for-in loop is equivalent to the following
one which uses the for, while and step modulators:

for i: Int := 1 while i <= 10 step i := i + 1 do

mmout << i << " * " 10 << " = " << i * 10 << lf;

The for modulator (without in) is really syntactic sugar: the above code is essentially the
same as

i: Int := 1;

while i <= 10 step i := i + 1 do

mmout << i << " * " 10 << " = " << i * 10 << lf;
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except that the scope of the variable i is bound to the body of the loop when using the for
modulator. Similarly, the step modulator could have been moved to the body of the loop:

for i: Int := 1 while i <= 10 do {

mmout << i << " * " 10 << " = " << i * 10 << lf;

i := i + 1;

}

However, this way of writing things is slightly longer and less readable. Furthermore, this
kind of rewriting becomes less straightforward in presence of continue instructions (see
below).

The condition of the while modulator is tested each time before executing the body of
the loop. By contrast, the condition of the until modulor is tested only at the end of the
loop. For instance, in the following loop, the body is executed at least one time:

until i > 10 do {

mmout << "i= " << i << lf;

i := i + 1;

}

It should also be noticed that modulators of the same type can very well be used several
times. For instance, the following loop will output the numbers 4, 10 and 18:

v1: Vector Int == [1, 2, 3];

v2: Vector Int == [4, 5, 6];

for x1: Int in v1

for x2: Int in v2 do

mmout << x1 * x2 << lf;

In this last example, even though v1 and v2 are not of type Generator Int, there exists
a prefix operator @ from Vector Int to Generator Int which allow us to write for x1:

Int in v1 and for x2: Int in v2.

3.7. Loop interruption and continuation

The execution of a loop can be interrupted using the break instruction. As soon as a break
instruction is encountered, execution will resume at the end of the loop. For instance, the
following loop will only output the numbers one until five:

for i: Int in 1 to 10 do {

if i = 6 then break;

mmout << i << lf;

}

In a similar way, the continue instruction interrupts the execution of the body of the loop,
but continues with the execution of the next cycle. For instance, the following code will
display all numbers from one to ten, except for the number six:f the loop. For instance,
the following loop will only output the numbers one until five:
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for i: Int in 1 to 10 do {

if i = 6 then continue;

mmout << i << lf;

}

3.8. Exceptions

Exceptions in Mathemagix are handled using a conventional try-catch mechanism. This
mechanism resides on three keywords:

• The “raise exception” instruction with one argument exception of an arbitrary
type T is used in order to raise an exception of type T.

• The “try try_body” instruction protects the block try_body of instructions against
exceptions, by allowing the user to provide exceptions handlers for exceptions of
various types.

• Any number of “catch (exception: T) catch_T_body” instructions can occur at
the end of the try_body. Whenever an exception of type T occurs, it is handled by
the corresponding exception handler catch_T_body. Exceptions which could not be
catched are propagated further outwards.

A typical example of a safe routine for printing values of a partially defined function is

print_values (f: Double -> Double): Void == {

for x: Double in -5.0 to 5.0 do {

try {

y: Double == f x;

mmout << x << "\t" << y << lf;

catch (err: String) {

mmout << x << "\t" << err << lf;

}

}

}

}

A typical example of a corresponding partially defined function is

foo (x: Double): Double == {

if x <= -2.0 then return x + 2.0;

if x >= 2.0 then return x - 2.0;

raise "out of range";

}

Applying print_values on foo yields the following output

-5 -3

-4 -2

-3 -1

-2 0
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-1 out of range

0 out of range

1 out of range

2 0

3 1

4 2

5 3

Standard Mathemagix libraries usually raise errors of the type Exception instead of
String. For this reason, one might wish to replace the type of err by Exception. In that
case the routine foo should be replaced by

foo (x: Double): Double == {

if x <= -2.0 then return x + 2.0;

if x >= 2.0 then return x - 2.0;

raise exception ("out of range", x);

}

The second argument of exception allows the user to specify a reason for the exception,
such as an offending value or a line in the source code which triggered the exception.

3.9. Comments

Mathemagix supports two types of comments. Short comments start with // and extend
to the end of the physical line:

class Complex (R: Ring) {

re: R; // real part of the complex number

im: R; // imaginary part of the complex number

...

}

Long multi-line comments should be braced into /{ ... }/ and can be nested:

y == hacked_function x; /{ FIXME:

This is a dangerous hack /{ which occurs only on the first of april }/

A skilled extraterrestian should be able to fix it

}/
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Chapter 4

Expressions

4.1. Identifiers

4.1.1. Regular identifiers

Identifiers are used as names for variables, functions, macros, types and categories. Regular
identifiers should match the regular expression [a-zA-Z_]+[a-zA-Z0-9_$?]*. That is,
identifiers should

• only contain letters, digits and the special characters _, $ and ? ; and

• start with a letter or _ or $.

In addition, it is customary to use the following guidelines when choosing names:

• Use lowercase names for variables and functions.

• For names of types and categories, capitalize the first letter of each word categories
(e.g. Integer or Ordered_Group).

• Capitalize all letters in macro names.

• Use the ? suffix for names of predicates.

Besides the regular identifiers, Mathemagix allows the programmer to use several types
of special identifiers for the names of operators and special objects.

4.1.2. Operators

First of all, identifiers corresponding to the built-in operators (see section 4.3 below) are
formed by prefixing them by one of the keywords prefix, postfix, infix and operator.
For instance:

postfix ! (n: Int): Int == if n=0 then 1 else n * (n-1)!;

Similarly, the instruction

mmout << map (infix *, [ 1, 2, 3 ], [ 4, 5, 6 ]) << lf;

prints the vector [4, 10, 19]. The operator

operator []: (t: Tuple T) -> Vector T;
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is used as a shorthand for the constructor of vectors (so that we may write [ 1, 2, 3 ]

instead of vector (1, 2, 3)). Similarly, the operator postfix [] is used for accessing
entries of vectors and matrices.

Remark 4.1. TODO: in place operators formed with the keyword inplace.

4.1.3. Named access operators

In addition to the builtin operators, any regular identifier id can also be turned into a
postfix operator postfix .id. For instance, when defining a class Point by

class Point == {

x: Double;

y: Double;

constructor point (x2: Double, y2: Double) == {

x == x2;

y == y2;

}

}

Mathemagix automatically creates two such postfix operators for accessing the fields x
and y:

postfix .x: Point -> Double;

postfix .y: Point -> Double;

Hence, we may define an addition on points using

infix + (p: Point, q: Point): Point ==

point (p.x + q.x, p.y + q.y);

Additional operators similar to postfix .x and postfix .y can be defined outside the
class

postfix .length (p: Point): Double ==

sqrt (square p.x + square p.y);

Given a point p, we then write p.length for its length as a vector.

4.1.4. Other identifiers

The Mathemagix keywords, such as while, class, etc. can also be turned into identifiers
by prefixing them with keyword. Hence, keyword while stands for the keyword while.
This notation is mainly using during formal manipulations of Mathemagix programs.

More generally, any valid string can be turned into an identifier by putting it between
quotes and prefixing it by the keyword literal. For instance, literal "sqrt" is equiva-
lent to the regular identifier sqrt, literal "+" is equivalent to the infix operator infix +,
and literal "_+_" is an identifier which can only be written using the keyword literal.
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We finally notice that this is a special identifier which denotes the underlying instance
inside a class method.

4.2. Literal constants

Mathemagix provides three types of literal constants: string literals, integer literals and
floating literals. In addition, there are several important constants, such as true and false,
which are really identifiers from the syntactic point of view.

4.2.1. Literal strings

Short string constants are either written inside a pair of double quotes "...":

mmout << "Hello world" << lf;

Double quotes and backslashes inside strings should be escaped using backslashes:

quote_char : String == """;

backslash_char: String == "\";

Long string constants which avoid this kind of escaping can be formed using the delimiters
/"..."/, as in the following example:

hello_world_example: String == /"

include "basix/fundamental.mmx";

mmout << "Hello world!" << lf;

"/

mmout << hello_world_example << lf;

4.2.2. Literal integers

An integer literal is a sequence of digits, possible preceded by a minus sign. It matches
the regular expression [-]?[0-9]+. Examples are: 123456789123456789, -123. The user
should define a routine

literal_integer: Literal -> T;

in order to allow literal integers to be interpreted as constants of type T. The file
basix/int.mmx of the standard library defines the routine

literal_integer: Literal -> Int;

which allows literal integers to be interpreted as machine integer constants. Arbitrary
precision integers are supported by importing

literal_integer: Literal -> Integer;

for numerix/integer.mmx.
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4.2.3. Literal floating point numbers

A literal floating point constant is a sequence of digits with a decimal point inside, an
optional sign and an optionalexponent. It matches the regular expression

[-]?[0-9]+[.][0-9]+[[eE][-]?[0-9]+]?

The user should define a routine

literal_floating: Literal -> T;

in order to allow literal floating poiunt numbers to be interpreted as constants of type T.
In particular, the files basix/double.mmx and numerix/floating.mmx from the standard
library define the routines

literal_floating: Literal -> Double; // in basix/double.mmx

literal_floating: Literal -> Floating; // in numerix/floating.mmx

For instance,

zero : Double == 0.0;

pi : Double == -3.14159;

funny: Floating == 1.2345679012345678901234567890e2012;

Notice that 0. is not permited: one must write 0.0.

4.2.4. Special constants

Some constants are encountered so frequently, that it is useful to mention them here, even
though they are really identifiers from the syntactic point of view:

• The boolean constants false and true.

• The standard input, output and error ports mmin, mmout and mmerr.

• Several special control symbols for formatted output:

◦ lf for linefeed.

◦ indent for indenting in.

◦ unindent for indenting out.

◦ hrule for a horizontal ruler.

4.3. Operators

Table 4.1 summarizes all standard Mathemagix operators, together with their binding
forces. For instance, the expression

a*b + c > d
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is naturally parsed as ((a b)+c)>d. The operators can roughly be divided into four groups:

1. Infix operators such as + apply to one argument on the left and one argument on
the right.

2. Prefix operators such as negation prefix ! apply to one argument on the right.

3. Postfix operators such as the factorial postfix ! apply to one argument on the left.

4. Other special operators, such as operator [] for writing vectors [ 1, 2, 3 ].

There are also some special postfix operators, such as function application postfix ()

and named access operators such as postfix .x (see section 4.1.3). Most operators are
infix operators, so infix notation is assumed to be the default, unless stated otherwise. In
the remainder of this section, we will quickly survey the intended purpose of the various
operators.

Assignment operators ==, :=, +=, -=, *=, /=, <<=, >>=, ==>, :=>
Function expressions lambda, :->
Input/output operators <<, >>, <<<, >>>, <<*, <<%
Logical implication =>, <=>
Logical disjunction or, \/, xor

Logical conjunction and, /"
Relations =, <, >, <=, >=, !=, !<, !>, !<=, !>=, :, in
Type conversion :>, ::, ::>
Arrows ->, ~>
Ranges .., to, downto
Addition and subtraction +, -, @+, @-
Multiplication and division *, /, @*, @/, div, quo, rem, mod, @, ><, %, &
Prefix operators !, ++, --, -, @-, @, #, &
Operate on empty string
Power ^

Postfix operators ++, --, !, ’, ‘, ~, #, (), []
Tuples and vectors (), []

Table 4.1. Overview of all Mathemagix operators listed by increasing binding force.

4.3.1. Assignment operators

The operators == and := are used for declarations of constants and mutable variables, as
described in the sections about the declaration of variables and functions. The operator
==> is used for macro definitions (see the section about macro declarations). The operator
:=> is reserved for future use.

The operator := can always be used for the assignment of mutable variables. The operators
+=, -=, *=, /=, <<= and >>= are not yet exploited in the standard libraries, but there
intended use is “assignment of the left hand expression with the result of the corresponding
outplace operator applied to both arguments”. For instance, the instruction

a += b;

should considered to be equivalent to the assignment

4.3 Operators 25



a := a + b;

Remark 4.2. As a future extension of the compiler, we also intend to support assignment
to tuples, in order to assign several mutable variables at once. For instance,

(a, b) := (b, a)

should swap the variables a and b, and

(a, b) += (x, y)

should respectively increase a and b with x and y.

4.3.2. Function expressions

The special operators :-> and lambda are used for writing functions directly as expressions.
The expressions

(a_1: T_1, ..., a_n: T_n) :-> (val: Ret_Type)

lambda (a_1: T_1, ..., a_n: T_n): Ret_Type do val

can both be used as a notation for the function with arguments a_1, 	 , a_n of types T_1,	 , T_n, which returns the value val of type Ret_Type.

4.3.3. Input/output operators

The operators << and >> are respectively used for sending data to an output port and
retrieving data from an input port. The same notation is useful in analogous circumstances,
such as appending data to a vector or popping data from a stack.

The operators <<< and >>> are used for sending and retrieving data in binary form. This
allows for instance for the implementation of efficient communication protocols between
different processes on the same or distant computers. The operators <<* and <<% are
reserved for future use.

Remark 4.3. Sometimes, we also use the operators << and >> as shift operators. For
instance, given a power series f in z, we might write f << n as a shorthand for the
multiplication of f with zn. However, it should be noticed that the binding force of <<
and >> is not really appropriate for this type of use (a binding force similar to the one of
multiplication would be better for this kind of use), so one carefully has to put brackets
whereever necessary in this case. In future versions of Mathemagix, this kind of overuse
of notations might be discouraged.

4.3.4. Logical operators

The operators =>, <=>, \/, /" stand for the standard logical connectors ⇒, ⇔, ∧ and ∨.
The prefix operator prefix ! stands for logical negation ¬. These operators are functions
which can be redefined by the user, so both arguments are evaluated in case of the logical
connectors.
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Mathemagix also provides the built-in operators or and and which must take arguments
of type Boolean. Moreover the second argument of or is evaluated only if the first argument
evaluates to false. Similarly, the second argument of and is evaluated only if the first
argument evaluates to true.

Remark 4.4. The operators =>, <=>, \/, /" and ! can also be useful for bitwise opera-
tions on numbers, even though the binding force is someone inappropriate for this kind
of use. One might also want to use /" as a notation for exterior products, again with an
inappropriate binding force. In future versions of Mathemagix, this kind of overuse of
notations might be discouraged.

4.3.5. Relations

The operators =, < , >, <= and >= correspond to the standard mathematical relations =,
<, >, 6 and >. When prefixing these relations with !, we obtain the operators !=, !<, !>,
!<=, !>= which correspond to their negations � , ≮, ≯, 
 and �.

In computational contexts, mathematical relations often admit a very asymmetric nature:
typically, it can be very easy to prove inequality, but very hard to prove equality. It can
even happen that we have an algorithm for proving inequality, but no known algorithm
for proving equality. This is for instance the case for the class of so called exp-log con-
stants, constructed from the rational numbers using the field operations, exponentiation
and logarithm. In contexts where equality testing is hard, it is therefore useful to make a
notational distinction between various types of equality, such as proven equality, probable
equality, syntactic equality, etc.

In Mathemagix, the intention of the notations =, <, >, <= and >= is that they stand for
proven relations. On the other hand, the negations !=, !<, !>, !<= and !>= are intended
to be mere shortcuts for their (not necessarily proven) negations. Hence, a != b should
always be equivalent to !(a = b). We are working on a comprehensive set of additional
relations for proven negations; they will probably be denoted by =/, </, >/, <=/, >=/. As an
additional rule, it is our intention that <= (resp. >=) is always equivalent to the disjunction
of < (resp. >) and =. Thus a <= b should always be equivalent to the statement a < b or

a = b.

The operator : should be read “is of type”. For instance, x: T stands for “x is of type T”.
The operator in occurs inside the for-in construct (see the section about loops).

4.3.6. Type conversion

The operator :> can be used to convert an expression of a given type into another, provided
that an appropriate converter was defined. More precisely, assume that expr has type S

and that we defined a converter convert: S -> D. Then expr :> D stands for the explicit
conversion of expr into an expression of type D. More information about type conversions
can be found in the section on explicit type conversions and user defined converters.

4.3.7. Arrows

The operator -> is used as an efficient notation for function types, such as Int -> Int.
One typical use case of this notation is when a function is passed as an argument to another
function:
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iterate (f: Int -> Int, n: Int) (k: Int) ==

if n = 0 then k else iterate (f, n-1) (f k);

The operator ~> is mainly used as a notation for key-value bindings whenever we explicitly
wish to create a table with given entries. For instance:

basic_colors: Table (String, Color) ==

table ("red" ~> rgb (1, 0, 0),

"green" ~> rgb (0, 1, 0),

"blue" ~> rgb (0, 0, 1),

"white" ~> rgb (1, 1, 1));

or

forall (T: Type)

invert (t: Table (T, T)): Table (T, T) ==

table (t[key] ~> key | key: T in t);

4.3.8. Ranges

There are three standard kinds of range operators:

start to end Range from start up to end included
start .. end Range from start up to end not included
start downto end Range from start down to end included

4.3.9. Arithmetic operations

The standard arithmetic operations +, -, *, / and ^ stand for addition, subtraction, mul-
tiplication, division and powering. The @-prefixed variants @+, @-, @*, @/ stand for ⊕, ⊖,
⊗ and ⊘. Notice that - and @- can either be infix or prefix operators.

Mathemagix provides the additional operators div, quo, rem and mod for division-related
operations in rings which are not necessarily fields. The operator div stands for (usually
partially defined) exact division. For instance, numerix/integer.mmx provides the opera-
tion

infix div: (Integer, Integer): Integer;

but 5 div 3 is undefined and might raise an error. The operators quo and rem stand for
quotient and remainder in euclidean domains. Hence, we should always have

a = (a quo b) b+ (a rem b).

The operator mod stands for modular reduction, so that the return type is usually different
from the source types. For instance 5 mod 3 would typically belong to Modular (Int, 3)

or Modular (Integer, 3).

There are a few other operations with the same binding force as multiplication. The
append operator ><, also denoted by @ , is typically used for appending strings, vectors and
table. For instance "a" >< "b" yields "ab". The operator infix @ is used for functional
composition, whereas the operators % and & are reserved for future use.
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4.3.10. Prefix operators

The standard prefix operators in Mathemagix are prefix ! (negation ¬), prefix ++

(increment), prefix -- (decrement), prefix - (unary −), prefix @- (unary ⊖), prefix
@ (explode), prefix # (size), prefix & (reserved for future use).

