THE MATHEMAGIX PACKAGES
Table of Contents

1. **MMXLIGHT** ... 7
 1.1. Using the MMX-LIGHT interpreter 7
 1.1.1. Terminal interface .. 7
 1.1.2. Loading Mathemagix files ... 8
 1.1.3. Using MMX-LIGHT files as scripts 8
 1.1.4. Loading a package .. 9
 1.1.5. The environment files .. 9
 1.1.6. Help function ... 9
 1.2. Declaration and control sequences 10
 1.2.1. Variables and constants ... 10
 1.2.1.1. Identifiers .. 10
 1.2.1.2. Literals .. 10
 1.2.1.3. Definition and assignation 11
 1.2.2. Operators ... 11
 1.2.3. Control flow .. 13
 1.2.3.1. Sequence of Instructions 13
 1.2.3.2. Conditionals ... 13
 1.2.3.3. Loops ... 14
 1.2.4. Comments ... 14
 1.3. Functions and macros ... 14
 1.3.1. Function definition ... 14
 1.3.2. Function call .. 15
 1.3.3. Functions like methods .. 15
 1.3.4. Functional programming 15
 1.4. Built-in data types .. 16
 1.4.1. Generic ... 16
 1.4.2. Boolean ... 16
 1.4.3. Strings .. 17
 1.4.4. Machine integers .. 17
 1.4.5. Double .. 18
 1.4.6. Syntactic .. 18
 1.4.7. Vectors ... 19
 1.4.8. Tuples .. 19
 1.4.9. Iterators .. 20
 1.4.10. Tables ... 21
 1.4.11. Ports .. 21
 1.4.12. Handling file ... 21
 1.4.13. Environment .. 22
 1.5. Classes .. 22
 1.5.1. Class definition .. 22
 1.5.2. Type conversions .. 23
 1.6. Coding style ... 24
 1.7. An Emacs mode for Mathemagix files 24

2. **Basix** ... 27
2.1. Introduction to the Basix package .. 27
 2.1.1. A simple example of use ... 27
2.2. Basic data types ... 28
 2.2.1. Strings ... 28
 2.2.2. Lists ... 28
 2.2.3. Balanced tree ... 28
 2.2.4. Heaps .. 29
 2.2.5. Pairs, triples, tuples .. 29
 2.2.6. Vectors ... 29
 2.2.7. Tables ... 29
 2.2.8. Iterators ... 29
2.3. Basix' Internals ... 30
 2.3.1. Indirect Data Structures 30
2.4. Global settings ... 30
 2.4.1. Memory managment .. 30
 2.4.2. Error Management ... 30
2.5. Creating TEX\textsc{macs} documents 30
3. NUMERIX .. 31
 3.1. Integer and rational numbers ... 31
 3.1.1. Signed integer numbers 31
 3.1.2. Rational numbers ... 31
 3.1.3. MATHEMAGIX interface 31
 3.2. Modular numbers .. 32
 3.2.1. General modulars and moduli 32
 3.2.2. Moduli for hardware integers 33
 3.2.2.1. Naive implementation 33
 3.2.2.2. Moduli with pre-computed inverse 33
 Modular product ... 33
 Numerical inverse .. 34
 Modular product by a constant 34
 3.2.3. Use from the MMX-LIGHT interpreter 35
 3.2.4. Further remarks .. 35
 3.3. Floating point numbers .. 36
 3.3.1. Floatings .. 36
 3.3.1.1. C++ interface ... 36
 3.3.1.2. MATHEMAGIX interface 36
 3.3.2. Intervals .. 37
 3.3.2.1. C++ interface ... 37
 3.3.2.2. MATHEMAGIX interface 37
 3.3.3. Complex numbers ... 37
 3.3.3.1. C++ interface ... 37
 3.3.3.2. MATHEMAGIX interface 38
 3.3.4. Balls ... 38
 3.3.4.1. C++ interface ... 38
 3.3.4.2. MATHEMAGIX interface 38
 3.4. Tangent numbers .. 39
4. ALGEBRANIX .. 41
 4.1. Mechanism for implementation variants 41
<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2. Optimized variants for vectors</td>
</tr>
<tr>
<td>4.2.1. Unrolled vectorial operations</td>
</tr>
<tr>
<td>4.2.2. SIMD support</td>
</tr>
<tr>
<td>4.3. Univariate polynomials</td>
</tr>
<tr>
<td>4.3.1. Naive algorithms</td>
</tr>
<tr>
<td>4.3.2. Divide and conquer algorithms</td>
</tr>
<tr>
<td>4.3.3. Asymptotically fast algorithms</td>
</tr>
<tr>
<td>4.3.4. Special types of coefficients</td>
</tr>
<tr>
<td>4.3.4.1. Kronecker’s substitution</td>
</tr>
<tr>
<td>4.3.4.2. Modulars</td>
</tr>
<tr>
<td>4.3.4.3. Complex numbers</td>
</tr>
<tr>
<td>4.3.4.4. Quotient fields</td>
</tr>
<tr>
<td>4.3.5. Quotient ring</td>
</tr>
<tr>
<td>4.3.6. MATHEMAGIX interface</td>
</tr>
<tr>
<td>4.4. Power series</td>
</tr>
<tr>
<td>4.4.1. Introduction</td>
</tr>
<tr>
<td>4.4.2. Naive algorithms</td>
</tr>
<tr>
<td>4.4.3. Relaxed algorithm</td>
</tr>
<tr>
<td>4.4.4. Recursive series</td>
</tr>
<tr>
<td>4.4.5. Implicit series</td>
</tr>
<tr>
<td>4.4.6. Vectorial operations</td>
</tr>
<tr>
<td>4.4.7. MATHEMAGIX interface</td>
</tr>
<tr>
<td>4.5. (p)-adic integers</td>
</tr>
<tr>
<td>4.5.1. Introduction</td>
</tr>
<tr>
<td>4.5.2. Specific variants</td>
</tr>
<tr>
<td>4.5.3. MATHEMAGIX interface</td>
</tr>
<tr>
<td>4.6. Quotient fields</td>
</tr>
<tr>
<td>4.6.1. C++ interface</td>
</tr>
<tr>
<td>4.6.2. MATHEMAGIX interface</td>
</tr>
<tr>
<td>4.7. Matrices</td>
</tr>
<tr>
<td>4.7.1. Optimized variants</td>
</tr>
<tr>
<td>4.7.2. Special types of coefficients</td>
</tr>
<tr>
<td>4.7.3. MATHEMAGIX interface</td>
</tr>
<tr>
<td>4.8. Multi-modular techniques</td>
</tr>
<tr>
<td>4.8.1. Coverings</td>
</tr>
<tr>
<td>4.8.2. Transformers</td>
</tr>
<tr>
<td>5. ANALYZIZ</td>
</tr>
<tr>
<td>5.1. Univariate polynomials</td>
</tr>
<tr>
<td>5.1.1. C++ interface</td>
</tr>
<tr>
<td>5.1.2. MATHEMAGIX interface</td>
</tr>
<tr>
<td>5.2. Power series</td>
</tr>
<tr>
<td>5.2.1. C++ interface</td>
</tr>
<tr>
<td>5.2.2. MATHEMAGIX interface</td>
</tr>
<tr>
<td>5.3. Matrices</td>
</tr>
<tr>
<td>5.3.1. C++ interface</td>
</tr>
<tr>
<td>5.3.2. MATHEMAGIX interface</td>
</tr>
<tr>
<td>6. FACTORIX</td>
</tr>
<tr>
<td>6.1. Separable factorization</td>
</tr>
<tr>
<td>6.2. Squarefree factorization</td>
</tr>
</tbody>
</table>
Table of contents

7. GeomsolveX ... 59
 7.1. Geometric resolution 59
 7.2. Use from the interpreter 59

8. Continewz .. 61
 8.1. Analytic functions .. 61
 8.1.1. Use from C++ ... 61
 8.1.2. Use from the interpreter 61
 8.2. Reliable integration of differential equations 63
 8.3. Homotopy continuation 65

9. Graphix ... 67
 9.1. Graphical interface to \textsc{TeXmacs} 67
 9.2. Graphs of functions .. 68
 9.3. Animations .. 69
 9.3.1. Animations that remain in the document 70
 9.3.2. Animations that operate on the document 70

10. Mblad .. 71
 10.1. Download and installation of BLAD 71
 10.2. Using BAD from MATHEMAGIX 71

11. MFGb ... 73
 11.1. Download and installation of FGB 73
 11.1.1. Installation for Linux platforms 73
 11.1.2. Installation for Mac OSX platforms 73
 11.1.3. Configuration ... 73
 11.2. Using FGB within MATHEMAGIX 74
 11.2.1. Use from C++ .. 74
 11.2.2. Use from the interpreter 74

12. Mpari .. 75
 12.1. Download and installation of PARI/GP 75
 12.2. Using PARI from MATHEMAGIX 75

Index ... 77
CHAPTER 1

MMXLIGHT

1.1. USING THE MMX-LIGHT INTERPRETER

1.1.1. Terminal interface

The MMX-LIGHT interpreter starts with the command:

```
Shell] mmx-light
```

<table>
<thead>
<tr>
<th>:) Welcome to Mathemagix-light 0.4 (:</th>
</tr>
</thead>
<tbody>
<tr>
<td>This software falls under the GNU General Public License</td>
</tr>
<tr>
<td>It comes without any warranty whatsoever</td>
</tr>
<tr>
<td>www.mathemagix.org</td>
</tr>
<tr>
<td>(c) 2001--2010</td>
</tr>
</tbody>
</table>
---|

If you use the interpreter in a textual context, several shortcuts can be very useful such as:

- [Ctrl-A], [Ctrl-E] to go to the beginning or end of the instruction line,
- ↑, ↓ for the previous and next instruction lines,
- [tab] for name completion,
- [Meta-return] to add an extra line to the current instruction line when using a text terminal. Note that on several platforms the [Meta] key is binded to [Alt]. On the Mac OS X terminal, unless the [Alt] key has been specifically set so from the terminal preferences menu, one must type [esc] and then [return]. Within a TEXMACS session, one has to type [Shift-return].

Different modes are available:

- `type_mode? := true;` to print the type information with the result of an evaluation in the interpreter.
- `time_mode? := true;` to print the time needed to evaluate an instruction line when it is bigger than 1 ms.
- `debug_mode? := true;` to print debug information when an error occurs;
• quiet_mode? := true; to print only the input command and opt result of an
evaluation (no prompt, no banner);

1.1.2. Loading MATHEMAGIX files

A classical way to develop MATHEMAGIX code is to edit files and load them from the inter-
preter. As an example, we give below the content of a file step1.mmx (in mmxtools/mmx):

```
function f(n: Int): Int == {
    if n < 2 then return n;
    else {
        mmout << n << 
        if n mod 2 = 0 then return f(n quo 2);
        else return f(3*n + 1);
    }
}
```

It can be used from the interpreter as follows:

```
Mmx] include "mmxlight/step1.mmx"
Mmx] f 5
```

5
16
8
4
2
1

1.1.3. Using MMX-LIGHT files as scripts

The interpreter can be used directly with a file:

```
mmx-light step1.mmx
```

MATHEMAGIX files can also be used as scripts, as shown in this example:

```
#!/usr/bin/env mmx-light
m: Double := 0.0;
for i in 1..#argv do
    m := m + as_double argv[i];
mmout << "Mean: " << m / (#argv-1) << "\n";
```

If this code is saved into a file, say mean, it can be used as follows:
chmod u+x mean
./mean 3.2 5.6 -1.7
Mean: 2.36666666667

provided that the command mmx-light is available.

1.1.4. Loading a package

The command to load and use the types and functions exported by an external library is use:

```plaintext
use "package";
```

Here the dynamic library libmmxpackage.so will be searched in the loading path (see variable LD_LIBRARY_PATH or DYLD_LIBRARY_PATH).

1.1.5. The environment files

The first time the shell is launched it creates a .mathemagix in the home directory. A warning message is printed.

The file .mathemagix/etc/boot.mmx is automatically loaded at startup. This is the right place to customize the shell and to load the packages you frequently use. In order to load packages you can proceed as follows:

```plaintext
if supports? "numerix" then use "numerix";
if supports? "algebramix" then use "algebramix";
```

Prior to user’s boot file a global boot file (usually /usr/local/etc/mathemagix/boot.mmx) is loaded. In case you wish to disable both boot files use the option --noboot within the mmx-light command.

Within an interactive session, ending a line with a ’;’ actually means finishing with a null instruction. As a consequence this extra ’;’ prevents from printing the output of the previous instruction.