In addition, operator application of the form sin x parses in a similar way as when sin

behaves as a prefix operator. For instance, sin cos x should be parsed as sin (cos (x)).

4.3.11. Postfix operators

The standard postfix operators in Mathemagix are postfix ++ (post increment),
postfix -- (post decrement), postfix ! (factorial !), postfix ’ (quote or derivative),
postfix ‘ (unquote), postfix ~ and postfix # (reserved for future use).

++, --, !, ’, ‘, ~, #, (), []

In addition, Mathemagix provides the special postfix operators postfix () and postfix

[] for which we are allowed to put additional arguments between the brackets. Hence,
postfix () stands for the traditional notation of function application, whereas postfix
[] is typically used as an accessor for compound data structures. Notice that f(g)(x) is
parsed as (f(g))(x), whereas f g x is parsed as f(g(x)).

Using the operator postfix (), we may generalize the classical notation for function
application to user defined types, such as vectors of functions:

postfix () (v: Vector (Int -> Int), x: Int): Vector Int ==

[ f x | f: Int -> Int in v ];

4.3.12. Tuples and vectors

The reserved special operator operator () is used for building tuples of expressions (of
possibly different types), such as (1, "hello"). The special operator operator [] is used
as a notation for explicit vectors, such as [ 1, 2, 3 ], but it might be used for other
purposes.

4.4. Generators

Generators are an elegant way for representing a stream of data of the same type. For
instance, the expression 1 to 10 of type Generator Int allows us to write

for i: Int in 1 to 10 do

mmout << i << " * " << 7 << " = " << 7*i << lf;

Mathemagix provides several constructs for forming generators.

4.4.1. Range generators

There are three standard kinds of range operators:

start to end Range from start up to end included
start .. end Range from start up to end not included
start downto end Range from start down to end included

4.4 Generators 29



4.4.2. The explode operator

Many container types come with a prefix operator @ which returns a generator. For
instance, given a vector v of type Vector T, the expression @v has type Generator T.
Whenever expr is an expression such that @expr has type Generator T, we are still allowed
to use expr as the in-part of the for-in construct. For instance:

for i: Int in [ 2, 3, 5, 7, 11, 13, 19 ] do

mmout << i*i << lf;

4.4.3. The such that construct

One other important construct for forming generators is the “such that” operator |. Given
a generator g of type Generator T, the expression

(var: T in g | predicate? var)

stands for the generator of all items in g which satisfy the predicate predicate?. For
instance, consider the following naive implementation of the predicate prime? which checks
whether a number is prime

prime? (n: Int): Boolean == {

for i: Int in 2..n do

if i rem i = 0 then return false;

return true;

}

Then we may display the vector of all prime numbers below 1000 using

mmout << [ p: Int in 1 to 1000 | prime? p ] << lf;

Notice that this vector is constructed from the expression

(p: Int in 1 to 1000 | prime? p)

of type Generator Int using the bracket operator operator [].

4.4.4. The where construct

The vertical bar | can also be used as the “where” operator, using the following syntax:

(expr var | var: T in g, predicate_1? var, ..., predicate_n? var)

Here g is again a generator of type Generator T, expr var any expressions which
involves var, and predicate_1? var, ..., predicate_n? var an arbitrary number of pred-
icates which involve var. If expr var has type U, then the resulting expression has type
Generator U. For instance,

mmout << [ i^2 | i: in 1 to 100 ] << lf;
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displays the vector of all squares of numbers from 1 to 100, and

mmout << [ i^2 | i: in 1 to 1000, prime? (4*i + 3) ]

displays the square of each number i such that 4 i+3 is prime.

4.4.5. The where construct with multiple generators

Mathemagix actually supports a generalization of the where construct with multiple
generators and predicates at the right-hand side. This generalization is best illustrated
with an example:

mmout << [ p^i | p: Int in 1 to 1000, prime? p,

i: Int in 1 to 10, p^i < 1000 ] << lf;

This code will print the unordered vector of all prime powers below 1000.

4.4.6. Matrix notation

A special where notation || is used for generators which allow to build rows of matrices or
similar two dimensional structures. Again, this notation is best illustrated with an example.
Assuming that the file algebramix/matrix.mmx was included, the expression

[i+j | i: Int in 0 to 9 || j: Int in 0..10]

computes the following matrix:

































0 1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9 10
2 3 4 5 6 7 8 9 10 11
3 4 5 6 7 8 9 10 11 12
4 5 6 7 8 9 10 11 12 13
5 6 7 8 9 10 11 12 13 14
6 7 8 9 10 11 12 13 14 15
7 8 9 10 11 12 13 14 15 16
8 9 10 11 12 13 14 15 16 17
9 10 11 12 13 14 15 16 17 18

































4.5. Mappers

MostMathemagix containers implement a mapping construct map. This construct is used
for applying one or more functions to all entries of one or more containers.

Two simple examples for containers with a single parameter are

mmout << map (square, [ 1, 2; 3, 4 ]) << lf;

mmout << map (infix *, [ 1, 2, 3], [4, 5, 6]) << lf;
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These instruction respectively output the matrix
(

1 4

9 16

)

and the vector [4, 10, 18].

In the case of containers with more than one type parameter, one usually has to provide
one mapping function for every such parameter. Consider for instance the following table:

t: Table (Int, String) == table (3 ~> "Hello", 4 ~> "Hi", 8 ~>

"Bonjour");

Then the instruction

mmout << map (square, prefix #, t) << lf;

prints the table [9 5, 16 2, 64 7].

Syntactically speaking, the construct map is an ordinary identifier. For instance, assuming
that we defined a container Complex R (see the section on how to define your own con-
tainers), a unary mapper for this container can be defined as follows:

forall (R1: Ring, R2: Ring)

map (f: R1 -> R2, z: Complex R1): Complex R2 ==

complex (f z.re, f z.im);

When providing your own containers, it is actually important to define unary mappers of
this kind, because such mappers automatically induce converters between containers of
the same kind but with different type parameters. For instance, given a converter from
R1 to R2, the above mapper for complex numbers automatically induces a converter from
Complex R1 to Complex R2. This allows the user to write

z: Complex Rational == complex (1, 2);

In general, such a converter is constructed whenever the user provides a unary mapper
which takes one mapping function for each parameter on input together with a single
container.

Remark 4.5. We notice that the existence of a unary mapper is mandatory if a program
both uses the container in an generic and in a specialized way, and if conversions between
the generic and specialized versions of the container indeed occur in the program. For
instance, some mathematical library lib.mmx might provide a generic function

forall (R: Ring)

conj (z: Complex R): Complex R == complex (z.re, -z.im);

Now assume that we a client program client.mmx which only works with complex num-
bers of type Complex Double and which has specialized this type for better performance.
In memory, this means that such complex numbers are represented by pairs of double
precision numbers rather than pairs of pointers to double precision numbers numbers as
would be the case for generic complex numbers. However, the routine conj from lib.mmx

a priori only applies to generic complex numbers, so conversions between the specialized
and the generic view are necessary if we want to use this routine in client.mmx. As soon
as the required unary mapper is defined, these conversions are automatic.
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Chapter 5

Functions

5.1. Function declarations

5.1.1. Basic function declaration and application

The most basic form of a function declaration in Mathemagix is

fun_name (arg_1: Type_1, ..., arg_n: Type_n): Ret_Type == fun_body

The function name fun_name can be an arbitrary identifier, such as hello, test? or
infix +. Using the keywords :-> or lambda, it is also possible to construct function
expressions. For instance, the following three declarations are equivalent:

cube (x: Int): Int == x*x*x;

cube: Int -> Int == (x: Int) :-> (x*x*x: Int);

cube: Int -> Int == lambda (x: Int): Int do x*x*x;

We recall that Mathemagix provides two syntaxes for function application: the classical
syntax f(x) and the operator syntax f x. In the case of nested applications, these two
syntaxes use a different grouping: whereas f(x)(y) parses as (f(x))(y), the expression f

g x should be parsed as f(g(x)).

5.1.2. Tuple and generator arguments

Functions with an arbitrary number of arguments of a given type can be formed by using
so called tuple types. More precisely, assume a function declaration of the form

fun_name (arg_1: Type_1, ..., arg_n: Type_n, x: Tuple X): Ret_Type ==

fun_body

Then the function fun_name applies to n first arguments of types Type_1 until Type_n and
k optional arguments which are all of type X. For instance, the routine

extract (v: Vector Double, t: Tuple Int): Vector Double ==

[ v[i] | i: Int in [t] ];

can be used to extract the vector of all entries with given indices from a given vector. Hence,

v: Vector Double == [ 1.0, 2.0, 6.0, 3.14, 2012.0 ];

mmout << extract (v, 1, 2, 3, 3, 0) << lf;

prints the vector [2.0, 6.0, 3.14, 3.14, 1.0].
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In a similar way, one may pass a generator instead of a tuple as a last argument of a
function.

5.1.3. Recursive functions

Functions definitions are allowed to be recursive, such as the following routine for com-
puting the factorial of an integer:

postfix ! (n: Integer): Integer ==

if n <= 1 then 1 else n * (n-1)!;

Functions which are defined in the same scope are also allowed to be mutually recursive.
An example of mutually recursive sequences are Hofstadter’s female and male sequences
Fn and Mn defined by F0=1, M0=0 and

Fn = n−MFn−1

Mn = n−FMn−1
,

for n> 0. They can be implemented in Mathemagix as follows:

F (n: Integer): Integer == if n = 0 then 1 else n - M F (n-1);

M (n: Integer): Integer == if n = 0 then 0 else n - F M (n-1);

In large multiple file programs, it sometimes happens that the various mutually recursive
functions are defined in different files, and thus in different scopes. In that case, prototypes
of the mutually recursive functions should be defined in a file which is included by all files
where the actual functions are defined. Protypes of functions are declared using the syntax

fun (arg_1: Src_1, ..., arg_n: Src_n): Dest;

In case of the above example, we might define prototypes for F and M in a file common.mmx:

F (n: Integer): Integer;

M (n: Integer): Integer;

Next, a first file female.mmx would include common.mmx and define F:

include "common.mmx";

F (n: Integer): Integer == if n = 0 then 1 else n - M F (n-1);

In a second file male.mmx, we again include common.mmx and define M:

include "common.mmx";

M (n: Integer): Integer == if n = 0 then 0 else n - F M (n-1);

5.1.4. Dependent arguments and return values

Besides mutually recursive function definitions, Mathemagix also allows for dependencies
among the arguments of a function and dependencies of the return type on the arguments.
Although the dependencies among the arguments may occur in any order, mutual depen-
dencies are not allowed.
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For instance, the following routine takes a ring together with an element of this ring on
input and displays the first n powers of this element:

first_powers (x: R, R: Ring, n: Int): Void == {

p: R := x;

for i: Int in 1 to n do {

mmout << i << " -> " << p;

p := x * p;

}

}

In this example, the type Ring of R is a category. We refer to section 5.4.1 and the chapter
about categories for a declaration of this category and more details on how to use them.

The following code defines a container Fixed_Size_Vector (T, n) for vectors with entries
of type T and a fixed size n: Int.

class Fixed_Size_Vector (T: Type, n: Int) == {

mutable rep: Vector T;

constructor fixed_size_vector (c: T, n: Int) == {

rep == [ c | i: Int in 0..n ];

}

}

The return type Fixed_Size_Vector (T, n) of the constructor fixed_size_vector

depends on the argument n to the same constructor.

5.2. Functional programming

Functions are first class objects in Mathemagix, so they can consistently be used as
arguments or return values of other functions. They can also be declared locally inside
other functions or used as constant or mutable fields of user defined classes.

5.2.1. Functions as arguments

A simple example of a function which takes a function predicate as an argument is

filter (v: Vector Int, pred?: Int -> Boolean): Vector Int ==

[ x: Int in v | pred? x ];

The map construct systematically exploits this possibility to use functions as arguments.
For instance, the following instruction prints the vector [4, 10, 18]:

mmout << map (infix *, [1, 2, 3], [4, 5, 6]) << lf;

5.2.2. Functions as return values

A typical example of a function which returns another function is
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shift (x: Int): Int -> Int == (y: Int) :-> (x+y: Int);

This kind of functions are so common that Mathemagix provides a special syntax for it,
which generalizes the syntax of basic function declarations:

fun_name (arg_11: Type_11, ..., arg_1n1: Type_1n1)

...

(arg_k1: Type_k1, ..., arg_knk: Type_knk): Ret_Type == fun_body

This syntax allows to simplify the definition of shift into

shift (x: Int) (y: Int): Int == x+y;

5.2.3. Functions as local variables

In a similar way that functions can be used as arguments or return values of other functions,
it is possible to locally define functions inside other functions. One typical example is

shift_all (v: Vector Int, delta: Int): Vector Int == {

shift (x: Int): Int == x + delta;

return map (shift, v);

}

Recursion and mutual recursion are still allowed for such local function declarations. For
instance, we may generalize Hofstadter’s example of female and male sequences by allowing
the user to choose arbitrary initial conditions:

FM (n: Int, init_F: Int, init_M: Int): Int == {

F (n: Integer): Integer == if n = 0 then init_F else n - M F (n-1);

M (n: Integer): Integer == if n = 0 then init_M else n - F M (n-1);

return F n;

}

5.2.4. Mutable functions

As in the case of ordinary variables, functions can be declared to be mutable, using the
syntax

fun_name (arg_1: Type_1, ..., arg_n: Type_n): Ret_Type := fun_body

In that case, the function can be replaced by another function during the execution of the
program:

foo (n: Int): Int := n*n;

foo := (n: Int) :-> (n*n*n: Int);

In section 5.6 below, we will how the mechanism of conditional overloading can exploit this
possibility to dynamically replace functions by others.
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5.3. Discrete overloading

In classical mathematics, operators such as + are heavily overloaded, in the sense that the
same notation can be used in order to add numbers, polynomials, matrices, and so on. One
important feature ofMathemagix is that it has powerful support for overloaded notations,
which allows the programmer to mimick classical mathematical notations in a faithful way.

The simplest mechanism of discrete overloading allows the user to redefine the same symbol
several times with different types. For instance,

dual: Int == 123;

dual: String == "abc";

In this case, the variable dual can both be interpreted as a machine integer and as a string.
For instance, assuming the above declaration, the following code is correct:

hop : Int == dual + 1;

hola: String == dual >< "def";

Indeed, in the definition of hop (and similarly for hola), the code dual + 1 only makes
sense when dual is of type Int, so the correct disambiguation can be deduced from the
context. On the other hand, the instruction

mmout << dual << lf;

is ambiguous and will provoke an error message of the compiler. In such cases, we may
explicitly disambiguate dual using the operator :>. Both the following two lines are correct:

mmout << dual :> Int << lf;

mmout << dual :> String << lf;

In case of doubt, successions of disambiguations, such as 123 :> Integer :> Rational

can be useful in order to make the meaning of an expression clear.

Of course, overloading is most useful in the case of functions, and the mechanism described
above applies in particular to this case. For instance, we may define

twice (x: Int): Int == 2*x;

twice (s: String): String == s >< s;

Then we may write

mmout << twice 111 << lf;

mmout << twice "hello" << lf;

Overloaded functions can very well be applied to overloaded expressions. For instance, the
expression twice dual admits both the types Int and String. We may thus write

plok: Int == twice dual;

mmout << twice dual :> String << lf;
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It should also be noticed that both the arguments and the return values of functions can
be overloaded. For instance, we may overload twice a third time

twice (x: Int): String == twice as_string x;

After this, the expression twice 111 can both be interpreted as the number 222 and as
the string "111111".

5.4. Parametric overloading

5.4.1. The forall construct

Besides discrete overloading, Mathemagix also features parametric overloading, based on
the forall construct. In this case, the overloaded value no longer takes a finite number
of possible types, but rather an infinite number of possible types which depend on one or
more parameters.

The general syntax for making one or more parametrically overloaded declarations is

forall (param_1: Type_1, ..., param_n: Type_n) declarations

The parameters param_1, ..., param_n are usually types themselves, in which case their
types are so called categories. For instance, consider the following declaration:

forall (R: Ring) cube (x: R): R == x*x*x;

It states that for any type R which has the structure of a ring, we have a function
cube: R -> R. Parametrically overloaded functions such as cube are also called tem-
plates. The conditions for R to be a ring are stated by declaring the category Ring. One
possible such declaration is the following:

category Ring == {

convert: Int -> This;

prefix -: This -> This;

infix +: (This, This) -> This;

infix -: (This, This) -> This;

infix *: (This, This) -> This;

}

In this case, any type R with the usual operations +, −, · and a converter Int -> R will
be considered to be a ring. The mere presence of these operations in the current context
is sufficient: the compiler does not check any of mathematical ring axioms.

Assuming a context in which both the types Int and Double are present, we may apply
the template cube as follows:

mmout << cube 123 << lf; // applies cube: Int -> Int

mmout << cube 1.0e100 << lf; // applies cube: Double -> Double
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Although this is usually not necessary, it is sometimes useful to make the values of the
parameters explicit, for instance in order to make expressions less ambiguous. This can be
done using the # infix operator. For instance,

mmout << cube#Int (123) << lf;

mmout << cube#Double (1.0e100) << lf;

5.4.2. Grouping forall statements

It often happends that several generic routines share the same parameters. In that case,
they can be grouped together in a common forall block. For instance, given a ring R,
assume that we are developing a container Tangent R for arithmetic in R[ε]/(ε2) (see also
the section on container classes):

class Tangent (R: Ring) == {

b: R; // base point (coefficient of 1)

s: R; // slope (coefficient of epsilon)

constructor tangent (b2: R) == { b == b2; == 0; }

constructor tangent (b2: R, s2: R) == { b == b2; s == s2; }

}

Then we may define a ring structure on Tangent R using

forall (R: Ring) {

convert (i: Int): Tangent R ==

tangent (i :> R);

prefix - (x: Tangent R): Tangent R ==

tangent (-x.b, -x.s);

infix + (x: Tangent R, y: Tangent R): Tangent R ==

tangent (x.b + y.b, x.s + y.s);

infix - (x: Tangent R, y: Tangent R): Tangent R ==

tangent (x.b - y.b, x.s - y.s);

infix * (x: Tangent R, y: Tangent R): Tangent R ==

tangent (x.b * y.b, x.b * y.s + x.s * y.b);

}

5.4.3. Additional assumptions on parameters

It often happens that template parameters need to fulfill several requirements, such as
being a ring and an ordering at the same time. Mathemagix provides the keyword assume

for this purpose. For example:

forall (R: Ring)

assume (R: Ordering)

operator <= (x: Tangent R, y: Tangent R): Boolean ==

x = y or x.b < y.b;

Such additional assumptions can naturally be included in forall blocks:
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forall (R: Ring) {

...

infix * (x: Tangent R, y: Tangent R): Tangent R ==

tangent (x.b * y.b, x.b * y.s + x.s * y.b);

assume (R: Ordering)

operator <= (x: Tangent R, y: Tangent R): Boolean ==

x = y or x.b < y.b;

}

5.4.4. Partial specialization

It frequently occurs that for specific values of the template parameters, the generic imple-
mentation of the template can be further improved. For instance, consider the following
generic implementation of a power operations on field elements:

forall (F: Field)

infix ^ (x: F, i: Int): F == {

if i = 0 then return 1;

else if i > 0 then {

s: F == square (x^(i quo 2));

if i rem 2 = 0 then return s;

else return x * s;

}

else return (1 :> F) / x^(-i);

}

This implementation uses binary powering and is more or less as efficient as it can get
for elements in a generic field. However, in the “field” Floating of arbitrary precision
floating point numbers, we have fast implementations of the operations exp and log, so
the following implementation is even more efficient in this specific case:

infix ^ (x: Floating, i: Int): Floating == {

if x > 0 then

return exp (i * log x);

else if x < 0 then {

if i rem 2 = 0 then return (abs x)^i;

else return -(abs x)^i;

}

else {

if i >= 0 then return 0;

else return 1.0 / 0.0;

}

}

Mathemagix allows the above two implementations to happily coexist, thanks to the
mechanism of partial specialization. Without this mechanism, any expression of the form
x^i with x: Floating and i: Int would be ambiguous, since both implementations of
infix ^ allow for the interpretation of x^i as an expresson of type Floating. The idea
behind partial specialization is that we always prefer the most particular (i.e. “best”)
implementation, in this case the second one.
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In general, a first template (or function) is more particular than a second one, if any
possible type (i.e. by substituting concrete values for the parameters) of the first template
is also a possible type of the second one. For instance, the first above implementation of
infix ^ is not more particular than the second one, since the the type (Rational, Int)

-> Rational of (infix ^) # Rational is not a possible type of the second implement of
infix ^.

It should be noticed that the relation “is more particular than” is only a partial ordering.
For instance, none of the two following routines is more particular than the other one:

forall (R: Ring) mul (i: Int, x: R): R == (i :> R) * x;

forall (R: Ring) mul (x: R, i: Int): R == x * (i :> R);

Applying the function mul to two elements of type Int would therefore be ambiguous. This
ambiguity can be removed by implementing the routine

mul (i: Int, j: Int): Int == i * j;

Indeed, this routine is more particular than each of the two generic implementations of
mul, so it will be the preferred implementation whenever mul is applied to two elements of
type Int.

It should be noticed that the relation “is more particular than” does not necessarily
mean that some of the parameters have to be substituted by actual values in order to
become “more particular”. For instance, consider the prototypes of two templates for the
computation of determinants:

forall (R: Ring) det: Matrix R -> R;

forall (F: Field) det: Matrix F -> F;

Then the second template is more particular than the first one, so it will be the preferred
implementation when computing the determinant of a matrix with entries in a field.

5.5. Type conversions

5.5.1. Implicit conversions

In Mathemagix, the special operator convert is used for type conversions. For instance,
given an integer x: Integer and a converter

convert: Integer -> Rational;

we may use the expression x :> Rational in order to explicitly convert x into a rational
number.

The operator convert is used for implicit type conversions only under the following par-
ticular circumstances:

• During the declaration of variables. With x: Integer, we may thus write

a: Rational == x;

b: Rational := square x + 3;
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• During assignments:

b: Rational := x;

b := x * x;

• When returning from a function:

f (x: Integer): Rational == x + 1;

g (x: Integer): Rational == {

if x >= 0 then return x;

else return 1/x;

}

• Inside the for-in construct:

for x: Rational in 1 to 10 do

mmout << x << " -> " << 1/x << lf;

5.5.2. Explicit conversions

Except for the above special cases, Mathemagix does not perform any implicit conver-
sions. For instance, even if we have an implicit converter, then application the following
function cannot be applied to an expression of type Integer:

foo (x: Rational): Rational == x + 1/x;

Nevertheless, using the mechanism of parametric overloading, we may define foo in the
following way so as to make this possible:

forall (F: To Rational)

foo (x_orig: F): Rational == {

x: Rational == x_orig :> Rational;

x + 1/x;

}

Here To T stands for the following parameterized category:

category To (T: Type) == {

convert: This -> T;

}

The new version of foo cannot only be applied to expressions of type Integer, but to any
expression of a type F with a converter convert: F -> Rational.

The above way of adapting function declarations so as to accept convertable arguments is
so common that Mathemagix provides a special syntax for it. This syntax allows us to
simplify the second declaration of foo into

foo (x :> Rational): Rational == x + 1/x;

We call this mechanism a priori type conversion of function arguments.

A similar syntax may be used for a posteriori type conversion of the return value:
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bar (i: Integer) :> Integer == 1 - i;

This definition is equivalent to

forall (T: From Integer)

bar (i: Integer): T == (1 - i) :> T;

where

category From (F: Type) == {

convert: F -> This;

}

5.5.3. On the careful use of type conversions

The mechanisms of a priori and a posteriori type conversions are powerful, but one should
be careful not to abuse them. For instance, at a first sight, it may be tempting to allow
for a priori type conversions for all routines on rational numbers:

infix + (x :> Rational, y :> Rational): Rational == ...;

infix - (x :> Rational, y :> Rational): Rational == ...;

infix * (x :> Rational, y :> Rational): Rational == ...;

infix / (x :> Rational, y :> Rational): Rational == ...;

...

Indeed, this would immediately give us support for the notation x + 1 whenever x is a
rational number. However, this kind of abuse would quickly lead to ambiguities, since it also
allows the addition on rational numbers to be applied to two integers. Although many of
these ambiguities are automatically resolved by the partial specialization mechanism, they
tend to become a serious source of problems in more voluminous mathematical libraries
with many types and heavily overloaded notaions.

Besides the semantic correctness issue, there is also a performance issue: the compiler
has to examine all possible meanings of ambiguous expressions and then determine the
preferred ones among them. It is therefore better to reduce potential ambiguities as much
as possible beforehand. In the above case, this can for instance be achieved by using the
following declarations instead:

infix + (x: Rational, y :> Rational): Rational == ...;

infix - (x: Rational, y :> Rational): Rational == ...;

infix * (x: Rational, y :> Rational): Rational == ...;

infix / (x: Rational, y :> Rational): Rational == ...;

...

infix + (x :> Rational, y: Rational): Rational == ...;

infix - (x :> Rational, y: Rational): Rational == ...;

infix * (x :> Rational, y: Rational): Rational == ...;

infix / (x :> Rational, y: Rational): Rational == ...;

...

In order to avoid the same kind of ambiguity as in the mul example from section 5.4.4, we
will also have to provide the routines
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infix + (x: Rational, y: Rational): Rational == ...;

infix - (x: Rational, y: Rational): Rational == ...;

infix * (x: Rational, y: Rational): Rational == ...;

infix / (x: Rational, y: Rational): Rational == ...;

...

In fact, most converters of a type T into Rational are actually compositions of a converter
of T into Integer and the standard converter of Integer into Rational. Therefore, an
even better idea is to replace the block of declarations with a priori conversions by

infix + (x: Rational, y :> Integer): Rational == ...;

infix - (x: Rational, y :> Integer): Rational == ...;

infix * (x: Rational, y :> Integer): Rational == ...;

infix / (x: Rational, y :> Integer): Rational == ...;

...

infix + (x :> Integer, y: Rational): Rational == ...;

infix - (x :> Integer, y: Rational): Rational == ...;

infix * (x :> Integer, y: Rational): Rational == ...;

infix / (x :> Integer, y: Rational): Rational == ...;

...

Indeed, besides the fact that we eliminate all possible ambiguities in this way, the above
routines also admit more efficient implementations. In a similar way, for container types
such as Polynomial R, we usually have special implementations for scalar operations:

forall (R: Ring) {

infix + (p: Polynomial R, c :> R): Polynomial R == ...;

infix - (p: Polynomial R, c :> R): Polynomial R == ...;

infix * (p: Polynomial R, c :> R): Polynomial R == ...;

...

infix + (c :> R, p: Polynomial R): Polynomial R == ...;

infix - (c :> R, p: Polynomial R): Polynomial R == ...;

infix * (c :> R, p: Polynomial R): Polynomial R == ...;

...

}

The compiler has been optimized so as to take advantage of the reduced amount of
ambiguities when overloading operations in this way. This should lead to an appreciable
acceleration of the compilation speed, provided that the programmer adopts a similar
style when using the mechanism of a priori type conversions.

5.6. Conditional overloading

5.6.1. Conditional overloading of constant functions

Until now, we have only considered overloading based on the types of expressions. The
mechanism of conditional overloaded allows us to overload functions based on dynamically
evaluated conditions on values. Let us start with the simple example of Fibonacci numbers:

fib (n: Int): Int ==

if n <= 1 then 1 else fib (n-1) + fib (n-2);
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This example can be reimplemented using the mechanism of conditional overloading as
follows:

fib (n: Int): Int == fib (n-1) + fib (n-2); // general implementation

fib (n: Int | n <= 1): Int == 1; // overloaded version

The idea here is to first specify a general implementation of the function, which can later
be adapted to special cases. The overloaded versions of the function are potentially parts
of other files.

In general, the syntax for a conditionally overloaded function declaration is

fun (arg_1: T_1, ..., arg_n: T_n | cond_1, ..., cond_k): R == body

where cond_1, 	 , cond_k are conditions in arg_1, 	 , arg_n. Inside the body of the
overloaded function (or template), the special identifier former may be used as a name for
the previous (fallback) version of the function (or template), before the overloading took
place. In particular, the above overloaded declaration of fun is equivalent to

fun (arg_1: T_1, ..., arg_n: T_n): R ==

if cond_1 and ... and cond_k then body

else former (arg_1, ..., arg_n);

In the case when the function was not declared before, the function former simply raises
an error whenever we call it. Hence, the first definition of the function is recommended to
be an unconditional one, as in the introductory example fib.

Remark 5.1. The conditionally overloaded declarations are processed exactly in the same
order as the declarations appear in the source file. In the case when these declarations
are spread over several files, only the ones which explicitly occur in the inclusions of the
current file matter, and they will be processed in the same order as we did the inclusions.
In a given context, let

fun (arg_1: T_1, ..., arg_n: T_n |

conds_11, ..., conds_1k1): R == body_1

...

fun (arg_1: T_1, ..., arg_n: T_n |

conds_q1, ..., conds_qkq): R == body_q

be the sequence of all conditionally overloaded declarations of the same function symbol
fun with a fixed type, ordered in the above way. Then the above sequence of overloaded
declarations is equivalent in that context to the single declaration

bar (arg_1: T_1, ..., arg_n): R == {

if conds_q1 and ... and conds_qkq then body_q

else if ...

else if conds_11 and ... and conds_1k1 then body_1

else raise some_error;

}

A similar remark applies in the case of function templates.
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5.6.2. Conditional overloading of mutable functions

The mechanism of conditional overloading also applies in the case of mutable functions,
but with a slightly different semantics. The general syntax for a conditionally overloaded
mutable function declaration is

fun (arg_1: T_1, ..., arg_n: T_n | cond_1, ..., cond_k): R := body

In the present case, such a declaration is equivalent to

fun := lambda (former: (T_1, ..., T_n) -> R): (T_1, ..., T_n) -> R do

(lambda (arg_1: T_1, ..., arg_n: T_n): R do

if arg_1 and ... and arg_n then body

else former (arg_1, ..., arg_n)) (fun);

At initialization, fun contains a function which throws an error message for all inputs.
There are two important difference with the semantics described in the previous section:

1. Nothing prevents the user to modify the value of fun elsewhere in the program;
after all, fun is a mutable variable.

2. In the case when the conditionally overloaded mutable function declarations are
spread over several files, the current value of the mutable function is stored in a
unique global variable which is common to all files. In particular, its value does not
depend on the context, and only depends on the order in which the various files in
the project are initialized (and on any other assignments of the mutable function
that might occur; see the previous point).

Let us illustrate this difference with an example. Assume that we have four files a.mmx,
b.mmx, c.mmx and d.mmx with the following contents:

a.mmx.

f (i: Int): Int == 1;

b.mmx.

include "a.mmx";

f (i: Int | i = 2): Int == 2;

b (): Void == mmout << [ f 1, f 2, f 3 ];

c.mmx.

include "a.mmx";

f (i: Int | i = 3): Int == 3;

c (): Void == mmout << [ f 1, f 2, f 3 ];

d.mmx.

include "b.mmx";

include "c.mmx";

b();

c();
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Execution of the program d.mmx yields

[ 1, 2, 1 ]

[ 1, 1, 3 ]

If we replace == by := in all overloaded declarations of f, then we obtain the output

[ 1, 2, 3 ]

[ 1, 2, 3 ]

In other words, in the first case, each individual file is only aware of the overloaded dec-
larations that occurred in the file itself and in all recursively included files. In the second
case, f is a global mutable variable which is shared by all files.

In an interactive editor such as TEXMACS, conditional overloading of mutable functions is
very useful, because we may use it to customize the behaviour of common editing actions
as a function of the context. For instance, key presses might be handled by a global function

key_press (key: String) := insert_character (key);

Handlers for particular keys may then be defined whereever appropriate

key_press (key: String | key = "enter") := insert_newline ();

Similarly, special behaviour may be defined inside particular contexts. For instance, in a
computer algebra session, pressing “enter” should evaluate the current input:

key_press (key: String | key = "enter", inside_shell_input? ()) :=

evaluate_current_input ();

Of course, attention should be paid to the declaration order: the most general routines
should be declared first if we don’t want them to be overridden.

5.6.3. Conditional overloading of function templates

The conditional overloading mechanism also applies to (constant) function templates. The
syntax for a conditionally overloaded function template declaration is

forall (P_1: C_1, ..., P_p: C_p)

tmpl (arg_1: T_1, ..., arg_n: T_n | cond_1, ..., cond_k): R == body

Mutable function templates are not supported.

5.6.4. Performance issues

In case of the mechanisms of discrete and parametric overloading, the actual resolution of
the overloaded expressions (that is, the process of assigning disambiguous meanings to all
subexpressions) is done during the compilation phase. This makes this kind of overloading
very efficient: no matter how many times a function is overloaded, applying the function
to actual values is as efficient as if the function were overloaded only once.

The mechanism of conditional overloading is more dynamic: the conditions under which a
particular code gets executed are tested only at run time. Although the mechanism offers
some flexibility that cannot be provided by purely static overloading mechanisms, the
programmer has to be aware of this potential performance penalty. We also notice that
some of the mechanisms for pattern matching to be described in the chapter on abstract
data types rely on conditional overloading, and may thus suffer from a similar performance
penalty.
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Chapter 6

Classes

6.1. Declaration of new classes

The user may define new classes using the keyword class. A simple example of a user
defined class is the following:

class Point == {

x: Double;

y: Double;

constructor point (x2: Double, y2: Double) == {

x == x2;

y == y2;

}

}

Declarations of variables inside the class correspond to declarations of the internal data
fields of that class. In addition, it is possible to define constructors, destructors and
methods (also called member functions).

6.2. Data fields

Declarations of variables inside the class correspond to declarations of data fields for that
class. The data field with name x can be accessed using the postfix operator .x. For
instance, we may define an addition on points as follows:

infix + (p: Point, q: Point): Point == point (p.x + q.x, p.y + q.y);

By default, data fields are read only. They can be made read-write using the keyword
mutable, as in the following example:

class Point == {

mutable {

x: Double;

y: Double;

}

constructor point (x2: Double, y2: Double) == {

x == x2;

y == y2;

}

}
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Assuming the above definition, the following code would be correct:

translate (p: Alias Point, q: Point): Void == {

p.x := p.x + q.x;

p.y := p.y + q.y;

}

Notice that the user may define additional postfix operators of the form .name outside the
class, which will behave in a similar way as actual data fields. For instance, defining

postfix .length (p: Point): Double == sqrt (square p.x + square p.y);

we may write

mmout << point (3.0, 4.0).length << lf;

6.3. Constructors and destructors

In order to be useful, a user defined class should at least provide one constructor. By con-
vention, constructors usually carry the same name as the class, in lowercase. For instance,
in the above example, the unique constructor for the class Point carried the name point.
Nevertheless, the user is free to choose any other name.

In the body of the constructor, the user should provide values for each of the data fields
of the class, while preserving the ordering of declarations. Constructors are also required
to be defined inside the class itself. Nevertheless, the function name of the constructor can
be overloaded outside the class. For instance, we may very well define the function

point (): Point == point (0.0, 0.0);

outside the class, which behaves as if it were a constructor.

The default destructors for class instances are usually what the user wants in Math-

emagix, except when some special action needs to be undertaken when an instance is
destroyed (such as saving some data to a file before destruction). Destructors are defined
as functions with no arguments and no return type using the keyword destructor. For
instance, the following modification of the class Point allows the user to monitor when
points are destroyed:

class Point == {

x: Double;

y: Double;

constructor point (x2: Double, y2: Double) == {

x == x2;

y == y2;

}

destructor () == {

mmout << "Destroying " << x << ", " << y << lf;

}

}
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6.4. Methods

Special methods on class instances can be defined inside the class using the keyword
method. For instance, a method for transposing the x and y coordinates might be defined
as follows:

class Point == {

x: Double;

y: Double;

constructor point (x2: Double, y2: Double) == {

x == x2;

y == y2;

}

method reflect (): Point == point (y, x);

}

We may apply the method using the postfix operator .reflect:

mmout << point (1.0, 2.0).reflect () << lf;

Inside the body of a method, we notice that the data fields of the class can be accessed
without specifying the instance, which is implicit. For instance, inside the definition of
reflect, we were allowed to write point (y, x) instead of point (this.x, this.y),
where this corresponds to the underlying instance which is implicit. Similarly, other
methods can be called without the need to specify the underlying instance.