1.1.6. Help function

Help on functions and types can be obtained with the help command:

```plaintext
Mmx] help Generator Generic
```

Generator (Generic) (Class)

Available functions

!= : (Generator (Generic), Generator (Generic)) -> Boolean
= : (Generator (Generic), Generator (Generic)) -> Boolean
1.2. Declaration and control sequences

1.2.1. Variables and constants

1.2.1.1. Identifiers

Identifiers are formed using letters, digits and the special characters _ and ?. Identifiers must start with a letter or _. Identifiers match the \[a-zA-Z_]+[a-zA-Z0-9_\?]*\] regular expression.

Examples of identifiers are x, y2, my_var and test?.

Some special predefined constants are:

true. The boolean constant true.

false. The boolean constant false.

mmout. The standard output stream.

mmerr. The standard error stream.

Notice that streams can be used with the operators \texttt{\textasciitilde\textasciitilde} as in C++:

\begin{verbatim}
mmout \textasciitilde\textasciitilde 3 \textasciitilde\textasciitilde \"\n\";
\end{verbatim}

1.2.1.2. Literals

\texttt{mmx-light} supports three types of literal constants:

\textbf{String literals.} Strings can be braced into double quotes \" \ldots \". Inside such a string a double quote must be blackslashed. In order to avoid blackslashing one can use the stronger string delimiters /" \ldots "/.

\begin{verbatim}
s1 := \"This is a string\";
s2 := \"Print \"foo\"\";
s2 := /\"Print \"foo\"/;
\end{verbatim}
Integer literals. An integer literal is a sequence of digits, possible preceded by a minus sign. It matches the regular expression \([-]?[0-9]+\). Examples: 123456789123456789, -123.

Floating literals. A floating literal is a sequence of digits with a decimal point inside and an optional exponent. It matches the regular expression \([-]?[0-9]+[.][0-9]+[Ee][-]?[0-9]+\). Some examples:

```plaintext
z := 0.0;
w := -3.14159;
x := 1.11e2007
```

Note that 0. is not permitted, one must write 0.0.

1.2.1.3. Definition and assignation

To assign a value to a variable, we use the operator `:=`, while constant values are defined by the operator `==`, and cannot be modified hereafter.

```plaintext
Mmx] a1 := 1
1
Mmx] a1_? == 2; a1_?
2
Mmx] cst: Int == 1111111111111111
1234554321
Mmx] mut: Int := 10101234
1246340
Mmx] cst := - cst

1:1: exception, expected Alias \/
Tuple
cst := - cst
---
Mmx] mut := - mut

-1246340
```

1.2.2. Operators

Here we list the operators in increasing priority order, together with their internal names:
== DEFINE
:= ASSIGN
==> DEFINE_MACRO
::=> ASSIGN_MACRO

+= PLUS_ASSIGN
-= MINUS_ASSIGN
*= TIMES_ASSIGN
/= OVER_ASSIGN

<< LEFT_FLUX
<<* LEFT_FLUX_VAR
<<% LEFT_FLUX_STR
>> RIGHT_FLUX
-> IMPLIES
<> EQUIVALENT

or SEQOR
OR
xor XOR

and SEQAND
AND

= EQUAL
< LESS
<= LEQ
> GREATER
=> GEQ
!~= NOT_EQUAL
!< NOT_LESS
!<= NOT_LEQ
!> NOT_GREATER
!=> NOT_GEQ

-> INTO
::=> MAPSTO

.. RANGE
to RANGEEQ

+ PLUS
- MINUS
©+ OPLUS
©- OMINUS

* TIMES
/ OVER
©* OTIMES
©/ OOVER
div DIV
mod MOD
© COMPOSE

! NOT
©- MINUS
©- OMINUS
©+ INC
©- DEC
© SIZE
© POWER

++ INC
-- DEC
! NOT
\ QUOTE
` BACKQUOTE
- TILDA
. ACCESS
Whenever writing a complex expression you should carefully consider these priority rules in order to avoid using extra parentheses. For example the expression

\[
\text{if } ((a*b)+(c)>(d)) \text{ then foo ();}
\]

should be better written

\[
\text{if } a*b + c > d \text{ then foo ();}
\]

The Mathemagix grammar is specified in the file `mmx-parser.ypp` of the `basix` module.

1.2.3. Control flow

1.2.3.1. Sequence of Instructions

Instructions are separated with `;`.

\[
x := 1;
y := 3;
z := x*y;
\]

1.2.3.2. Conditionals

The construction is as follows: \texttt{if condition then block1 else block2}. condition is any expression that evaluates to a boolean. block1 and block2 are either one instruction or a block of instructions braced into `{...}`. The \texttt{else} part is optional.

\[
\text{if true then 1;
if a = b then 1 else 2;
if i = 0 then \{ x := 1; y := 2 \} else \{ z := 3; mmerr << "error" \}}
\]

For the sake of readability do not write

\[
\text{if a = 0 then \{ b := 0 \}}
\]

but

\[
\text{if a = 0 then b := 0;}
\]

instead, since `{...}` are not needed for a block with one instruction only. Notice that, according to the priority rules of the operators listed above, the expression

\[
\text{if } ((a = 0) \text{ and } (b = 0)) \text{ then foo ();}
\]

should be written

\[
\text{if } a = 0 \text{ and } b = 0 \text{ then foo ();}
\]
for the sake of readability.

1.2.3.3. Loops

Loops are constructed as follows: `[for E1] [while E2] [until E3] [step E4] do block.`

Here `[...]` means that the expression is optional. block is an instruction or a sequence of instruction delimited by `{...}`. break exits the loop, and continue goes to the next step of the loop.

```plaintext
do mmout << "no end "; // This loop has no end
for i in 1..3 do mmout << i << " ";
i := 0; while i < 0 do { mmout << i << " "; i := i + 1 }
```

1.2.4. Comments

Comments starting with `//` extend to the end of the physical line. Such a comment may appear at the start of a line or following whitespace or code, but not within a string literal. Multi-line comments must be braced into `/{ ... }/` and can be nested.

```plaintext
x := 1; // Assign 1 to x.

y := 2;
/{ This
  is multi-line
  comment about y.
}/
```

1.3. Functions and Macros

1.3.1. Function definition

Any function definition can be preceded by the quantifier `forall(...).`

A function definition is done as follows:

```plaintext
name (arg1: type1, arg2: type2, ...): returned_type == ...
```

MMX-LIGHT also provides a syntax for lambda expressions:

```plaintext
lambda (arg1: type1, arg2: type2, ...): returned_type do ...
```

Notice that any of the type specifications can be omitted, in which case the type is assumed to be `Generic`.

```plaintext
discr (a, b, c) == b^2 - 4*a*c;
forall (R) gcd (p: Polynomial(R), q: Polynomial(R)): Polynomial(R) == {...}
```
A macro corresponds to a syntactic definition and can be introduced by using `==>`. Expression macros can also be defined by using `macro` instead of `lambda`. No type is needed:

```
Mmx] square x ==> x*x
```

```
4
```

```
Mmx] square 2
```

```
4
```

```
Mmx] disc (a,b,c) ==> b*b - 4*a*c
```

```
-8.004
```

1.3.2. Function call

A function or a macro `foo` is called in the usual way: `foo (arg1, arg2,...)`.

If `foo` is unary then `()` can be omitted, but note that `foo a b c` is equivalent to `foo (a (b (c)))`. Function call is always by value.

1.3.3. Functions like methods

The definition of a postfix function is preceded by the keyword `postfix`. The name of the function should start with a `.`.

```
Mmx] postfix .square (i: Int): Int == i*i;

```

```
9
```

```
Mmx] postfix .m (a: Int) (b: Int): Double == 1.0 * a * b;

```

```
9
```

1.3.4. Functional programming

Functions can be treated like other objects. Nested functions are supported by MMX-LIGHT.

```
Mmx] shift (x: Int) (y: Int): Int == x + y;
```

```
``
1.4. **Builtin data types**

In this section, we describe the basic types of MMX-LIGHT. For the other types, provided by the extension packages, see their respective documentation.

### 1.4.1. Generic

The default type of an object is `Generic` and the corresponding variable type is `Alias Generic`:

```mmxlight
Mmx] a := x

x
```

```mmxlight
Mmx] type a

Alias(Generic)
```

### 1.4.2. Boolean

The usual boolean constants are `true` and `false`. The equality and inequality tests are `=` and `!=`. To build boolean expressions, we use the operators `and`, `or` and the negation operator `!`.

```mmxlight
Mmx] a = a

true
```

```mmxlight
Mmx] a != a

false
```

```mmxlight
Mmx] a = b and a != c

false
```

```mmxlight
Mmx] a = b or a != c

true
```

```mmxlight
Mmx] !(a = b or a != c)

false
```
1.4.3. Strings

Strings can be braced into double quotes " ... ". Inside such a string a double quote must be blackslashed. In order to avoid blackslashing one can use the stronger string delimiters /* ... */.

```mmx
Mmx] s1 := "This is a string"
"This is a string"

Mmx] s2: String := "Print "foo" "
"Print "foo" "

Mmx] s2 := /* Print "foo" */
" Print "foo" "

Mmx] s3 := s2 << " and "fii" "
" Print "foo" and "fii" "

Mmx] s2 << /* and "fuu" */
" Print "foo" and "fuu" "

Mmx] #s1
16

Mmx] search_forwards (s2, "Print", 0)
1

Mmx] replace (s2, "fuu", "haha")
" Print "foo" and "haha" "
```

1.4.4. Machine integers

An integer literal is a sequence of digits, possibly preceded by a minus sign. It matches the regular expression [-]?[0-9]+. Examples: 123456789123456789, -123. The default type for integers is Int. It corresponds to machine type int. The usual arithmetic operators +, -, * are available, as well as the inplace operators +=, -=, *=.

```mmx
Mmx] a := 2
2

Mmx] a+3; a-5; a*a
4

Mmx] a += 1; a *= 2; a -= 3
3
```
1.4.5. Double

By default, the floating point literals are converted to Double types. A floating literal is a sequence of digits with a decimal point inside and an optional exponent. It matches the regular expression \([-]?[0-9]+[.]?[0-9]+[eE][-]?[0-9]+\]. Note that 0. is not permitted, one must write 0.0;

```
2.1
```
2.1

```
2.1*3
```
6.3

```
2.3/2-1
```
0.15

1.4.6. Syntactic

The Syntactic type can be used to produce document outputs, represented as lisp-type expressions. It is automatically parsed by TeXmacs to display these outputs.

```
type_mode?:=true
```

true: Boolean

```
'(x
```
x: Literal

```
'(f (x, y, z))
```
f(x,y,z): Compound

```
'(f (x, y, z)) [2]
```
y: Literal

```
document ("Some ", $with ("color", "red", "red"), " text.");
"Pythagoras said ", $math ('(a^2 + b^2 = c^2)), ".")
```

Some red text.
Pythagoras said $a^2 + b^2 = c^2$. 
1.4.7. Vectors

Vectors are sequences of elements, stored in an array and with a direct access through their index. Their type is parametrized by the type of the elements. The default type is \texttt{Vector Generic}. The indices start from 0. The length of a vector is given by the prefix operator \#. The concatenation of vectors is performed by the operator >\<. The inplace concatenation of vectors is done by the operator <<. The classical operations \texttt{car}, \texttt{cdr}, \texttt{cons} are available on vectors.

\begin{verbatim}
Mmx] v := [1,2,3]

[1,2,3]: Alias(Generic)


6: Int

Mmx] #v

3: Int

Mmx] w := v >\< [4,5]

[1,2,3,4,5]: Alias(Generic)

Mmx] v << [1,2]

[1,2,3,1,2]: Alias(Vector(Generic))

Mmx] [car v, cdr v, cons (3, v)]

[1, [2,3,1,2],[3,1,2,3,1,2]]: Vector(Generic)

Mmx] reverse v

[2,1,3,2,1]: Vector(Generic)

Mmx] contains?(v, 1)

true: Boolean
\end{verbatim}

1.4.8. Tuples

Tuples are written inside (...). Elements are separated by ,, which is associative, so that (1, (2, 3)) is the same as (1, 2, 3).

\begin{verbatim}
Mmx] v := (1, 2, 3)

(1,2,3)

Mmx] (1, (2, 3))

(1,2,3)

Mmx] v:= [1, 2]; (v, ((v)))
\end{verbatim}
Row-tuples rows are separated by ;, as exemplified with the constructions of matrices (defined in the ALGEBRAMIX package):

\[
\begin{pmatrix}
1 & 2 \\
3 & 4 \\
5 & 6
\end{pmatrix} : \text{Tuple(Generic)}
\]

\[
\begin{bmatrix}
1 & 2 \\
3 & 4 \\
5 & 6
\end{bmatrix} : \text{Matrix(Integer)}
\]

Automatic constructions are possible through the | resp. || notation:

\[
\begin{pmatrix}
i \cdot 2 \\i \text{ in } 1..3
\end{pmatrix}
\]

iterator(1,4): Generator(Generic)

\[
\begin{pmatrix}
i \cdot j \\i \text{ in } 1..3, j \text{ in } 1..4
\end{pmatrix}
\]

[1,2,3,2,4,6]: Vector(Integer)

\[
\begin{pmatrix}
i \cdot j \\i \text{ in } 1..5 || j \text{ in } 1..5
\end{pmatrix}
\]

\[
\begin{bmatrix}
1 & 2 & 3 & 4 \\
2 & 4 & 6 & 8 \\
3 & 6 & 9 & 12 \\
4 & 8 & 12 & 16
\end{bmatrix} : \text{Matrix(Integer)}
\]

### 1.4.9. Iterators

\(a \text{ to } b\) means the range \([a,b]\), while \(a..b\) stands for the half open range \([a,b)\).

\[
\begin{pmatrix}
1 \text{ to } 4
\end{pmatrix}
\]

iterator(1,2,3,4): Generator(Generic)

\[
1..4
\]

iterator(1,2,3): Generator(Generic)

\[
[1..6]
\]

[1,2,3,4,5]: Vector(Integer)

\[
[i \cdot i \mid i \text{ in } 1 \text{ to } 10]
\]
1.4.10. Tables

Tables allow to store the association between keys of one type and values of another type. They are defined by providing a default value. The default type for tables used in the interpreter is `Table(Generic, Generic)`. In the following example, the default value is 1:

```plaintext
Mmx] t := table(1);
Mmx] t[1] := -3; t[34] := 2
```

2

```plaintext
Mmx] t[0]

1

Mmx] contains? (t, 2)

false
```

1.4.11. Ports

There is an output stream, which is called `mmout`. It can be used with the operator `<<` to print strings:

```plaintext
Mmx] type_mode? := true;
Mmx] mmout

formatting_port(output_file_port(mmout)): Port

Mmx] mmout << "Hello\n";

Hello

Mmx] i := 3; mmout << "The square of " << i << " is " << i*i << "\n";

The square of 3 is 9
```

Output streams can also be defined from files. Here we write a string into the file `toto.txt`, and we load the contents of this file into a string:

```plaintext
Mmx] output_file_port("toto.txt") << "Hi there\n";
Mmx] load("toto.txt")

"Hi there\n": String
```

1.4.12. Handling file

Here are some useful commands to read and save data in files. The command to read a `Mathemagix` file and to evaluate it is `include`. The command to save a `String` in a file is `save`. 
The file names in a directory can be recovered by the command load_directory. The result is a vector of strings, which corresponds to the name of a file or a subdirectory.

To check if a file or a directory exists, one can use the predicate readable?.

```
Mmx] include "example.mmx"
Mmx] save ("tmp.txt", "A string is stored in the file \n in two lines");
Mmx] load "tmp.txt"

"A string is stored in the file \n in two lines": String
```

```
Mmx] load_directory "."

["..", ".svn", ".", "emacs_mode.en.tm", "index.en.tm"]: Vector(Generic)
```

### 1.4.13. Environment

Several functions are available to interact with the environment. To get the value of a variable defined in the environment, one can use get_env.

To run a command in this environment, one can use the function system:

```
Mmx] get_env "PWD"

/user/mourrain/home/mmx/mmxlight/doc/texmacs
```

```
Mmx] set_env ("DISPLAY", "arthur:0")

0
```

```
Mmx] system "ls"

emacs_mode.en.tm
how_to.en.tm
index.en.tm
installation.en.tm
quick_start.en.tm
shell.en.tm
shell_tutorial.en.tm
syntax.en.tm
tmp.txt
toto.txt
temp
0: Int
```

### 1.5. Classes

#### 1.5.1. Class definition

User classes can be defined within MMX-LIGHT, as shown in the following example:

```
Mmx] type_mode? := true
```
true: Boolean

```m الملصق
class Color == {
 mutable { r: Double; g: Double; b: Double; }
 constructor grey (x: Double) == {
 r = x; g = x; b = x;
 }
 constructor rgb (r2: Double, g2: Double, b2: Double) == {
 r = r2; g = g2; b = b2;
 }
}
```

```m الملصق
rgb(1,0,0): Color
```

```m الملصق
flatten (c: Color): Syntactic ==
 syntactic ("rgb (as_generic flatten c.r,
 as_generic flatten c.g,
 as_generic flatten c.b));
```

```m الملصق
rgb(1,0,0): Color
```

```m الملصق
mix (c1: Color, c2: Color, a: Double): Color ==
 rgb (a * c1.r + (1-a) * c2.r,
 a * c1.g + (1-a) * c2.g,
 a * c1.b + (1-a) * c2.b);
```

```m الملصق
mix (rgb (1,0,0), grey (0.5), 0.5)
```

RGB: Color

1.5.2. Type conversions

The operator :> can be used to convert a given type into another, provided that the corresponding function `downgrade` is defined. We show here an example of an explicit conversion from a class `Alpha_color` to the class `Color`:

```m الملصق
class Alpha_color == {
 mutable { c: Color; a: Double; }
 constructor alpha_color (c2: Color, a2: Double) == { c = c2; a = a2; }
};
```

```m الملصق
alpha_color (rgb(0,0,1), 0.5)
```

```m الملصق
object([rgb(0,0,1), 0.5], Alpha_color): Alpha_color
```

```m الملصق
downgrade (ac: Alpha_color): Color == mix (ac.c, rgb(1,1,1), ac.a);
```