6.5. Containers

Containers such as vectors or matrices can also be declared using the class keyword, using
the syntax

class Container (Param_1: Type_1, ..., Param_n: Type_n) == container_body

As is the case of the forall keyword, the parameters are allowed to depend on each other
in an arbitrary order, although cyclic dependencies are not allowed. The parameters may
either be types (in which case their types are categories; see below) or ordinary values.

For instance, we may define complex numbers using

class Complex (R: Ring) == {

re: R;

im: R;

constructor complex (x: R) == { re == x; im == 0; }

constructor complex (x: R, y: R) == { re == x; im == y; }

}

Notice that the user must specify a type for the parameter R. In this case, we require R

to be a ring, which means that the ring operations should be defined in R. Here Ring is
actually an example of a category (see the chapter on categories for more details), which
might have been as follows:
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category Ring == {

convert: Int -> This;

prefix -: This -> This;

infix +: (This, This) -> This;

infix -: (This, This) -> This;

infix *: (This, This) -> This;

}

6.6. User defined converters

When introducing new classes, one often wants to define converters between the new class
and existing classes. For instance, given the above container Complex R, it is natural to
define a converter from R to Complex R. Depending on the desired transitivity properties
of converters, there are three important types of converters: ordinary converters, upgraders
and downgraders. We also recall that appropriate mappers defined using the map construct
automatically induce converters (see the section about the map construct).

6.6.1. Ordinary converters

Ordinary converters admit no special transitivity properties. They are defined using the
special identifier convert and usually correspond to casts. A typical such converter would
be the cast of a double precision number of type Double to an arbitrary precision number
of type Floating and vice versa:

convert: Double -> Floating;

convert: Floating -> Double;

6.6.2. Upgraders

Upgraders usually correspond to constructors. For instance, with the example of the con-
tainer Complex R in mind, it is natural to define a converter from any ring R to Complex

R by

forall (R: Ring) upgrade (x: R): Complex R == complex x;

This definition is equivalent to

forall (R: Ring) convert (x :> R): Complex R == complex x;

In other words, upgraders are left transitive: whenever we have a type T with a converter
from T to R, then the upgrader also defines a converter from T to Complex R. For instance,
we automatically obtain a converter from Integer to Complex Rational.

6.6.3. Downgraders

In contrast to upgraders, downgraders are right transitive. Downgraders correspond to
type inheritance in other languages such as C++, but with the big advantage that the
inheritance is abstract, and not related to the internal representation of data. For instance,
with the example class Point from the beginning of this section and some reasonable
implementation of a class Color in mind, consider the class
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class Colored_Point == {

p: Point;

c: Color;

constructor colored_point (p2: Point, c2: Color) == {

p == p2;

c == c2;

}

}

Then the method .postfix p provides us with a downgrader from Colored_Point to
Point:

downgrade (cp: Colored_Point): Point == cp.p;

Notice that this definition is equivalent to

convert (cp: Colored_Point) :> Point == cp.p;

Given any converter from Point to another type T, the downgrader automatically provides
us with a converter from Colored_Point to T. For instance, given the converter

convert (p: Point): Vector Double == [ p.x, p.y ];

we automatically obtain a converter from Colored_Point to Vector Double.

6.7. Flattening

In Mathemagix, instead of implementing pretty printing functions for new user defined
classes, we rather defining flattening functions, which compute syntactic representations
for instances of the new classes. More precisely, given a user defined class T, the user can
define a function

flatten: T -> Syntactic;

Mathemagix implements a default pretty printer for Expressions of type Syntactic.

In fact, any Mathemagix type T comes with such a flattening function. In particular,
a default implementation is provided automatically when declaring a new class, but the
default function can be overridden by the user. For instance, with the container Complex
R as before, we may define a flattener for complex numbers by

forall (R: Ring)

flatten (z: Complex R): Syntactic ==

flatten (z.re) + flatten (z.im) * syntactic (’mathi);

Here ’mathi stands for the standard name for the mathematical constant i, and addition
and multiplication of syntactic expressions are provided by basix/syntactic.mmx. The
advantage of using the flattening mechanism is that Mathemagix takes care of some
elementary simplifications when printing syntactic expressions. For instance, the complex
number 1− i will be printed as expected and not as something similar to 1+ (−1 i).
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Chapter 7

Unions and free data types

7.1. Introductory example

Mathemagix classes provide a simple way to introduce new data types with specified
data fields, methods, constructors and an optional destructor. Mathemagix structures
provide a convenient tool for the definition of unions and more general free data types.

One typical example of a structure is the type of finite integer sequences, defined as follows:

structure Sequence == {

null ();

cons (head: Integer, tail: Sequence);

}

Any such sequence is a formal expression of the form

cons(a1, cons(a2,	 cons(an, null()))),

where a1, 	 , an are integers. The symbols null and cons are called the constructors for
the structure and any structure of the type Sequence is always either of the form null ()

or cons (h, t), with h: Integer and t: Sequence. The declaration of the structure
Sequence automatically gives rise to predicates

null?: Sequence -> Boolean;

cons?: Sequence -> Boolean;

which allow the user to determine the kind of structure. The symbols head and tail induce
partially defined accessors

postfix .head: Sequence -> Integer;

postfix .tail: Sequence -> Sequence;

If a structure s: Sequence is of the form cons (h, t), then cons? s holds and we may
obtain h and t via the expressions s.head and s.tail respectively.

For instance, the following function can be used in order to compute the length of a
sequence:

prefix # (s: Sequence): Int ==

if null? s then 0 else #s.tail + 1;

Pattern matching provides us with an alternative way to do this:
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prefix # (s: Sequence): Int ==

match s with {

case null () do return 0;

case cons (_, t: Sequence) do return #t + 1;

}

Mathemagix also provides the following syntax for doing the same thing:

prefix # (s: Sequence): Int == 0;

prefix # (cons (_, t: Sequence)): Int == #t + 1;

Notice that this syntax relies on the mechanism of conditional overloading (see the section
on conditional overloading).

Likewise classes, structures can be parameterized. The List T container is a typical
example of a parameterized structure which generalizes the structure Sequence:

structure List (T: Type) == {

null ();

cons (head: T, tail: List T);

}

7.2. Structures

The general syntax for the declaration of a structure is the following:

structure S == {

cons_1 (field_11: T_11, ..., field_1n1: T_1n1);

...

cons_k (field_k1: T_k1, ..., field_knk: T_knk);

}

This declaration in particular induces the declaration of functions

cons_1: (T_11, ..., T_1n1) -> S;

...

cons_k: (T_k1, ..., T_knk) -> S;

These functions cons_1, 	 , cons_k are called the constructors for S, and all instances of
S are expressions which are built up freely using these constructors. Hence, any instance x
has the form cons_i (y_1, ..., y_ni) for exactly one index i and y_1: T_i1, 	 , y_ni:
T_ini. The declaration of S also declares inspection predicates

cons_1?: S -> Boolean;

...

cons_k?: S -> Boolean;
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such that cons_i? x holds if and only if x is of the form cons_i (y_1, ..., y_ni). The
declaration of S finally induces the declaration of partially defined accessors

postfix .field_11 : S -> T_11;

... ...

postfix .field_knk: S -> T_knk;

Whenever x: S is of the form cons_i (y_1, ..., y_ni) then y_j can be retrieved via

the expression x.field_ij. Whenever x is not of this form, the expression x.field_ij is
undefined and may provoke an error or worse.

Example 7.1. A structure of the above kind is called a union precisely then when each
constructor takes exactly one argument; in that case, S corresponds to the union of the
types T_11, 	 , T_k1.

Parameterized structures are defined in a similar way as ordinary structures using the
syntax

structure S (Param_1: C_1, ..., Param_p: C_p) == {

cons_1 (field_11: T_11, ..., field_1n1: T_1n1);

...

cons_k (field_k1: T_k1, ..., field_knk: T_knk);

}

Such declarations induce declarations of constructors, inspection predicates and accessors
in the same way as their unparameterized homologues.

In additional to the constructors, inspection predicates and accessors, declarations of (para-
meterized) structures also give rise to the following additional functions and constants for
more low level introspection:

postfix .kind: S -> Int;

cons_1_kind?: Int -> Boolean;

...

cons_k_kind?: Int -> Boolean;

cons_1_kind: Int;

...

cons_k_kind: Int;

If x is of the form cons_i (y_1, ..., y_iki), then x.kind is just the integer i-1. The
predicate cons_i_kind? just checks whether the input integer is equal to i-1, so that
cons_i? x holds if and only if cons_i_kind? x.kind holds. Finally, cons_i_kind is equal
to the integer i-1.

7.3. Extensible structures

Under some circumstances, it is useful to add additional constructors to structures a

posteriori .
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For instance, assume that we are writing a compiler for some language and that the expres-
sions of the language are represented by a structure. It might be that someone else would
like to define a language extension but still use as much as possible the existing functions in
the compiler for all kinds of manipulations of expressions. The simplest solution would then
be to extend the expression type a posteriori with some new constructors provided by the
extended language, modulo customization of existing functions on expressions whenever
necessary.

Another important example is the design of a flexible type for symbolic expressions. Sym-
bolic expression types are usually unions of various basic expression types, such as literals,
integers, function applications, sums, products, etc. Whenever someone develops a library
for a new kind of mathematical objects, say differential operators, then it is useful if these
new objects can be seen as a new kind of symbolic expressions.

In Mathemagix, extensible structures can be declared using the syntax

structure S := {

cons_1 (field_11: T_11, ..., field_1n1: T_1n1);

...

cons_k (field_k1: T_k1, ..., field_knk: T_knk);

}

The only distinction with respect to the mechanism from the previous section is that we
are now allowed to further extend the structure using the following syntax:

structure S += {

extra_1 (added_11: X_11, ..., added_1n1: X_1n1);

...

extra_l (added_l1: X_l1, ..., added_lnl: X_lnl);

}

An arbitrary number of such extensions can be made after the initial declaration of S
and these extensions may occur in different files (provided that the file with the initial
declaration is (directly or indirectly) included in each of these files).

Whenever we extend a structure in the above way the corresponding new constructors,
inspection predicates and accessors are automatically defined. The lower level inspection
routines are also automatically extended, although the actual values of extra_1_kind, 	 ,
extra_l_kind now depend on the initialization order, and are therefore harder to predict.
Nevertheless, the set of all these kinds is always of the form {0,	 , r − 1}, where r is the
total number of constructors.

7.4. Pattern matching

The constructors of a structure can also be used as building bricks for so called patterns.
For instance, given the structure

structure Sequence == {

null ();

cons (head: Integer, tail: Sequence);

}
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from the beginning of this section, the expression

cons (_, cons (_, tail_tail: Sequence))

is a pattern which corresponds to all sequences of length at least two, and with an explicit
name tail_tail for the typed name of the tail of the tail of the sequence.

More generally, there are six kinds of patterns:

1. Structural patterns, of the form cons (p_1, ..., p_n) where cons is a constructor
with arity n of some structure, and p_1, 	 , p_n are other patterns.

2. User defined patterns, to be described in the next section.

3. Wildcards of the form var: T, where var is the name of a variable and T a type.

4. Unnamed wildcards of the form _: T, where T is a type.

5. The unnamed and untyped wildcard _.

6. Ordinary expressions.

One may define a natural relation “matches” on expressions and patterns, and if an
expression matches a pattern, then there exists a binding for the wildcards which real-
izes the match. For instance, the expression cons (1, cons (2, cons (3, null ()))

is said to match the pattern cons (_, cons (_, tail_tail: Sequence)) for the binding
tail_tail → cons (3, null ()).

Patterns can be used as arguments of the case keyword inside bodies of the match keyword.
Whenever the pattern after case matches the expression after match, the wildcards are
bound using the bindings of the match, and can be used inside the body of the case

statement. For instance, we may use the following function in order to increase all terms
of a sequence with an even index:

even_increase (s: Sequence): Sequence ==

match s with {

case cons (x: Integer, cons (y: Integer, t: Sequence)) do

return cons (x, cons (y+1, even_increase t));

case _ do

return s;

}

Patterns can also be used as generalized arguments inside function declarations. In that
case, the declaration is considered as a special kind of conditionally overloaded function
declaration. For instance, the declaration

prefix # (cons (_, t: Sequence)): Int == #t - 1;

is equivalent to

prefix # (s: Sequence | cons? s): Int == {

t: Sequence == s.tail;

#t - 1;

}
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Again, the bindings of potential matches are used as values for the wildcards, which become
local variables inside the function body.

7.5. User defined patterns

Besides the patterns which are induced by constructors of structures, new patterns may
be defined explicitly by the user. The syntax for pattern declaration is as follows:

pattern pat_name (sub_1: T_1, ..., sub_n: T_n): PT == pat_body

where the body pat_body consist of a finite number of cases of the form

case pat_case do {

sub_1 == expr_1;

...

sub_n == expr_n;

}

where pat_case is a pattern. Assuming this declaration of pat_name, any patterns
p_1, 	 , p_n of types T_1, 
 , T_n give rise to a pattern pat_name (p_1, ..., p_n) of
type PT. This pattern is matched if and only if one of the patterns pat_case in the
various cases for pat_name is matched (with all occurrences of sub_1, 	 , sub_n in pat_case
replaced by p_1, 	 , p_n). In that case, we privilege the first case which matches, and
bind var_i to expr_i whenever sub_i is of the form var_i: T_i.

In a similar way as for structures, replacing == by != or += in the declaration of the above
pattern allows for the declaration of an extensible pattern resp. an actual extension of it.
The above declaration of the pattern pat_name also gives rise to a generalized inspection
predicate

pat_name?: PT -> Boolean;

and functions

postfix .sub_1: PT -> T_1;

...

postfix .sub_n: PT -> T_n;

which behave in a similar way as accessors of structures.

For instance, for sequences [x1,	 , x2n] which really represent association lists [x1 x2,	 ,

x2n−1 x2n], we may use the following pattern for retrieving the first association x1 x2:

pattern assoc (key: Integer, val: Integer, next: Sequence): Sequence ==

case cons (k: Integer, cons (v: Integer, n: Sequence)) do {

key == k;

val == v;

next == n;

}

The implementation of the predicate assoc? is equivalent to
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assoc? (s: Sequence): Boolean == cons? s and cons? s.next;

and the implementations of the accessors postfix .key, postfix .val and postfix

.next are equivalent to

postfix .key (s: Sequence): Integer == s.head;

postfix .val (s: Sequence): Integer == s.tail.head;

postfix .next (s: Sequence): Sequence == s.tail.tail;

7.6. Syntactic sugar for symbolic expressions

As mentioned in the introduction of section 7.3, one important special case where exten-
sible structures are useful is for the definition of a flexible type Symbolic for symbolic
expressions. This type is essentially a union type. For instance, we might start with

structure Symbolic := {

sym_undefined ();

sym_boolean (boolean: Boolean);

sym_literal (literal "literal": Literal);

sym_compound (compound: Compound);

}

and further extend Symbolic whenever necessary:

structure Symbolic += {

sym_integer (integer: Integer);

}

structure Symbolic += {

sym_rational (rational: Rational);

}

The prefix sym_ provides us with a clean syntatic distinction between a “symbolic expres-
sion which contains an object of type T” and a mere object of type T. However, it would
be simpler to write integer? instead of sym_integer? as an inspection predicate, and it
is somewhat cumbersome to implement addition of symbolic integers using

infix + (sym_integer (i: Integer), sym_integer (j: Integer)): Symbolic ==

sym_integer (i + j);

For this reason, Mathemagix provides us with a special operator :: to be used for
structure constructors with one argument. For instance, the constructor sym_integer

would rather be declared using

structure Symbolic += {

sym_integer (integer :: Integer);

}
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This declaration automatically declares the synonym integer? for syn_integer? and also
introduces the simplified notation var :: Integer for the pattern sym_integer (var:

Integer). Assuming the further implementation of a constructor

convert (i: Integer): Symbolic == sym_integer i;

we may then simplify the declaration of our addition on symbolic integers into

infix + (i :: Integer, j :: Integer): Symbolic == i + j;

In a similar way, Mathemagix provides support for an operator ::> which allows us to
mimick the notation :> used for a priori conversions for their symbolic wrappers. This
notation is best illustrated with the example of an “symbolic converter from symbolic
integers to symbolic rational numbers”:

pattern sym_as_rational (as_rational ::> Rational): Symbolic := {

case sym_rational (x: Rational) do as_rational == x;

case sym_integer (x: Integer) do as_rational == x :> Rational;

}

This allows us for instance to write

infix + (i :: Integer, x ::> Rational): Symbolic == i + x;

7.7. Fast dispatching

We already noticed that the mechanism of conditional overloading induces a performance
overhead (see the section on performance issues concerning conditional overloading). In the
case of basic operations on symbolic expressions, such as additions, which are overloaded
dozens if not hundreds of times, this performance penalty is too significant.

Fortunately, the structure Symbolic as described in the previous section is essentially an
extensible union type. Given a unary conditionally overloaded operation foo on symbolic
expressions, the appropriate routine to be called for a given input x can often be determined
as a function of the integer x.kind only. This makes it possible to use a fast lookup table
instead of the usual conditional overloading mechanism in this particular case. In order to
do so, we have to declare the operation foo using

foo (x: dispatch Symbolic): Symbolic := default_implementation

Operations with higher arities and operations which involve other types are treated in a
similar way: the type of each argument involved in the fast table lookup should be preceded
by the keyword dispatch. For instance,

infix + (x: dispatch Symbolic, y: dispatch Symbolic): Symbolic := ...;

postfix [] (x: dispatch Symbolic, i: Int): Symbolic := ...;

Notice that the size of the dispatch table is equal to the product of the number of structure
constructors of all arguments on which we perform our dispatching. For this reason, we do
not allow dispatching on more than two arguments.
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Mathemagix also provides the keyword disjunction as a special case of user defined
patterns which is compatible with the above dispatching mechanism. A typical example
of a disjunction is

disjunction sym_scalar (scalar :: Scalar): Symbolic := {

sym_boolean _;

sym_integer _;

sym_rational _;

}
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Chapter 8

Categories

8.1. Categories

Generic programming in Mathemagix is based on the notion of a category . When writing
generic functions (also called templates) or classes (also called containers), it is usually
necessary to make assumptions on the type parameters.