```m الملصق
alpha_color (rgb(0,0,0), 0.6) :> Color
```

RGB: Color

In order to define implicit conversions from a type into another, one can use the function `upgred`. We complete the example with a convert from `Double` to `Color`:
Mmx\[\text{**upgrade** (x: Double): Color == grey x;\]**

\[\text{Mmx\[\text{mix (1.0, rgb (0, 1, 0), 0.2)\]**

\[\text{rgb(0.2,1,0.2): Color\]**

\[\text{Mmx\[\text{mix (0.8, 0.2, 0.4)\]**

\[\text{rgb(0.44,0.44,0.44): Color\]**

\[\text{Mmx\[\text{postfix .greyed (c: Color): Color == (c.r + c.g + c.b) / 3;\]**

\[\text{Mmx\[\text{rgb (1, 0, 0).greyed\]**

\[\text{rgb(0.333333333333,0.333333333333,0.333333333333): Color\]**

1.6. **Coding style**

- Avoid lines with more than 80 characters. For long instructions, you should better rewrite

\[\text{D := divide((k*(k-i)*(SR[k][i])*(SR[k][k])
-(i+1)*(SR[k][k-1])*(SR[k][i+1])),delt[k]);\]**

into

\[\text{left == k * (k-i) * SR[k][i] * SR[k][k];
right == (i+1) * SR[k][k-1] * SR[k][i+1];
D := divide (left - right, delt[k]);\]**

- Add spaces around the main operators to ease readability. For instance the expression

\[\text{a:=b[0]*b[2]/c[0]-a[3]*b[0]^2*c[5]+a[6]*a[7]-b[8]^10;}\]**

should better be written


- Align operators when useful for readability. For instance write

\[\text{blah == 2;}
b\oe == 3;\]**

- Function and macro names should be meaningful and written in English.

1.7. **An Emacs mode for Mathemagix files**

To edit *Mathemagix* code with *Emacs*, a *mmx* mode can be used. It is available in *mmxlite/emacs/mmx-mode.el* and can be installed as follows:
The following can be added in the file `.emacs`:

```lisp
(cp mmx/mmxligh/emacs/mm- mode.el $HOME/.emacs.d)

(setq load-path
 (append load-path (list (expand-file-name "~/.emacs.d")))))
(setq auto-mode-alist
 (append auto-mode-alist '((".mmx" . mmx-mode))))
(autoload 'mmx-mode
 "mmx-mode.el" "Major mode for editing Mathemagix files" t)

Once this is done, the `mmx-mode` will be loaded automatically for files with suffix `.mmx`.

Once this is done, the `mmx-mode` will be loaded automatically for files with suffix `.mmx`.

1.7 An Emacs mode for Mathemagix files
2.1. Introduction to the Basix package

The basix package contains the usual data types, the language environments, the evaluators and the abstract language on which the Mathemagix language is actually based.

Installation notes and the most recent version of this package are to be found from the Mathemagix Internet home page available from www.mathemagix.org.

2.1.1. A simple example of use

Here follows a simple example named example.cpp:

```cpp
#include "basix/string.hpp"
#include "basix/list.hpp"

using namespace mmx;

int main () {
  list<string> x ("a", "b", "c");
  list<int> y (1, 2, 3);

  mmout << "x = " << x << "\n";
  mmout << "y = " << y << "\n";
}
```

The following command can be used to compile file:

```
g++ 'basix-config --cppflags --libs' example.cpp -o example
```

As a result you can now run example and obtain:

```
["a", "b", "c"]
[1, 2, 3]
```

Hereabove the command basix-config --cppflags --libs produces all the necessary include and library paths. More options are described through basix-config --help:

```
Usage: basix-config [OPTION]
Available values for OPTION include:
   --cppflags   compiler preprocessor flags
   --exec-prefix basix install prefix for executables
   --help       display this help and exit
   --libs       library linking information
   --prefix     basix install prefix
   --version    output version information
```

27
2.2. Basic data types

Basix defines a type `nat`, meaning “natural integers”, that corresponds to `unsigned int` within most architecture. Yet no assumption on the size of `nat` is made for the sake of portability.

The standard output stream is `mmout`, the standard error stream is `mmerr`, and the standard input is `mmin`.

2.2.1. Strings

Strings are implemented in the class `string` provided by `string.hpp`.

```cpp
string s = "Hello";
mmout << s << "\n";
```

Memory allocation is done in a way so that you can write the following piece of code with essentially no lack of efficiency:

```cpp
// Remove all \ in s
string foo (const string& s) {
  nat i, n = N(s);
  string r;
  for (i=0; i < n; i++)
    if (s[i] != '\') r << s[i];
  return r;
}
```

2.2.2. Lists

Lists are implemented in the template class `list` provided by `list.hpp`. Usual operations are available from `list_sort.hpp`.

```cpp
list<int> x (1, 2, 3);
list<int> y (seq (1, 5));
mmout << "x n= " << x << "\n";
mmout << "y = " << y << "\n";
mmout << "x*y = " << (x*y) << "\n";
mmout << "x==y = " << (x==y) << "\n";
mmout << "x!=y = " << (x!=y) << "\n";
mmout << "x... = " << iterate (x) << "\n";
```

2.2.3. Balanced tree

Balanced tree are implemented in the class `chain` provided by `chain.hpp`. Usage is similar to the one of the lists.
2.2.4. Heaps
Ordered heaps are provided by `heap.hpp`.

2.2.5. Pairs, triples, tuples
Pairs are provided by `pair`, and triples in `triple.hpp`. Tuples are provided by `tuple.hpp`.

2.2.6. Vectors
Arrays are provided by `vector.hpp`.

```c
#define C double
vector<C> u = vec (C (5), C (7), C (9));
vector<C> v = vec (C (2), C (3), C (5));
mmout << "u = " << u << "\n";
mmout << "v = " << v << "\n";
v *= u;
```

For efficiency reasons, vectors are indeed parametrized by an abstraction layer, that is defined in `vector_naive.hpp`. For instance vectors of `int` with fixed size 10 can be obtained as follows:

```c
vector<C, vector_fixed<vector_naive, fixed_value<nat, 10>> x (3);
```

2.2.7. Tables
Hash tables are defined in `table.hpp`.

```c
pair<int,int> x1 (1, 2), x2 (7, 7);
table<int,int> t (seq (x1, x2));
table<int,int> u (0);
mmout << "t = " << t << "\n";
mmout << "u = " << u << "\n";
reset (u, 3);
```

2.2.8. Iterators
Iterators are defined in `iterator.hpp`.

```c
iterator<int> it1;
mmout << "it1 = " << it1 << "\n";
iterator<int> it2 = seq (1, 2, 3);
mmout << "it2 = " << it2 << "\n";
iterator<int> it3 = range_iterator<int> (0, 100);

list<string> l ("a", "b");
iterator<string> it;
for (it = iterate (l); busy (it); ++it)
    mmout << *it << "\n";
```
All non-atomic structures have iterators.

2.3. Basix’ Internals

2.3.1. Indirect Data Structures

All Mathemagix classes are declared through the INDIRECT_PROTO and INDIRECT_IMPL macros from a minimal base class representation.