Consider for instance the container Polynomial R for univariate polynomials. It is nat-
ural to use an internal representation for which the leading coefficient is non zero. The
mere existence of an instance “zero” of type R constitutes a condition on R. Similarly, the
ring operations on polynomials are naturally defined in terms of the ring operations on
coefficients in R. Hence, R should at least be a ring (even though more structure might be
needed for certain operations, such as the computation of greatest common divisors).

Categories are defined using the following syntax:

category Category_Name == category_body;

The body of a category consists of a block of prototypes of functionality required by the
category. For instance, a typical definition of the Ring category is the following:

category Ring == {

convert: Int -> This;

prefix -: This -> This;

infix +: (This, This) -> This;

infix -: (This, This) -> This;

infix *: (This, This) -> This;

}

The special type This corresponds to the carrier of the category. A type T is said to satisfy

the category Category_Name in a given context (and we write T: Category_Name) if the
context provides the required functionality in the body of the category, with This replaced
by T. In a context where basix/fundamental.mmx has been included, we thus have Int:

Ring, since the context provides us with operations

convert: Int -> Int;

prefix -: Int -> Int;

infix +: (Int, Int) -> Int;

infix -: (Int, Int) -> Int;

infix *: (Int, Int) -> Int;

However, we no not have String: Ring, since there is no implementation of infix - on
strings.
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8.2. Mathematical properties

It should be noticed that the notion of category satisfaction is purely syntactic: we simply
look whether all prototypes in the body of the category are implemented in the current
context, but we no not check any of the customary properties that the names of the
category might suggest. For example, the type Double satisfies the category Ring, since
the operations

convert: Int -> Double;

prefix -: Double -> Double;

infix +: (Double, Double) -> Double;

infix -: (Double, Double) -> Double;

infix *: (Double, Double) -> Double;

are all defined in basix/double.mmx. However, these operations are not associative: we
typically have (1.0e100 + 1.0) - 1.0e100 != 1.0, due to rounding errors.

From the programming point of view this is really a feature, since it is desirable that
straightforward implementations of containers such as Polynomial R can be instantiated
for R→ Double. However, from the mathematical point of view, the code cannot certified
to be correct under all circumstances.

SinceMathemagix aims to be an efficient general purpose mathematical programmer lan-
guage rather than an automatic theorem prover, we have integrated no support for checking
mathematical relations. Nevertheless, nothing prevents the user to informally introduce
dummy functions which correspond to mathematical properties which are intended to be
satisfied. For instance, the user might replace the definition of a ring by something like

category Ring == {

convert: Int -> This;

prefix -: This -> This;

infix +: (This, This) -> This;

infix -: (This, This) -> This;

infix *: (This, This) -> This;

associative_addition: This -> Void;

commutative_addition: This -> Void;

additive_inverse: This -> Void;

associative_multiplication: This -> Void;

...

}

The idea is that each of these additional functions stands for a mathematical property.
For instance, associative_addition would stand for the property that (x + y) + z =
x+(y+ z) for all x, y, z in the carrier. A dummy implementation

associative_addition (x: T): Void == {}

of associative_addition corresponds to the assertion that the corresponding mathemat-
ical property is satisfied for T. However, this assertion is not checked by the compiler, and
simply admitted on good faith.
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8.3. Inheritance

It frequently happens that we want to declare new categories which are really extensions
of already existing categories. For instance, the following category Field is really the
extension of the category Ring with a division:

category Field == {

convert: Int -> This;

prefix -: This -> This;

infix +: (This, This) -> This;

infix -: (This, This) -> This;

infix *: (This, This) -> This;

infix /: (This, This) -> This;

}

A shorter and more comprehensive way to define this category is

category Field == {

This: Ring;

infix /: (This, This) -> This;

}

In other words, in our specification of the functionality of categories, we allow for proto-
types of the form

This: Other_Category;

which really correspond to inheriting all functionality from another category. Multiple
inheritance is allowed in the same way. For instance, assuming

category Ordered == {

infix <=: (This, This) -> Boolean;

}

we may define

category Ordered_Ring == {

This: Ring;

This: Ordered;

}

8.4. Parameterized categories

Categories are allowed to be parameterized. The syntax for defining parameterized cate-
gories is similar to the syntax for the definition of containers:

category Cat (Param_1: Type_1, ..., Param_n: Type_n) == category_body
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The parameters are allowed to depend on each other in an arbitrary order, although cyclic
dependencies are not allowed. The parameters may either be types or ordinary values.

Two examples of parameterized categories To F and From T were already encountered in
the section on type converters:

category To (T: Type) == {

convert: This -> T;

}

category From (F: Type) == {

convert: F -> This;

}

Another typical example of a parameterized category is

category Vector_Space (K: Field) == {

This: Abelian_Group;

infix *: (K, This) -> This;

}

8.5. Planned extensions

One planned extension for categories concerns default implementations of certain methods.
For instance, in the category Ring, the operation infix - is really redundant, since it
admits a reasonable default implementation

infix - (x: This, y: This): This == x + (-y);

In the future, Mathemagix should be able to use such default implementations except
when a better method is explicitly provided by the user. Notice that this requires a mech-
anism for specifying the required functionality for default methods. This is not completely
trivial, since it should also be possible to provide a default implementation of prefix - in
terms of infix -:

prefix - (x: This): This == (0 :> This) - x;

Of course, this should not lead to infinite loops if neither prefix - nor infix - is present.

8.6. Efficiency considerations
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Chapter 9

Interface with C++

9.1. Foreign imports and exports

Mathemagix both allows the user to import functionality from C++ template languages
and to export Mathemagix functions and classes back to C++. The syntax for impor-
tating and exporting functionality is as follows:

foreign cpp import import_body;

foreign cpp export export_body;

The import and export bodies essentially contain dictionaries between C++ names and
Mathemagix names of various classes, functions and other variables or constants.

In the case of foreign imports, it is usually necessary to specify options which should be
passed to the compiler and to the linker, as well as some include statements or macro
definitions which are necessary in order to compile the imported code. This can be done
using the following keywords:

cpp_flags : flags that should be passed to the C++ compiler
cpp_libs : flags that should be passed to the C++ linker
cpp_include : C++ files that should be included in order to compile the imported code
cpp_preamble : macro definitions which are necessary to compile the imported code

A typical example of the use of these keywords occurs at the start of the file
basix/int.mmx:

foreign cpp import {

cpp_flags "`basix-config --cppflags`";

cpp_libs "`basix-config --libs`";

cpp_include "basix/int.hpp";

cpp_preamble "#define int_literal(x) as_int (as_string (x))";

...

}

The C++ compiler and linker flags are taken to be the results of the shell command basix-

config which outputs the appropriate flags as a function of the user’s environment. The
header file basix/int.hpp contains various utility functions for machine integers which
are imported into Mathemagix. The additional macro int_literal is also imported as
the constructor of machine integers from literal integers.

9.2. Importing classes from C++

Inside the body of a foreign cpp import statement, the C++ class my_class can be
imported into Mathemagix under the name My_Class using
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class My_Class == my_class;

For instance, we may import the class integer as Integer using

class Integer == integer;

Any imported class my_class is required to provide the following standard routines:

bool operator == (const my_class&, const my_class&);

// equality predicate

bool operator != (const my_class&, const my_class&);

// inequality predicate

bool exact_eq (const my_class&, const my_class&);

// predicate for syntactic equality

bool exact_neq (const my_class&, const my_class&);

// predicate for syntactic equality

bool hard_eq (const my_class&, const my_class&);

// predicate for hard equality (of pointers for reference counted

objects)

bool hard_neq (const my_class&, const my_class&);

// predicate for hard inequality (of pointers for reference counted

objects)

nat hash (const my_class&);

// a hash code compatible with operator ==

nat exact_hash (const my_class&);

// a hash code compatible with exact_eq

nat hard_hash (const my_class&);

// a hash code compatible with hard_eq

syntactic flatten (const my_class&);

// a flattener for objects of type my_class

In practice, some of these routines can usually be derived from the others. In the file

basix/defaults.hpp

one may find various macros to this effect, such as TRUE_TO_EXACT_IDENTITY_SUGAR.

9.3. Importing containers from C++ and exportation
of categories

In a similar way, a C++ container class my_container<param_1, ..., param_n> can be
imported as a Mathemagix container class with name My_Container using

class My_Container (P_1: Cat_1, ..., P_n: Cat_n) ==

my_container (P_1, ..., P_n);

The parameters of imported C++ containers are necessarily type parameters, and it is
required to specify the types of these parameters, which are categories. For instance, in
numerix/complex.mmx, the container class complex<R> of complex numbers is imported
using
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class Complex (R: Ring) == complex R;

In the case when the categories of the parameters are non trivial (e.g. in the above example
where Ring is the category of the parameter R), it is necessary to specify a dictionary
between the members of the category and their corresponding names in C++.

Indeed, in the C++ implementation of an addition on complex numbers, we add the real
and imaginary parts using the C++ operator +. At some place, we have to specify that
this C++ operator + corresponds to the Mathemagix operator infix +. This can be
done by exporting the category Ring to C++:

foreign cpp export {

category Ring == {

convert: Int -> This == keyword constructor;

prefix -: This -> This == prefix -;

infix +: (This, This) -> This == infix +;

infix -: (This, This) -> This == infix -;

infix *: (This, This) -> This == infix *;

}

}

This example illustrates the general syntax for the exportation of categories to C++: every
field

mmx_function: (S_1, ..., S_n) -> D;

in the definition of the category is replaced by a declaration

mmx_function: (S_1, ..., S_n) -> D == cpp_function;

where cpp_function is the C++ name corresponding to the function mmx_function.

9.4. Importing variables and functions from C++

Inside the body of a foreign cpp import statement, one may import a C++ function
or variable with name cpp_name into Mathemagix under the name mmx_name using the
syntax

mmx_name: Type == cpp_name;

The type Type of the imported function or variable should be specified on the Math-

emagix side. For instance, some of the basic operations on strings can be imported using

foreign cpp import {

prefix #: String -> Int == N;

postfix []: (String, Int, Int) -> String == postfix ();

infix *: (String, String) -> String == infix *;

infix ><: (String, String) -> String == infix *;

infix <<: (Alias String, String) -> Alias String == infix <<;

}
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The standard ports mmin, mmout and mmerr for input, output and errors are imported using

foreign cpp import {

mmin : Port == mmin;

mmout: Port == mmout;

mmerr: Port == mmerr;

}

9.5. Importing template functions from C++

Template functions can be imported from C++ into Mathemagix using the same syntax
as for the importation of ordinary functions, by putting all declarations inside a forall

block. For instance, the following basic imported functions on vectors were extracted from
basix/vector.mmx:

foreign cpp import {

forall (C: Type) {

prefix #: Vector C -> Int == N;

postfix []: (Vector C, Int) -> C == postfix [];

postfix []: (Alias Vector C, Int) -> Alias C == postfix [];

postfix []: (Vector C, Int, Int) -> Vector C == range;

reverse: Vector C -> Vector C == reverse;

infix ><: (Vector C, Vector C) -> Vector C == append;

}

}

Inside the forall block it is possible to impose additional constraints on the parameters
using the assume statement. For instance, we may extend the imported functions on vectors
as follows:

foreign cpp import {

forall (C: Type) {

prefix #: Vector C -> Int == N;

postfix []: (Vector C, Int) -> C == postfix [];

postfix []: (Alias Vector C, Int) -> Alias C == postfix [];

postfix []: (Vector C, Int, Int) -> Vector C == range;

reverse: Vector C -> Vector C == reverse;

infix ><: (Vector C, Vector C) -> Vector C == append;

assume (C: Abelian_Group) {

prefix -: Vector C -> Vector C == prefix -;

infix +: (Vector C, Vector C) -> Vector C == infix +;

infix -: (Vector C, Vector C) -> Vector C == infix -;

}

}

}

Here Abelian_Group stands for the following category:
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foreign cpp export {

category Abelian_Group == {

convert: Int -> This == keyword constructor;

prefix -: This -> This == prefix -;

infix +: (This, This) -> This == infix +;

infix -: (This, This) -> This == infix -;

}

}

9.6. Exporting to C++

Classes, functions and variables can be exported back to C++ using the same syntax as
for importations. For instance, the class Point from the chapter about user defined classes
can be exported together with some basic routines as follows

foreign cpp export {

class Point == point;

point: (Double, Double) -> Point == keyword constructor;

postfix .x: Point -> Double == get_x;

postfix .y: Point -> Double == get_y;

}

In order to use C++ template functions with Point as a parameter, the required operations
from the category of that parameter should be exported to C++ as well. For instance,
assume that we wish to use the operations + and − from the previous section on vectors
of points. Then we first have to define the abelian group operations on Point:

convert (i: Int): Point == point (as_double i, as_double i);

prefix - (p: Point): Point == point (-p.x, -p.y);

infix + (p: Point, q: Point): Point == point (p.x + q.x, p.y + q.y);

infix - (p: Point, q: Point): Point == point (p.x - q.x, p.y - q.y);

We next have to export these operations to C++, while making sure that the C++ names
of the operations correspond to the exported names of the operations of the category
Abelian_Group:

foreign cpp export {

convert: Int -> Point == keyword constructor;

prefix -: Point -> Point == prefix -;

infix +: (Point, Point) -> Point == infix +;

infix -: (Point, Point) -> Point == infix -;

}

Remark 9.1. In the current implementation of the compiler, the mandatory oper-
ations operator ==, operator !=, exact_eq, exact_neq, hard_eq, hard_neq, hash,
exact_hash, hard_hash and flatten of Mathemagix-compatible C++ types are not

exported to C++. For instance, assuming that the user redefined the default flattening
routine for Point, this routine should be exported explicitly to C++ if we want vec-
tors of points to be printed correctly.
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Chapter 10

Large multiple file programs

10.1. General principles

When using Mathemagix for the development of large mathematical programs which
usually consist of lots of files, one should keep in mind one important design principle:

For any Mathemagix file my_program.mmx which is to be compiled into a
binary, the set of all dependencies for my_program.mmx can be deduced from
the source code in my_program.mmx.

Similarly,

For anyMathemagix file helper_program.mmxwhich is only to be compiled
into an object file, the set of all dependencies for helper_program.mmx can
be deduced from the source code in helper_program.mmx.

As a consequence of these principles, the compilation process for large projects is easy to
understand: the programmer should just make sure to carefully include the correct include
files for every individual file in the project. The compiler will then take care of determining
the various dependencies and compiling the files in the project in the right order and in
parallel whenever possible.

Notice that these rules are not satisfied in several other programming languages such as
C or C++: in this case, there is usually a makefile for the project which describes the
dependencies and all kinds of compiler and linker flags which are necessary for building the
executable. Mathemagix on the other hand does not require any particular configuration
or makefiles in order to compile multiple file projects. Also the number of command line
options is strongly reduced with respect to languages such as C or C++.

In the case when some of the functionality of a Mathemagix program is imported from
C++, the user should use the keywords cpp_include, cpp_flags and cpp_libs in order
to specify the dependencies on the C++ code and the particular compiler and linker flags
to be used in order to compile the C++ code. We refer to the chapter on interfacing with
C++ for more details.

10.2. Inclusion of files

Other files can be included into a given Mathemagix file using the keyword include.
Mathemagix provides three modes for the inclusion of other files: ordinary public inclu-
sion, private inclusion and virtual inclusion.

10.2.1. Public inclusion

When including a file a.mmx into the file b.mmx using
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include "a.mmx";

all public functions, classes and categories from the file a.mmx are made available in the file
b.mmx. Moreover, for any chain of public inclusions b.mmx ← c_1.mmx ← 
 ← c_n.mmx

(we say that b.mmx is indirectly and publicly included by c_n.mmx), the public functionality
of a.mmx is also available in c_n.mmx.

Public inclusions thus induce a dependency of b.mmx on a.mmx as well as of c_n.mmx on
a.mmx for any file c.mmx which indirectly includes b.mmx. When building a large project
in parallel, this means that both b.mmx and c.mmx will have to be recompiled whenever a
change occurs in the public interface of a.mmx.

10.2.2. Private inclusion

In order to reduce the number of dependencies inside a large project, it is possible to use
the mechanism of private inclusions whenever appropriate. When including a file a.mmx

into the file b.mmx using

private include "a.mmx";

all public functions, classes and categories from the file a.mmx are made available in the
file b.mmx. However, the functionality of a.mmx remains hidden for any other file c.mmx

which directly or indirectly includes a.mmx (except when c.mmx includes a.mmx itself, or via
some other file different from b.mmx, of course). On the other hand, if a.mmx indirectly and
publicly includes a file A.mmx, then A.mmx remains an indirect (although private) inclusion
of b.mmx, so all public functionality of A.mmx is also available in b.mmx.

In summary, a private inclusion of a.mmx in b.mmx still induces a dependency of b.mmx on
a.mmx, but the transitivity of the inclusion relation is broken.

10.2.3. Virtual inclusion

When using the mechanism of private inclusion, we still introduce dependencies for the
build process: whenever the public interface of the included file a.mmx changes, the file
b.mmx where the inclusion occurred needs to be recompiled.

On some occasions, none of the functionality of a.mmx is actually needed in b.mmx or any
other file which includes b.mmx (directly or indirectly). Indeed, it may happen that we
just want to ensure that some initialization code present in a.mmx is executed before we
start executing b.mmx. For instance, the file a.mmx might initialize some table which was
declared in a file A.mmx which is included both by a.mmx and by b.mmx, and such that the
code in b.mmx will only work correctly after initialization of this table.

Whenever the above situation occurs, we may perform a virtual inclusion of a.mmx into
b.mmx

virtual include "a.mmx";

Virtual inclusions do not create any dependencies for the build process, but they do influ-
ence the list of files which need to be compiled and linked, as well as the order in which
the various files of the project are executed (see section 10.3 below).
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10.2.4. Circular inclusions

Whatever inclusion modes are used, no circular chain of inclusions is allowed in Math-

emagix.

In the case when some code in a file b.mmx depends on some code in the file a.mmx and
vice versa, the programmer will have to explicitly include prototypes for the required
functionality in one of the files. Class prototypes are declared using the syntax

class Simple_Class;

class Container (P_1: T_1, ..., P_n: T_n);

Function prototypes are declared using the syntax

fun (arg_1: T_1, ..., arg_n: T_n);

10.3. Order of execution

• Duplicate inclusions. Initialization only once, for the first inclusion.
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Chapter 11

Using the Mathemagix compiler

11.1. Introduction

The basic procedure for compiling and running a Mathemagix program toto.mmx is very
simple: first compile the program using

mmc toto.mmx

This will create a binary toto which can be run using

./toto

This method still works if the program toto.mmx depends on many other files. In that case
Mathemagix will automatically determine and compile all dependencies. Moreover, on
modern computers the compiler will automatically compile as many of the dependencies
as possible in parallel. Furthermore, if you modify one of the dependencies and recompile
toto.mmx, then only those dependencies which were affected by your change will be recom-
piled. In order to monitor this process more precisely and get a rough idea about what the
compiler is doing, you may compile toto.mmx using the option --verbose:

mmc --verbose toto.mmx

Whenever the user develops another program booh.mmx with an overlapping set of depen-
dencies with toto.mmx, then compiling both programs toto.mmx and booh.mmxwill compile
the overlapping dependencies only once (or at most once, in case of recompilations).

In order to avoid unnecessary recompilations, the compiler uses a cache, which is stored by
default in the directory ~/.mathemagix/mmc or ~/.mathemagix/mmc-version . Sometimes,
you may wish to clean the cache and recompile all dependencies from scratch. This can be
done using

mmc --clean-cache

This kind of cleaning may also be necessary whenever you replace your compiler by a newer
development version.

11.2. Compiler flags

The compiler only supports few global flags to influence the compilation process. On the
one hand, this is important in order to take optimal advantage out of the compiler cache,
and thus make the compilation process as fast as possible. On the other hand this is part
of the general design philosophy of Mathemagix, in which control is delegated to the
programs themselves rather than to an external build system.
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General purpose compiler flags are the following:

--optimize. This flag is used for the generation of optimized (but possibly larger)
code.

--gdb. This flag should be used in order to generate code which can be debugged using
Gdb.

--static. This flag should be used for the creation of static binaries.

11.3. Other compiler options

The compiler supports a few other general purpose options:

--color. This option will print messages issued by the compiler using colors.

--progressive. Disable parallelism for the compilation process.

--test-compile files . Test the compilation of a list of files .

--test-run files . Both compile and run a list of files.

--threads max . Compile using at most max threads or processes.

For debugging purposes, it is sometimes useful to inspect the contents of intermediate files
which are generated by the compiler. This can be done using the following options:

--keep-mmh. Keep all public interfaces of the Mathemagix files.

--keep-cpp. Keep all intermediate C++ files generated by the compiler.

--keep-o. Keep all intermediate object files generated by the compiler.

Any C++ files which are kept in this way may be edited by the user. In order to resume
the compilation process from these modified versions, you may use the option --from-cpp.

Hackers may also want to experiment with various debugging options for the compiler
itself. These options are all of the form --debug-feature . Currently supported debugging
options are:

--debug-apply, --debug-build, --debug-categories, --debug-coerce,
--debug-compile, --debug-compiled, --debug-convert, --debug-cpp,
--debug-cse, --debug-csed, --debug-declare, --debug-exe,
--debug-flat-control, --debug-flattened-control, --debug-globals,
--debug-glue, --debug-implicit, --debug-inline, --debug-inlined,
--debug-instantiate, --debug-instantiated, --debug-new,
--debug-new-categories, --debug-phase, --debug-trace, --debug-uncurried,
--debug-uncurry, --debug-unnest, --debug-unnested.
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Chapter 12

Using the Mathemagix interpreter

This section describes how to use the mathemagix interpreter mmi available from the
mmcompiler package.

12.1. Terminal interface

From a terminal, the mathemagix interpreter is launched with the following command:

$ mmi

--------------------------------------------------------------

|:*) Welcome to Mathemagix 1.0.2 (*:|

|------------------------------------------------------------|

| This software falls under the GNU General Public License |

| It comes without any warranty whatsoever |

| http://www.mathemagix.org |

| (c) 2010-2012 |

--------------------------------------------------------------

1]

At first run the following message should last several seconds, according to the perfor-
mances of your computer:

mmi: compiling glue...

This means that the fundamental librairies are being compiled. At next run, the message
still appears but lasts just the time needed to check that these compiled libraries are up
to date.

Whenever the interpreter has been compiled with the GNU readline library, several short-
cuts are available such as

• [Ctr-A], [Ctr-E] to go at the beginning or end of the instruction line,

• ↑, ↓ for the previous and next instruction line,

• [tab] for name completion,

• [Meta-return] to add an extra line to the current instruction line. Note that on
several platforms the [Meta] key is binded to [Alt]. On the Mac OS X terminal,
unless the [Alt] key has been specifically set so from the terminal preferences menu,
one must type [esc] and then [return].

For more information and customization of the keyboard interface, please refer to the
documentation of the GNU readline library.
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Within an interactive session, ending a line with a ’;’ actually means finishing with a
null instruction. As a consequence this extra ’;’ prevents from printing the output of the
previous instruction.

1] 1+1

2

2] 1+1;

3]

In order to quit the interpreter one can type [Ctr-d], or call the function exit that takes
the return value of the mmi command as an argument.

1] exit 0

12.2. Color mode

For a short list of terminals (xterm, xterm-color, xterm-256color), the color mode of the
interpreter can be activated by adding the following option to the command line:

$ mmi --color

--------------------------------------------------------------

|:*) Welcome to Mathemagix 1.0.2 (*:|

|------------------------------------------------------------|

| This software falls under the GNU General Public License |

| It comes without any warranty whatsoever |

| http://www.mathemagix.org |

| (c) 2010-2012 |

--------------------------------------------------------------

1]

The --color option can be activated by default by setting the global environment variable
MMX_COLOR_MODE to yes. For instance, if your default shell is Bash, then you might want
to add the following line to your $HOME/.profile file in order to get the color mode
permanently:

export MMX_COLOR_MODE="yes"

In this case, colors can be punctually disabled as follows:

mmi --no-color

Supported terminals are specified in basix/src/formatting_port.cpp.

12.3. Other interpreter options

The behavior of the interpreter can be modified according to the following command line
options:

--quiet. Disable printing the banner and prompt.
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--quit. Quit the interpreter after replaying a session.

--replay. Replay the previous session.

--texmacs. Enable the TEXMACS interface (to be used by TEXMACS only).

--time. Display compilation and executing timings.

--type. Display types of computed expressions.

--verbose. Enable verbose mode.

The command line option --help summarizes the usage of mmi, and --version returns
the current version of mmi.

The following options are passed to the compiler mmc for compiling dynamic librairies
at runtime: --diff, --gdb, --keep-cpp, --no-cache, --no-warnings, --optimize, --
timings, --verbose.

12.4. Builtin help command

Signatures and source locations of functions can be obtained via the help command as
follows:

1] help infix +

+ : (Int, Int) -> Int --- mmx/basix/mmx/int.mmx:30:10

+ : (Double, Double) -> Double --- mmx/basix/mmx/double.mmx:33:10

+ : (Syntactic, Syntactic) -> Syntactic ---

mmx/basix/mmx/syntactic.mmx:33:8

2] fib (n: Int): Int == if n <= 1 then 1 else fib (n-2) + fib (n-1)

3] help fib

fib : Int -> Int --- /Users/lecerf/.mathemagix/mmi/input_2.mmx:0:43

The latter source location corresponds the actual file where the input command is tem-
porarily saved in. Help on types is also available:

5] help Vector

Vector : Type -> Class --- mmx/basix/mmx/vector.mmx:15:8

12.5. File inclusion

File inclusion is performed via the include function, as for the compiler. If the file to
be included or one of its dependencies contains foreign declarations, for importing or
exporting C++ functions, then the necessary dynamic librairies are automatically compiled
and loaded. During the compilation the message mmi: compiling glue... is displayed.
This compilation might take time, but it is only performed once.

1] include "numerix/integer.mmx"

2] 40!

815915283247897734345611269596115894272000000000
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In case you are sure that all the dynamic libraries you are going to use in an interpreter
session are already compiled then you might want to use the --no-glue option in order to
discard checking if these dynamic libraries are up to date.

12.6. Low level debugger

If the compiler and interpreter have been compiled with passing the --enable-verify

option to the configure script, then a low level debugger is made available by adding --

exe-debugger to the mmi command. The features of the debugger are rather limited but
are essentially useful to understand casual bugs, and to display the actual builtin C++ types
being used. The interactive commands of this debugger are the following:

I. set interactive mode.

i. unset interactive mode.

E. set display of expressions.

e. unset display of expressions.

V. set display of values.

v. unset display of values.

n. go directly to next step.

s. step into the intermediate.
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Appendix A

Getting and installing Mathemagix

Extensive information on how to download Mathemagix and install the software is avail-
able on our website www.texmacs.org. For the moment, we recommend compilation from
the sources. In order to go short, the following steps should be followed in order to obtain
a working version of the compiler mmc and the interpreter mmi:

1. Verify that all dependencies are installed on your system. In particular, it is rec-
ommended that you have recent versions of Libtool, Readline, Gmp, Mpfr

and TEXMACS installed on your computer. You will also need Svn to check out the
source code.

2. In a shell session, check out the most recent development version of Mathemagix

using Svn, by issuing the command

svn checkout svn://scm.gforge.inria.fr/svn/mmx

This should create a directory mmx. Go to this directory, using

cd mmx

3. Configure and build the software using the commands

./configure

make

4. Assuming root privileges, install the software in /usr/local using

make install

5. Enjoy using the software!

Remark A.1. If you want to install the software at a non standard location install-

dir (which is in particular the case if you do not have root privileges on your machine),
then you should replace the configuration line in step 3 by

./configure --prefix=install-dir

Of course, this requires that the directory install-dir/bin is in your path.

Remark A.2. Alternatively, you may not install the software at all and run the software
directly from the place where it was built. In that case, you may run the command

source set-devel-path

after step 3 instead of doing a make install. This will add the necessary directories to
your PATH. However, you will have to rerun the script every time that you open a new shell
session.
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Appendix B

History of Mathemagix

B.1. Original design goals

During the late ninetees, our wish for a new general purpose computer algebra language
was motivated by two main reasons: the quasi-absense of free computer algebra systems
and the non-existence of sufficiently general compiled computer algebra languages. At that
time, there were very few free computer algebra systems around. The systems Axiom,
Maxima and Reduce, which are all free nowadays, carried proprietary licences by then.
I found the Axiom system and its successor Aldor especially inspiring, and I originally
intended to write something close to these.

Concrete plans for the Mathemagix project started in 1998, around the same time as the
development of TEXMACS, which was originally intended as the interface for Mathemagix.
Our original design goals were the following:

Strong typedness. Mathemagix should be strongly typed, with support for discrete
and parameterized overloading, generic objects, compile-time type checking and,
possibly, built-in support for expression types which interact with the type system.

High level control structures. Mathemagix should ultimately support high level
control structures, like coroutines, generators, exceptions, continuations, etc. In the
future we also wish to consider parallellism.

Runtime efficiency. This is a really a long-term goal, since writing a compiler is
not a short-term objective. Nevertheless, the possibility to write a compiler which
produces efficient code should be kept in mind. In particular, the language should
support directives for controlling memory layout and inlining in a way which is
naturally compatible with the type system.

Reusability of extern libraries. Before achieving runtime efficiency of Math-

emagix itself, we aim to achieve runtime efficiency through the extensive reuse
of existing dedicated libraries written in other languages. Mathemagix should
therefore implement transparent mechanisms for reusing extern libraries and in par-
ticular C++ template libraries. Special care should be taken of garbage collection.

Good scalability. It should be possible to develop large computer algebra systems
usingMathemagix in a natural and modular way. Special attention should be paid
to constructs for programming in the large and the type system should naturally
allow extensions of types and code.
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B.2. History of the implementations

Since I had only one or two months every year to spend on the development of Math-

emagix, I have hesitated a lot about the most efficient way to have “at least something
working” in which I could test some of my mathematical algorithms, possibly written in
C or C++. One important, but rather unrealistic, development goal was to be able to
improve the system gradually, and implement the harder aspects of the type system in an
incremental way.

My first failed attempt to directly write a compiler occurred between 1999 and 2002.
I directly intended to integrate support for continuations, which made debugging quite
complex, and the overall project too hard to be realistic with little development time
available.

For my second attempt, which started in 2003, I decided to start with the implementation
of an interpreter, with the additional requirement that it should be very easy to integrate
existing C++ libraries, and in particular some of my own libraries for relaxed power series
and computable real numbers. This new interpreter was called mmx-shell and came with a
uniform typed extension facility mmx-extend for gluing external C++ libraries. In parallel,
we started the development of a standard C++ library Mmxlib.

At the start of the ANR Gecko project in 2005, the new interpreter was severely reorga-
nized into the interpreter mmx-light. The aim was to reach a far more modular design, such
that Mathemagix would become a bunch of separate package, with possible interdepen-
dencies, and a standardized way to compile and install packages (based on Autotools).
In particular, the interpreter and the glue were designed to be as independent as possible,
making it a priori possible to use the glue for another language with a completely different
syntax. In retrospect, this has been somewhat of a waste of time, but I have always been
playing with the thought of deriving a Scheme implementation from Mathemagix, so
that we might also use it as an extension language for TEXMACS.

However, the ultimate type system of Mathemagix is hard to implement in a dynamically
typed interpreter. Indeed, expressions can be essentially overloaded, and, contrary to C++,
the correct unambiguous type of an expression can not necessarily be determined at the
level of the parent of the expression (e.g. when using it as an argument to a function call).
Instead of endlessly hacking an inperfect interpreter, I therefore restarted the implemen-
tation of the current mmc compiler around 2007. The new compiler was directly written
in Mathemagix itself, using the existing interpreter, and I rather quickly managed to
produce a compiler which could compile itself. The possibility to declare functions inside
functions and easily construct expressions and vectors turned out to be a huge accelating
factor.

At the time of writing (november 2012), the compiler mmc has reached a quite stable status
which makes it possible to write non trivial projects with it. In the meantime, Grégoire
Lecerf has developed the interpreter mmi, which is just another backend for the compiler.
Besides the compiler itself, the automagix, caas, mcoq and mmail packages can be compiled
using mmc. In the near future, we intend to experiment writing packages which rely more
heavily on the support of categories and templates.

However, some parts of the implementation of mmc have become a bit hacky, so it is
time for a partial rewrite at least. In the future, we intend to build a robust API for
typed disambiguous programs which are manipulated a lot inside the compiler. After this
reorganization, it should be easier to write a high quality optimizer. We also intend to
replace the C++ backend by a C backend and mmi by a backend with JIT support.
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Another point which remains quite puzzling is to have some support for untyped expres-
sions, whether this support exists directly in the compiler, or in a separate system. Indeed,
a typical end user of a computer algebra system may want to compute x + y in a shell
without specifying the types of x and y, or define the cube function simply by cube(x)

== x*x*x. In 2012, we therefore started the developement of a new library for symbolic
computation named caas. This library comes with a new untyped interpreter, but with
a language which is similar to the official language recognized by the compiler. Future
investigations will learn us how well the untyped and the typed view of the world can
be integrated. One other main reason behind caas is that it could become a reasonable
replacement for mmx-light, and a suitable light weight front-end for use in education.

B.3. History of the type system

A first draft for the type system was developed during this period (199*), largely inspired
by Axiom and Aldor.

A first major change in the language occurred in 2001, after a discussion with Dan
Grayson. He convinced me that the Axiom/Aldor way to import modules is sub-
optimal, since it requires the user to do a lot of bookkeeping of when to import what.
Also, an often heard complaint about the Axiom system was that the hierarchy of cat-
egories is rather rigid.

For these reasons, I decided to introduce the forall construct in Mathemagix. At that
point, I realized that it would be a good idea to associate explicit types to ambiguous
expressions. The main task of the compiler would thus be to transform “ambiguously
typed expressions” into “unambiguously typed expressions”. I later realized that this point
of view is very close to the “système F”, introduced by Girard. However, the design of a
compiler which performs the above disambiguization was (and partly still remains) a non
trivial challenge.

Moreover, in early versions of the language, I also wanted support for implicit type conver-
sions. It turned out that this requirement really introduced too many sources of ambiguity
into the language, which made it really hard to design a comprehensive set of rules and
primitives for which interpretations to prefer over which other interpretations. In 2011, we
therefore decided to remove implicit conversions from the language, which made it possible
to greatly simplify the compiler. For similar reasons, Stephen Watt decided to remove
implementations from Axiom in is implementation of the Aldor language.

It should be noticed that, in the case of Mathemagix, removal of implicit conversions was
is not a big sacrifice. Based on the forall primitive, an acceptable substitute was found,
which essentially obliges the programmer to specify which arguments to functions accept
implicit conversions. This is cleaner anyway, in our model where all declarations should
be typed very precisely.

Notice that a sketch of the type system of Mathemagix can be found in my paper
Overview of the Mathemagix type system.
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Appendix C

The Emacs mode for Mathemagix

To edit mathemagix code with emacs, the mmx mode can be used. It features automatic
indentation and syntax highlighting. The necessary Emacs code is available in the file

mmxlight/emacs/mmx-mode.el

in the Mathemagix source distribution and can be installed as follows:

cp mmx/mmxlight/emacs/mmx-mode.el $HOME/.emacs.d

The following should be added in the file .emacs in order to automatically activate the
Mathemagix mode when loading a file with suffix .mmx or .amx:

(setq load-path

(append load-path (list (expand-file-name "~/.emacs.d"))))

(setq auto-mode-alist

(append auto-mode-alist ’(("\.mmx\|\.amx" . mmx-mode))))

(autoload ’mmx-mode

"mmx-mode.el" "Major mode for editing Mathemagix files" t)
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Appendix D

Guidelines about coding style

There a few rules about coding style that we try to follow ourselves in the Mathemagix

libraries written in our own language. Although these rules are not mandatory, the read-
ability of your code should be easier for others if you follow them.