See typical examples of use in string.hpp or list.hpp.

2.4. Global settings

2.4.1. Memory managment

Memory management is defined in fast_new.hpp

2.4.2. Error Management

The macro ERROR must be used to raise a global error.

The macros ASSERT and VERIFY must be used for debugging purposes.

Errors are handled by the "throw/catch" mecanism if exceptions have been enabled at the configuration time.

The function fatal_error quit the execution brutally.

2.5. Creating \textsc{TeXmacs} documents

\textsc{TeXmacs} documents can be created from the C++ level by using basix/document.hpp.

From the Mathemagix language the interface is provided in basix/texmacs.mmx, and can be used as follows:

```mmx
Mmx] include "basix/texmacs.mmx"

Mmx] $color ("blue", $text "Hello")

Hello

Mmx] $tm ('block, $tm ('tformat, $tm ('table, $tm ('row, $tm ('cell, $text "x")), $tm ('cell, $text "y"))), $tm ('row, $tm ('cell, $math 1)), $tm ('cell, $math 2))))
```

\begin{tabular}{|c|c|}
\hline
x & y \\
\hline
1 & 2 \\
\hline
\end{tabular}
Chapter 3
Numerix

3.1. Integer and rational numbers

3.1.1. Signed integer numbers

Integer numbers of arbitrarily large size are available through the class `integer` defined in `integer.hpp`. This class is a simple wrapper to the class `mpz_t` of the GMP library.

```cpp
#include <numerix/integer.hpp>
using namespace mmx;

void main () {
    integer a (2), b (3);
    mmout << a * b << "\n";
}
```

3.1.2. Rational numbers

Rational numbers of arbitrarily large size are available through the class `rational` defined in `rational.hpp`. This class is a simple wrapper to the class `mpq_t` of the GMP library.

```cpp
#include <numerix/rational.hpp>
using namespace mmx;

void main () {
    rational a (2), b (3);
    mmout << a / b << "\n";
}
```

3.1.3. Mathemagix interface

```
Mmx] use "numerix";
    type_mode? := true;

Mmx] 40!

8159152324797734345611269596115894272000000000: Integer

Mmx] probable_next_prime 100

101: Integer

Mmx] probable_prime? 9973

true: Boolean
```
This document describes the use and implementation of the modulars within the `numerix` package.

3.2. General modulars and moduli

Moduli are implemented in `module.hpp`. An object of type `modulus` is declared as follows:

```cpp
modulus<C, V> p;
```

`V` is an implementation variant. The default variant, named `modulus_naive`, is implemented in `modulus_naive.hpp` and supports a type `C` with an Euclidean division. More variants are described below. Modulars are implemented in `modular.hpp`. An object of type `modular` can be used as follows:

```cpp
modular<modulus<C, V>, W> x, y, z;
modular<modulus<C, V>, W>::set_modulus(p);
```

The variant `W` is used to define the storage of the modulus. Default storage is `modular_local` that allows the current modulus to be changed at any time. The default modulus is 0. For the `integer` type the default variant is set to `modulus_integer_naive`, so that modular integers can be used as follows:

```cpp
#include<numerix/integer.hpp>
#include<numerix/modular.hpp>
#include<numerix/modulus_integer_naive.hpp>

typedef modulus<integer> M;
M p (9973);
modular<M>::set_modulus(p);
modular<M> a (1), b (3);
c = a * b;
cout << c << "\n";
```

If the modulus is known to be fixed at compilation time then the following declaration is preferable for the sake of efficiency:

```cpp
fixed_value <int, 3> w;
modulus<integer> p (w);
```
If the modulus is not intended to be changed and known at compilation time then the variant `modular_fixed` can be used.

3.2.2. Moduli for hardware integers

From now on \(a \text{ div } p\) and \(a \mod p\) represent the quotient and the remainder in the long division of \(a\) by \(p\) respectively. Throughout this section \(C\) denotes a genuine integer \(C\) type. We write \(n\) for the bit-size of \(C\), and \(p\) for a modulus that fits in \(C\).

3.2.2.1. Naive implementation

The default variant, `modulus_int_naive\(<m>\)`, is defined in `modular_int.hpp`. Each modular product performs one product and one integer division. The parameter \(m\) is the maximum bit-size of the modulus allowed by the variant. This parameter can be set to \(n\). Best performances are obtained with \(m = n - 1\). Note that we necessarily have \(m \leq n - 1\) if \(C\) is a signed integer type. By convention the modulus 0 actually means \(2^n\).

3.2.2.2. Moduli with pre-computed inverse

In the variant `modulus_int_preinverse\(<m>\)` a suitable inverse of the modulus is precomputed and stored as an element of type \(C\), this yields faster computations when doing several operations with the same modulus. The behavior of the parameter \(m\) is as in the preceding naive variant. The best performances are attained for when \(m \leq n - 2\).

Within the implementation of this variant the following auxiliary quantities are needed:

- a non-negative integer \(r\) is defined by \(2^{r-1} < p \leq 2^r\),
- an integer \(s\) such that \(0 \leq s \leq r - 1\),
- an integer \(t\) such that \(t \geq r\) and \(s + t - (r - 1) \leq n\),
- an integer \(q = 2^{s+t} \text{ div } p\), that represents the numerical inverse of \(p\) to precision \(s + t - k\).

By convention we let \(r = n\) if \(p\) is zero. Note that \(q < 2^n\), hence fits in \(C\).

Modular product.

Let \(a\) be an integer such that \(0 \leq a < p^2\). The remainder \(a \mod p\) can be obtained as follows:

1. Decompose \(a\) into \(a_0\) and \(a_1\) such that \(a = a_1 2^s + a_0\), with \(a_0 < 2^s\), and compute \(b = a_1 q \text{ div } 2^t\). From \(a < p^2\) it follows that \(a_1 q < p^2\). \(a_1 q / 2^s < p 2^t\). So \(a_1 q\) has size at most \(r + t\), and we have \(b < p\).

2. Compute \(c = a - bp\). From the definition of \(q\) we have:

\[
0 \leq \frac{2^{s+t}}{p} - q < 1 \implies 0 \leq a - a_1 q p / 2^t < a_1 p / 2^t + a_0.
\]

It follows that \(0 \leq c < p + a_1 p / 2^t + a_0\).