D.1. Naming conventions

In general, we try to avoid abbreviations when chosing names for global variables, func-
tions, classes and categories, and choose short (often one letter) names for local variables.
For instance:

hamming_distance (i: Int, j: Int): Int == ...;

Of course, standard mathematical functions such as exp, log, cos, etc. carry their tra-
ditional names. We also recall the following general conventions from the section about
regular identifiers:

• Use lowercase names for variables and functions.

• For names of types and categories, capitalize the first letter of each word categories
(e.g. Integer or Ordered_Group).

• Capitalize all letters in macro names.

• Use the ? suffix for names of predicates.

D.2. Indentation

The following indentation rules are implemented both in TEXMACS and in the Emacs mode

for Mathemagix. In both cases, you may use the å key for indenting the current line.

Blocks of code are usually indented by two spaces. For instance:

if x < y then {

z: T == x;

x := y;

y := z;

}

Multiple line bodies of keywords are enclosed between braces { and }, whereas one line
bodies are simply indented whenever we put them on separate lines:
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if weather = "cold" then

mmout << "take a coat!" << lf;

else if weather = "hot" then

mmout << "a T-shirt will suffice" << lf;

else

mmout << "syntax error in weather; please call Meteo France" << lf;

Input/output operators are indented as follows:

mmout << "first line" << lf

<< "second line" << lf;

Functions or vectors with many arguments are indented as follows:

mmout << beginners_function (a, b, c, d, e, f, g, h,

i, j, k, l, m, n, o, p,

q, r, s, t, u, v, w, x) << lf;

v: Vector Int == [ 10000, 10001, 10010, 10011, 10100, 10101, 10110,

10111,

11000, 11001, 11010, 11011, 11100, 11101, 11110, 11111

];

Sometimes, the readability can be enhanced by using ad hoc indentation rules:

if a = 1 then return 2*x + 3*y + 4*z;

else return 3*x + 4*y + 2*z;

D.3. Spacing rules

There are a few less strict rules concerning whitespace management:

• Function application takes one space before the bracket ( and after every ,

r: Int == foo_bar (x, y, z);

and similarly for data access using postfix []:

val: Val == my_table [key];

When the name of the function or data structure is particularly short, we may omit
the space before ( or [:

mmout << f(x) + g(y) + h(z) << lf;

mmout << v[1] * v[2] * v[3] << lf;

• Long mathematical expressions which do not fit on one line, such as

return [ (-b - sqrt (square b - 4*a*c)) / (2*a),

(-b + sqrt (square b - 4*a*c)) / (2*a) ];
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are usually split over several lines, by introducing some auxiliary variables

disc: C == square b - 4*a*c;

return [ (-b - sqrt disc) / (2*a), (-b + sqrt disc) / (2*a) ];

• When defining a succession of variables, align the definitions on the : and == (or
:=) symbols, if this does not leave to much whitespace:

Ints ==> Vector Int;

x1: Int == a + 2*b + 3*c;

x2: Int == p + 2*q + 3*r;

v : Ints == [ x1, x2 ];

• Use whitespace around mathematical infix operations whenever this enhances read-
ability:

x1: R == a + 2*b + 3*c;

x2: R == x[1] * x[2]^2 * x[3]^5 + 123 * x[1]^7 * x[2]^11;

D.3 Spacing rules 95





Index

! . . . . . . . . . . . . . . . 25, 25, 26, 29, 29
!> . . . . . . . . . . . . . . . . . . . . . 25, 27
!>= . . . . . . . . . . . . . . . . . . . . 25, 27
!< . . . . . . . . . . . . . . . . . . . . . 25, 27
!<= . . . . . . . . . . . . . . . . . . . . 25, 27
!= . . . . . . . . . . . . . . . . . . . . . 25, 27
!= . . . . . . . . . . . . . . . . . . . . . . . 70
" . . . . . . . . . . . . . . . . . . . . . . . 23
"/ . . . . . . . . . . . . . . . . . . . . . . . 23
# . . . . . . . . . . . . . . . . . 25, 25, 29, 29
% . . . . . . . . . . . . . . . . . . . . . 25, 28
& . . . . . . . . . . . . . . . . . 25, 25, 28, 29
’ . . . . . . . . . . . . . . . . . . . . . 25, 29
( . . . . . . . . . . . . . . . . . . . . . . . 33
() . . . . . . . . . . . . . . . . . 25, 25, 29, 29
) . . . . . . . . . . . . . . . . . . . . . . . 33
* . . . . . . . . . . . . . . . . . . . . . 25, 28
*= . . . . . . . . . . . . . . . . . . . . . 25, 25
+ . . . . . . . . . . . . . . . . . . . . . 25, 28
++ . . . . . . . . . . . . . . . . . 25, 25, 29, 29
+= . . . . . . . . . . . . . . . . . . . . . 25, 25
- . . . . . . . . . . . . . . . . . 25, 25, 28, 29
-- . . . . . . . . . . . . . . . . . 25, 25, 29, 29
--clean-cache . . . . . . . . . . . . . . . . 79
--color . . . . . . . . . . . . . . . . . . 80, 82
--compile . . . . . . . . . . . . . . . . . . 80
--from-cpp . . . . . . . . . . . . . . . . . . 80
--gdb . . . . . . . . . . . . . . . . . . . . . 80
--keep-cpp . . . . . . . . . . . . . . . . . . 80
--keep-mmh . . . . . . . . . . . . . . . . . . 80
--keep-o . . . . . . . . . . . . . . . . . . . 80
--progressive . . . . . . . . . . . . . . . . 80
--static . . . . . . . . . . . . . . . . . . . 80
--test-compile . . . . . . . . . . . . . 80, 83
--test-run . . . . . . . . . . . . 80, 83, 83, 83
--threads . . . . . . . . . . . . . . . . . . 80
--verbose . . . . . . . . . . . . . . . . . . 79
-> . . . . . . . . . . . . . . . . . . . . . 25, 27
-= . . . . . . . . . . . . . . . . . . . . . 25, 25
.. . . . . . . . . . . . . . . . . . . . 25, 28, 29
/ . . . . . . . . . . . . . . . . . . . . . 25, 28
/" . . . . . . . . . . . . . . . . . . . 23, 25, 26
// . . . . . . . . . . . . . . . . . . . . . . . 19
/= . . . . . . . . . . . . . . . . . . . . . 25, 25
/{ . . . . . . . . . . . . . . . . . . . . . . . 19
: . . . . . . . . . . . . . . . . . . . . . 25, 27
:-> . . . . . . . . . . . . . . . . . . 25, 26, 33
:: . . . . . . . . . . . . . . . . . . . 25, 27, 61
::> . . . . . . . . . . . . . . . . . . 25, 27, 62
:> . . . . . . . . . . . . . . . . . . . . . 25, 27
:= . . . . . . . . . . . . . . . . . . . 13, 25, 25
:=> . . . . . . . . . . . . . . . . . . . . 25, 25
> . . . . . . . . . . . . . . . . . . . . . 25, 27

>> . . . . . . . . . . . . . . . . . . . . . 25, 26
>>> . . . . . . . . . . . . . . . . . . . . 25, 26
>>= . . . . . . . . . . . . . . . . . . . . 25, 25
>< . . . . . . . . . . . . . . . . . . . . . 25, 28
>= . . . . . . . . . . . . . . . . . . . . . 25, 27
< . . . . . . . . . . . . . . . . . . . . . 25, 27
<< . . . . . . . . . . . . . . . . . . . . . 25, 26
<<% . . . . . . . . . . . . . . . . . . . . 25, 26
<<* . . . . . . . . . . . . . . . . . . . . 25, 26
<<< . . . . . . . . . . . . . . . . . . . . 25, 26
<<= . . . . . . . . . . . . . . . . . . . . 25, 25
<= . . . . . . . . . . . . . . . . . . . . . 25, 27
<=> . . . . . . . . . . . . . . . . . . . . 25, 26
= . . . . . . . . . . . . . . . . . . . . . 25, 27
=> . . . . . . . . . . . . . . . . . . . . . 25, 26
== . . . . . . . . . . . . . . . . . . . 13, 25, 25
== . . . . . . . . . . . . . . . . . . . . . . . 70
==> . . . . . . . . . . . . . . . . . . 14, 25, 25
? . . . . . . . . . . . . . . . . . . . . . 13, 21
@ . . . . . . . . . . . . . . . 25, 25, 28, 29, 30
@* . . . . . . . . . . . . . . . . . . . . . 25, 28
@+ . . . . . . . . . . . . . . . . . . . . . 25, 28
@- . . . . . . . . . . . . . . . . . 25, 25, 28, 29
@/ . . . . . . . . . . . . . . . . . . . . . 25, 28
[] . . . . . . . . . . . . . . . . . 25, 25, 29, 29
\/ . . . . . . . . . . . . . . . . . . . . . 25, 26
^ . . . . . . . . . . . . . . . . . . . . . 25, 28
_ . . . . . . . . . . . . . . . . . . . . . . . 59
‘ . . . . . . . . . . . . . . . . . . . . . 25, 29
a posteriori

type conversion . . . . . . . . . . . . . . 42
a priori

type conversion . . . . . . . . . . . . . . 42
Abelian_Group . . . . . . . . . . . . . . . . 72
abstract

data type . . . . . . . . . . . . . . . . . 56
accessor

class . . . . . . . . . . . . . . . . . . . . 29
structure . . . . . . . . . . . . . . . . . 57

Aldor . . . . . . . . . . . . . . . . . . . . 7, 87
and . . . . . . . . . . . . . . . . . . . . 25, 26
ANR

Gecko . . . . . . . . . . . . . . . . . . . 88
append . . . . . . . . . . . . . . . . . . . . 28
argument

dependent . . . . . . . . . . . . . . . . . 34
function . . . . . . . . . . . . . . . . . . 35
generator . . . . . . . . . . . . . . . . . 33
tuple . . . . . . . . . . . . . . . . . . . 33

assume . . . . . . . . . . . . . . . . . . 39, 72
automagix . . . . . . . . . . . . . . . . . . 88
Autotools . . . . . . . . . . . . . . . . . . . 88
Axiom . . . . . . . . . . . . . . . . . . . 7, 87

97



break . . . . . . . . . . . . . . . . . . . . . 17
C++ . . . . . . . . . . . . . . . . . . . . 8, 69
cache

clean . . . . . . . . . . . . . . . . . . . 79
compiler . . . . . . . . . . . . . . . . . . 79

carrier . . . . . . . . . . . . . . . . . . . . . 65

case . . . . . . . . . . . . . . . . . . 16, 59, 60
catch . . . . . . . . . . . . . . . . . . . . . 18
category . . . . . . . . . . . . . . . . . 38, 65

carrier . . . . . . . . . . . . . . . . . . . 65
efficiency . . . . . . . . . . . . . . . . . 68
export . . . . . . . . . . . . . . . . . . . 71

inheritance . . . . . . . . . . . . . . . . 67
mathematical properties . . . . . . . . . 66
parameterized . . . . . . . . . . . . . . . 67

satisfaction . . . . . . . . . . . . . . . . 65
category . . . . . . . . . . . . . . . . . . . 65
circular

inclusion . . . . . . . . . . . . . . . . . 77
class . . . . . . . . . . . . . . . . . . . . . . 49

accessor . . . . . . . . . . . . . . . . . . 29

constructor . . . . . . . . . . . . . . . . 50
data field . . . . . . . . . . . . . . . . . 49
declaration . . . . . . . . . . . . . . . . 49

destructor . . . . . . . . . . . . . . . . . 50
export . . . . . . . . . . . . . . . . . . . 73
generic . . . . . . . . . . . . . . . . . . 51

import . . . . . . . . . . . . . . . . . . . 69
method . . . . . . . . . . . . . . . . . . 51

class . . . . . . . . . . . . . . . . . . . 49, 51

clean
cache . . . . . . . . . . . . . . . . . . . 79

comment . . . . . . . . . . . . . . . . . . . 19

compiler
cache . . . . . . . . . . . . . . . . . . . 79
flag . . . . . . . . . . . . . . . . 69, 75, 79

hello world . . . . . . . . . . . . . . . . . 9
multiple file projects . . . . . . . . . . . 75

Complex . . . . . . . . . . . . . . . . . . . . 51
conditional

overloading . . . . . . . . . . . . . . 44, 59

constant . . . . . . . . . . . . . . . . 44
mutable . . . . . . . . . . . . . . . . 46

statement . . . . . . . . . . . . . . . . . 15

configuration . . . . . . . . . . . . . . . . . 75
constant

conditional overloading . . . . . . . . . . 44

constructor . . . . . . . . . . . . . . . . . 49
constructor . . . . . . . . . . . . . . . . . . 50

structure . . . . . . . . . . . . . . . . . 56

container . . . . . . . . . . . . . . . . . . . 51
import . . . . . . . . . . . . . . . . . . . 70

continue . . . . . . . . . . . . . . . . . . . 17

convert . . . . . . . . . . . . . . . . . . 41, 52
converter . . . . . . . . . . . . . . . . . . . 52

downgrader . . . . . . . . . . . . . . . . 52

mapper . . . . . . . . . . . . . . . . 32, 52
ordinary . . . . . . . . . . . . . . . . . . 52
transitivity . . . . . . . . . . . . . . . . 52

upgrader . . . . . . . . . . . . . . . . . 52

user defined . . . . . . . . . . . . . . . . 52
cpp_flags . . . . . . . . . . . . . . . . . . 69
cpp_include . . . . . . . . . . . . . . . . . 69

cpp_libs . . . . . . . . . . . . . . . . . . . 69
cpp_preamble . . . . . . . . . . . . . . . . 69
declaration

class . . . . . . . . . . . . . . . . . . . . 49
function . . . . . . . . . . . . . . . . . . 14
macro . . . . . . . . . . . . . . . . . . . 14

pattern . . . . . . . . . . . . . . . . . . 60
variable . . . . . . . . . . . . . . . . . . 13

dependent

arguments . . . . . . . . . . . . . . . . . 34
design goals . . . . . . . . . . . . . . . . . . 87
destructor . . . . . . . . . . . . . . . . . . . 50

destructor . . . . . . . . . . . . . . . . . . 50
discrete overloading . . . . . . . . . . . . . 37
disjunction . . . . . . . . . . . . . . . . . 63

dispatch . . . . . . . . . . . . . . . . . . . . 62
dispatch . . . . . . . . . . . . . . . . . . . 62
div . . . . . . . . . . . . . . . . . . . . 25, 28

do . . . . . . . . . . . . . . . . . . . . . 16, 16
downgrade . . . . . . . . . . . . . . . . . . 53
downgrader . . . . . . . . . . . . . . . . . . 52

downto . . . . . . . . . . . . . . . . 25, 28, 29
else . . . . . . . . . . . . . . . . . . . . . . 15
Emacs . . . . . . . . . . . . . . . . . . . . . 91

mode . . . . . . . . . . . . . . . . . . . 91
exact_eq . . . . . . . . . . . . . . . . . 70, 73
exact_hash . . . . . . . . . . . . . . . . 70, 73

exact_neq . . . . . . . . . . . . . . . . 70, 73
exception . . . . . . . . . . . . . . . . . . . 18
Exception . . . . . . . . . . . . . . . . . . 19

exception . . . . . . . . . . . . . . . . . . 19
explicit

type conversion . . . . . . . . . . . . . . 42

export
category . . . . . . . . . . . . . . . . . . 71

class . . . . . . . . . . . . . . . . . . . . 73
function . . . . . . . . . . . . . . . . . . 73
variable . . . . . . . . . . . . . . . . . . 73

export . . . . . . . . . . . . . . . . 69, 71, 73
extensible

pattern . . . . . . . . . . . . . . . . . . 60

structure . . . . . . . . . . . . . . . . . 57
false . . . . . . . . . . . . . . . . . . . . . 24
Fibonacci . . . . . . . . . . . . . . . . . . . 10

Field . . . . . . . . . . . . . . . . . . . . . 67
file

inclusion . . . . . . . . . . . . . . . . . 75

Fixed_Size_Vector . . . . . . . . . . . . . 35
flag

compiler . . . . . . . . . . . . . . 69, 75, 79

linker . . . . . . . . . . . . . . . . . 69, 75
flatten . . . . . . . . . . . . . . . . . . . . 53
flatten . . . . . . . . . . . . . . . . . . 70, 73

flattening . . . . . . . . . . . . . . . . . . . 53
floating point

constant . . . . . . . . . . . . . . . . . . 24

for . . . . . . . . . . . . . . . . . . . . . . 16

98 Index



forall . . . . . . . . . . . . . . . . 38, 72, 89
grouping . . . . . . . . . . . . . . . . . 39

foreign

export . . . . . . . . . . . . . . . . . . . 69
import . . . . . . . . . . . . . . . . . . . 69

foreign . . . . . . . . . . . . 69, 69, 71, 71, 73

former . . . . . . . . . . . . . . . . . . . . 45
function

— as argument . . . . . . . . . . . . . . 35

— as local variable . . . . . . . . . . . . 36
— as return value . . . . . . . . . . . . 35
application . . . . . . . . . . . . . . 29, 33

declaration . . . . . . . . . . . . . . 14, 33
dependent arguments . . . . . . . . . . . 34
dispatch . . . . . . . . . . . . . . . . . . 62

export . . . . . . . . . . . . . . . . . . . 73
generic . . . . . . . . . . . . . . . . . . 38
mutable . . . . . . . . . . . . . . . . . . 36

prototype . . . . . . . . . . . . . . . . . 34
recursive . . . . . . . . . . . . . . . . . 34
variable arity . . . . . . . . . . . . . . . 33

functional programming . . . . . . . . . . . 35
Gecko . . . . . . . . . . . . . . . . . . . . . 88
generator . . . . . . . . . . . . . . . . . . . 29

Generator . . . . . . . . . . . . . . . . . . 29
argument . . . . . . . . . . . . . . . . . 33
exploded operator . . . . . . . . . . . . 30

matrix . . . . . . . . . . . . . . . . . . . 31
range . . . . . . . . . . . . . . . . . . . 29

generic

class . . . . . . . . . . . . . . . . . . 51, 65
function . . . . . . . . . . . . . . . . 38, 65

genericity . . . . . . . . . . . . . . . . . . . 65

hard_eq . . . . . . . . . . . . . . . . . . 70, 73
hard_hash . . . . . . . . . . . . . . . . 70, 73
hard_neq . . . . . . . . . . . . . . . . . 70, 73

hash . . . . . . . . . . . . . . . . . . . . 70, 73
Haskell . . . . . . . . . . . . . . . . . . . . . 8

Hello world . . . . . . . . . . . . . . . . . . . 9
history

implementation . . . . . . . . . . . . . . 88

Mathemagix . . . . . . . . . . . . . . . 87
type system . . . . . . . . . . . . . . . . 89

hrule . . . . . . . . . . . . . . . . . . . . . 24

identifier . . . . . . . . . . . . . . . . . 13, 21
named access . . . . . . . . . . . . . . . 22
operator . . . . . . . . . . . . . . . . . . 21

regular . . . . . . . . . . . . . . . . 13, 21
special . . . . . . . . . . . . . . . . . . . 21

if . . . . . . . . . . . . . . . . . . . . . . . 15

implicit
type conversion . . . . . . . . . . . . . . 41

import

C++ class . . . . . . . . . . . . . . . . 69
C++ container . . . . . . . . . . . . . . 70
C++ function . . . . . . . . . . . . . . . 71

C++ template . . . . . . . . . . . . . . 72
C++ variable . . . . . . . . . . . . . . . 71

import . . . . . . . . . . . . . . . . 69, 69, 71

in . . . . . . . . . . . . . . . . . . . 16, 25, 27

include . . . . . . . . . . . . . . . . . . . . 75
inclusion

circular . . . . . . . . . . . . . . . . . . 77

file . . . . . . . . . . . . . . . . . . . . . 75
indirect . . . . . . . . . . . . . . . . . . 76
private . . . . . . . . . . . . . . . . . . 76

public . . . . . . . . . . . . . . . . . . . 75
virtual . . . . . . . . . . . . . . . . . . . 76

indent . . . . . . . . . . . . . . . . . . . . 24

indirect
inclusion . . . . . . . . . . . . . . . . . 76

infix . . . . . . . . . . . . . . . . . . . . . 21

!> . . . . . . . . . . . . . . . . . . . 25, 27
!>= . . . . . . . . . . . . . . . . . . 25, 27
!< . . . . . . . . . . . . . . . . . . . 25, 27

!<= . . . . . . . . . . . . . . . . . . 25, 27
!= . . . . . . . . . . . . . . . . . . . 25, 27
# . . . . . . . . . . . . . . . . . . . . 25, 29

% . . . . . . . . . . . . . . . . . . . . 25, 28
& . . . . . . . . . . . . . . . . . . . . 25, 28
* . . . . . . . . . . . . . . . . . . . . 25, 28

*= . . . . . . . . . . . . . . . . . . . 25, 25
+ . . . . . . . . . . . . . . . . . . . . 25, 28
+= . . . . . . . . . . . . . . . . . . . 25, 25

- . . . . . . . . . . . . . . . . . . . . 25, 28
-> . . . . . . . . . . . . . . . . . . . 25, 27
-= . . . . . . . . . . . . . . . . . . . 25, 25

.. . . . . . . . . . . . . . . . . . . . 25, 28
/ . . . . . . . . . . . . . . . . . . . . 25, 28
/" . . . . . . . . . . . . . . . . . . . 25, 26

/= . . . . . . . . . . . . . . . . . . . 25, 25
: . . . . . . . . . . . . . . . . . . . . 25, 27
:: . . . . . . . . . . . . . . . . . . . 25, 27

::> . . . . . . . . . . . . . . . . . . 25, 27
:> . . . . . . . . . . . . . . . . . . . 25, 27
:= . . . . . . . . . . . . . . . . . . . 25, 25

:=> . . . . . . . . . . . . . . . . . . 25, 25
> . . . . . . . . . . . . . . . . . . . . 25, 27

>> . . . . . . . . . . . . . . . . . . . 25, 26
>>> . . . . . . . . . . . . . . . . . . 25, 26
>>= . . . . . . . . . . . . . . . . . . 25, 25

>< . . . . . . . . . . . . . . . . . . . 25, 28
>= . . . . . . . . . . . . . . . . . . . 25, 27
< . . . . . . . . . . . . . . . . . . . . 25, 27

<< . . . . . . . . . . . . . . . . . . . 25, 26
<<% . . . . . . . . . . . . . . . . . . 25, 26
<<* . . . . . . . . . . . . . . . . . . 25, 26

<<< . . . . . . . . . . . . . . . . . . 25, 26
<<= . . . . . . . . . . . . . . . . . . 25, 25
<= . . . . . . . . . . . . . . . . . . . 25, 27

<=> . . . . . . . . . . . . . . . . . . 25, 26
= . . . . . . . . . . . . . . . . . . . . 25, 27
=> . . . . . . . . . . . . . . . . . . . 25, 26

== . . . . . . . . . . . . . . . . . . . 25, 25
==> . . . . . . . . . . . . . . . . . . 25, 25
@ . . . . . . . . . . . . . . . . . . . . 25, 28

@* . . . . . . . . . . . . . . . . . . . 25, 28
@+ . . . . . . . . . . . . . . . . . . . 25, 28
@- . . . . . . . . . . . . . . . . . . . 25, 28

@/ . . . . . . . . . . . . . . . . . . . 25, 28

Index 99



\/ . . . . . . . . . . . . . . . . . . . 25, 26
^ . . . . . . . . . . . . . . . . . . . . 25, 28
and . . . . . . . . . . . . . . . . . . 25, 26

div . . . . . . . . . . . . . . . . . . 25, 28
downto . . . . . . . . . . . . . . . . 25, 28
in . . . . . . . . . . . . . . . . . . . 25, 27

mod . . . . . . . . . . . . . . . . . . 25, 28
or . . . . . . . . . . . . . . . . . . . 25, 26
quo . . . . . . . . . . . . . . . . . . 25, 28

rem . . . . . . . . . . . . . . . . . . 25, 28
to . . . . . . . . . . . . . . . . . . . 25, 28
xor . . . . . . . . . . . . . . . . . . 25, 26

~> . . . . . . . . . . . . . . . . . . . 25, 27
inheritance

category . . . . . . . . . . . . . . . . . . 67

inspection . . . . . . . . . . . . . . . . . . . 56
integer

constant . . . . . . . . . . . . . . . . . . 23

interpreter
hello world . . . . . . . . . . . . . . . . . 9

JIT . . . . . . . . . . . . . . . . . . . . . . 88

keyword . . . . . . . . . . . . . . . . . . . . 22
lambda . . . . . . . . . . . . . . . . 25, 26, 33
lf . . . . . . . . . . . . . . . . . . . . . . . 24

linker
flag . . . . . . . . . . . . . . . . . . 69, 75

literal . . . . . . . . . . . . . . . . . . . . 22

literal
constant . . . . . . . . . . . . . . . . . . 23
floating point number . . . . . . . . . . 24

integer . . . . . . . . . . . . . . . . . . . 23
string . . . . . . . . . . . . . . . . . . . 23

loop . . . . . . . . . . . . . . . . . . . . . . 16

continuation . . . . . . . . . . . . . . . 17
interruption . . . . . . . . . . . . . . . . 17

macro . . . . . . . . . . . . . . . . . . . . . 14

declaration . . . . . . . . . . . . . . . . 14
makefile . . . . . . . . . . . . . . . . . . . . 75

map . . . . . . . . . . . . . . . . . . . . 31, 52
mapper . . . . . . . . . . . . . . . . . . . . 31

converter . . . . . . . . . . . . . . . 32, 52

match . . . . . . . . . . . . . . . . . . . 15, 59
mathi . . . . . . . . . . . . . . . . . . . . . 53
matrix

explicit . . . . . . . . . . . . . . . . . . 31
Maxima . . . . . . . . . . . . . . . . . . . . 87
merge sort . . . . . . . . . . . . . . . . . . 10

method . . . . . . . . . . . . . . . . . . . . 51
method . . . . . . . . . . . . . . . . . . . . 51
ML . . . . . . . . . . . . . . . . . . . . . . . 8

mmc . . . . . . . . . . . . . . . . . . . . . . 88
--clean-cache . . . . . . . . . . . . . . 79
--color . . . . . . . . . . . . . . . . . . 80

--from-cpp . . . . . . . . . . . . . . . . 80
--gdb . . . . . . . . . . . . . . . . . . . 80
--keep-cpp . . . . . . . . . . . . . . . . 80

--keep-mmh . . . . . . . . . . . . . . . . 80
--keep-o . . . . . . . . . . . . . . . . . 80
--optimize . . . . . . . . . . . . . . . . 80

--progressive . . . . . . . . . . . . . . 80

--static . . . . . . . . . . . . . . . . . 80
--test-compile . . . . . . . . . . . . . 80
--test-run . . . . . . . . . . . . . . . . 80

--threads . . . . . . . . . . . . . . . . 80
--verbose . . . . . . . . . . . . . . . . 79

mmerr . . . . . . . . . . . . . . . . . . . . . 24

mmi . . . . . . . . . . . . . . . . . . . . 81, 88
--color . . . . . . . . . . . . . . . . . . 82
--quiet . . . . . . . . . . . . . . . . . . 82

--quit . . . . . . . . . . . . . . . . . . 83
--replay . . . . . . . . . . . . . . . . . 83
--texmacs . . . . . . . . . . . . . . . . 83

--time . . . . . . . . . . . . . . . . 83, 83
--verbose . . . . . . . . . . . . . . . . 83
debugger . . . . . . . . . . . . . . . . . 84

exit . . . . . . . . . . . . . . . . . . . . 82
glue . . . . . . . . . . . . . . . . . . . . 83
help . . . . . . . . . . . . . . . . . . . . 83

MMX_COLOR_MODE . . . . . . . . . . . . . 82
terminal . . . . . . . . . . . . . . . . . . 81

mmin . . . . . . . . . . . . . . . . . . . . . . 24

mmout . . . . . . . . . . . . . . . . . . . . . 24
mmx-light . . . . . . . . . . . . . . . . . . 88
mmx-shell . . . . . . . . . . . . . . . . . . 88

Mmxlib . . . . . . . . . . . . . . . . . . . . 88
mod . . . . . . . . . . . . . . . . . . . . 25, 28
mutable

conditional overloading . . . . . . . . . . 46
function . . . . . . . . . . . . . . . . . . 36
variable . . . . . . . . . . . . . . . . . . 13

mutable . . . . . . . . . . . . . . . . . . . . 49
OCaml . . . . . . . . . . . . . . . . . . . . . 8
operator . . . . . . . . . . . . . . . . . . . 21

named access . . . . . . . . . . . . . . . 22
such that . . . . . . . . . . . . . . . . . 30
where . . . . . . . . . . . . . . . . . . . 30

operator . . . . . . . . . . . . . . . . . . . 21
() . . . . . . . . . . . . . . . . . . . 25, 29

:-> . . . . . . . . . . . . . . . . . . 25, 26
[] . . . . . . . . . . . . . . . . . . . 25, 29
lambda . . . . . . . . . . . . . . . . 25, 26

operator

!= . . . . . . . . . . . . . . . . . . . . . 70
== . . . . . . . . . . . . . . . . . . . . . 70

operator != . . . . . . . . . . . . . . . . . 73
operator == . . . . . . . . . . . . . . . . . 73
or . . . . . . . . . . . . . . . . . . . . . 25, 26

overloading . . . . . . . . . . . . . . . . . . 37
conditional . . . . . . . . . . . . . . 44, 59

constant . . . . . . . . . . . . . . . . 44

mutable . . . . . . . . . . . . . . . . 46
discrete . . . . . . . . . . . . . . . . . . 37
parametric . . . . . . . . . . . . . . . . 38

parameter
assumptions . . . . . . . . . . . . . . . . 39

parameterized

category . . . . . . . . . . . . . . . . . . 67
parametric

overloading . . . . . . . . . . . . . . . . 38

partial specialization . . . . . . . . . . . . . 40

100 Index



pattern . . . . . . . . . . . . . . . . . . . . 58
extensible . . . . . . . . . . . . . . . . . 60
matching . . . . . . . . . . . . . . . . . 58
type . . . . . . . . . . . . . . . . . . . . 58
user defined . . . . . . . . . . . . . . . . 60

pattern . . . . . . . . . . . . . . . . . . . . 60
pattern matching . . . . . . . . . . . . . . . 15
Point . . . . . . . . . . . . . . . . . . . 49, 73
postfix . . . . . . . . . . . . . . . . . . . . 21

! . . . . . . . . . . . . . . . . . . . . 25, 29
’ . . . . . . . . . . . . . . . . . . . . 25, 29
() . . . . . . . . . . . . . . . . . . . 25, 29
++ . . . . . . . . . . . . . . . . . . . 25, 29
-- . . . . . . . . . . . . . . . . . . . 25, 29
[] . . . . . . . . . . . . . . . . . . . 25, 29
‘ . . . . . . . . . . . . . . . . . . . . 25, 29
~ . . . . . . . . . . . . . . . . . . . . 25, 29

prefix . . . . . . . . . . . . . . . . . . . . 21
! . . . . . . . . . . . . . . . . . . 25, 26, 29
# . . . . . . . . . . . . . . . . . . . . 25, 29
& . . . . . . . . . . . . . . . . . . . . 25, 29
++ . . . . . . . . . . . . . . . . . . . 25, 29
- . . . . . . . . . . . . . . . . . . . . 25, 29
-- . . . . . . . . . . . . . . . . . . . 25, 29
@ . . . . . . . . . . . . . . . . . . . . 25, 29
@- . . . . . . . . . . . . . . . . . . . 25, 29

private . . . . . . . . . . . . . . . . . . 14, 76
private

inclusion . . . . . . . . . . . . . . . . . 76
prototype

function . . . . . . . . . . . . . . . . . . 34
public

inclusion . . . . . . . . . . . . . . . . . 75
quo . . . . . . . . . . . . . . . . . . . . 25, 28
raise . . . . . . . . . . . . . . . . . . . . . 18
recursive

function . . . . . . . . . . . . . . . . . . 34
Reduce . . . . . . . . . . . . . . . . . . . . 87
rem . . . . . . . . . . . . . . . . . . . . 25, 28
return . . . . . . . . . . . . . . . . . . . . 14
return value

function . . . . . . . . . . . . . . . . . . 35
Ring . . . . . . . . . . . . . . . . . . 35, 51, 65
satisfy . . . . . . . . . . . . . . . . . . . . . 65
Scala . . . . . . . . . . . . . . . . . . . . . . 8
Scheme . . . . . . . . . . . . . . . . . . . 8, 88
shift . . . . . . . . . . . . . . . . . . . . . 36
step . . . . . . . . . . . . . . . . . . . . . . 16
string

constant . . . . . . . . . . . . . . . . . . 23
structure . . . . . . . . . . . . . . . . . . . 56

accessor . . . . . . . . . . . . . . . . . . 57
constructor . . . . . . . . . . . . . . . . 56
dispatch . . . . . . . . . . . . . . . . . . 62
extensible . . . . . . . . . . . . . . . . . 57

inspection . . . . . . . . . . . . . . . . . 56
syntactic sugar . . . . . . . . . . . . . . 61

Syntactic . . . . . . . . . . . . . . . . . . 53
Tangent . . . . . . . . . . . . . . . . . . . . 39
template . . . . . . . . . . . . . . . . . . . 38

import . . . . . . . . . . . . . . . . . . . 72
partial specialization . . . . . . . . . . . 40

then . . . . . . . . . . . . . . . . . . . . . . 15
this . . . . . . . . . . . . . . . . . . . . 23, 51
This . . . . . . . . . . . . . . . . . . . . . . 65
to . . . . . . . . . . . . . . . . . . . 25, 28, 29
To . . . . . . . . . . . . . . . . . . . . . . . 42
true . . . . . . . . . . . . . . . . . . . . . . 24
try . . . . . . . . . . . . . . . . . . . . . . 18
tuple

argument . . . . . . . . . . . . . . . . . 33
TEXMACS . . . . . . . . . . . . . . . . . . . 87
type

abstract data — . . . . . . . . . . . . . 56
conversion . . . . . . . . . . . . . . . . . 41

a posteriori . . . . . . . . . . . . . . 42
a priori . . . . . . . . . . . . . . . . 42
explicit . . . . . . . . . . . . . . . . 42
implicit . . . . . . . . . . . . . . . . 41

pattern . . . . . . . . . . . . . . . . . . 58
structure . . . . . . . . . . . . . . . . . 56
union . . . . . . . . . . . . . . . . . . . 56

type system . . . . . . . . . . . . . . . . . . 89
unindent . . . . . . . . . . . . . . . . . . . 24
union . . . . . . . . . . . . . . . . . . . 56, 57
until . . . . . . . . . . . . . . . . . . . . . 16
upgrade . . . . . . . . . . . . . . . . . . . . 52
upgrader . . . . . . . . . . . . . . . . . . . 52
variable

declaration . . . . . . . . . . . . . . . . 13
export . . . . . . . . . . . . . . . . . . . 73
global . . . . . . . . . . . . . . . . . . . 13
mutable . . . . . . . . . . . . . . . . . . 13
skope . . . . . . . . . . . . . . . . . . . 13

virtual
inclusion . . . . . . . . . . . . . . . . . 76

where . . . . . . . . . . . . . . . . . . . . . 30
while . . . . . . . . . . . . . . . . . . . . . 16
wildcard . . . . . . . . . . . . . . . . . . . 59

unnamed . . . . . . . . . . . . . . . . . 59
untyped . . . . . . . . . . . . . . . . . . 59

with . . . . . . . . . . . . . . . . . . . . . . 15
xor . . . . . . . . . . . . . . . . . . . . 25, 26
{ . . . . . . . . . . . . . . . . . . . . . . . 13
| . . . . . . . . . . . . . . . . . . . 30, 30, 45
|| . . . . . . . . . . . . . . . . . . . . . . . 31
} . . . . . . . . . . . . . . . . . . . . . . . 13
}/ . . . . . . . . . . . . . . . . . . . . . . . 19
~ . . . . . . . . . . . . . . . . . . . . . 25, 29
~> . . . . . . . . . . . . . . . . . . . . . 25, 27

Index 101