3. Let \(h = 2^{2r} / 2^{s+t} + 2^s / 2^t - 1\). From \(a_0 < 2^s\) we deduce that \(a_1 p / 2^t + a_0 \leq h p\). It thus suffices to substract at most \(h\) times \(p\) from \(a\) to obtain \(a \mod p\).
In general we can always take \(t = r \) and \(s = r - 1 \), so that \(h = 3 \). For when \(r + 1 \leq n \), it is better to take \(t = r + 1 \) and \(s = r - 1 \) so that \(h \leq 2 \). Finally, for when \(r + 2 \leq n \) one can take \(t = r + 3 \) and \(s = r - 2 \) so that \(h \leq 1 \). These settings are summarized in the following table:

<table>
<thead>
<tr>
<th></th>
<th>(r + 2 \leq n)</th>
<th>(r + 1 \leq n)</th>
<th>(r \leq n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s)</td>
<td>(r - 2)</td>
<td>(r - 1)</td>
<td>(r - 1)</td>
</tr>
<tr>
<td>(t)</td>
<td>(r + 3)</td>
<td>(r + 1)</td>
<td>(r)</td>
</tr>
<tr>
<td>(h)</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
</tbody>
</table>

In these three cases remark that the integer \(a_1 q \) has size at most \(2n \).

It is clear that the case \(r + 2 \leq n \) leads to the fastest algorithm since step 3 reduces to one substraction/comparison that can be implemented as \(\min(c, c - p) \) within type \(\mathbb{C} \) alone. A special attention must be drawn to when \(r = 1 \), that corresponds to \(p = 2 \): we must suppose that \(s = r - 2 = -1 \) is indeed computed within an unsigned int type, hence is sufficiently large to ensure \(a_1 = 0 \) and \(c = a \), hence the correctness of the algorithm.

Numerical inverse.

Let us now turn to the computation of the numerical inverse \(q \) of \(p \). The strategy presented here consists in performing one long division in \(\mathbb{C} \) followed by one Newton iteration. Let \(w = 2^{r-1}/p \) be the numerical inverse of \(p \), normalized so that \(1/2 \leq w < 1 \) holds. Let \(x_0 \) denote the initial approximation, and \(x_1 \) be its Newton iterate \(x_1 = 2x_0 - px_0^2/2^{r-1} \). If \(0 \leq w - x_0 < 2^{-s_0} \) for some positive integer \(s_0 \) then it is classical that \(0 \leq w - x_1 < 2^{-s_1} \) with \(s_1 = 2s_0 - 1 \).

Under the assumption that \(s_0 \leq n/2 \), we can compute a suitable \(x_0 \) as the floor part of \(2^{s_0}w \) by the only use of operations within base type \(\mathbb{C} \). In other words we calculate \(q_0 = 2^{s_0 + r - 1} \div p = 2^{s_0}x_0 \) as follows:

1. If \(r \leq s_0 \) then \(q_0 \) is obtained by means of one division in \(\mathbb{C} \).
2. Otherwise \(r > s_0 \). We decompose \(p \) into \(p = p_12^{r-s_0} + p_0 \), with \(p_0 < 2^{r-s_0} \). Note that \(2^{s_0-1} \leq p_1 \leq 2^{s_0} \). Within \(\mathbb{C} \) perform the long division \(2^{2s_0-1} = ap_1 + b \). By multiplying both side of the latter equality by \(2^{r-s_0} \) we obtain that \(2^{s_0+r-1} = ap - ap_0 + b2^{r-s_0} \). From \(a \) and \(b \), we easily deduce \(q_0 \) since \(b2^{r-s_0} < p \) and \(ap_0 < 2^{2s_0-1}2^{r-s_0}/2^{s_0-1} = 2^r \).

The computation of \(q_1 = 2^{s_1+r-1} \div p \), that is the floor part of \(2^{s_1}w \), then continues as follows:

1. From the definition of \(x_1 \), one can write: \(x_12^{s_1} = q_02^{s_0} - pq_0^2/2^r \). We thus compute \(q_02^{s_0} \) and the ceil part of \(pq_0^2/2^r \) in order to deduce the floor part \(c \) of \(x_12^{s_1} \). Note that \(c \) fits \(\mathbb{C} \).
2. From the above inequalities it follows that \(0 \leq 2^{s_1}w - c < 2 \). We thus obtain \(d = 2^{s_1+r-1} - cp < 2p \). If \(d \geq p \) then return \(q_1 = c + 1 \) else return \(q_1 = c \).

Finally, \(q \) is deduced in this way:

1. Set \(s_0 \) as \((s + t - (r - 1)) \div 2 \), and compute \(q_1 = 2^{s_1+r-1} \div p \) as just described.
2. Note that \(1 \leq s + t - (r - 1) - s_1 \leq 2 \). If \(s_1+1=s+t-(r-1) \) then \(q = 2^{s_1+r} \div p \) otherwise \(q = 2^{s_1+r+1} \div p \).

Modular product by a constant.
Let \(b \) be a modulo \(p \) integer that is to be involved in several modular products. Then one can compute \(\beta = 2^r b \mod p < 2^r \) just once and obtain a speed-up within the products by means of the follows algorithm:

1. Compute \(\alpha = a \beta \mod 2^r \). It follows that \(0 \leq ab - \alpha p < 2p \).
2. Compute \(c = ab - \alpha p \). If \(c \geq p \) then \(c = c + 1 \). Return \(c \).

The computation of \(\beta \) can be done as follows from \(q \):

1. Compute \(\gamma = qb \mod 2^{t+s-r} < 2^r \). Note that \(2^r b/p - 2^r b/2^{t+s} - 1 \leq \gamma \leq 2^r b/p \).
2. Since \(0 \leq 2^r b - \gamma p < gp \), with \(g = 2 \) if \(r + 1 \leq n \) and \(g = 3 \) otherwise, deduce \(2^r b \mod p \) from \(\gamma \).

3.2.3. Use from the MMX-LIGHT interpreter

Modular integers are glued to the MMX-LIGHT interpreter. The usual arithmetic operations are available.

```plaintext
Mmx] use "numerix";
Mmx] type_mode? := true;
Mmx] p: Modulus Integer == 7
7: Modulus(Integer)
Mmx] a == 11 mod p
4: Modular(Integer)
Mmx] a ^ 101
2: Modular(Integer)
Mmx] q == modulus (7 :> Int)
7: Modulus(Int)
Mmx] (11 mod q) ^ 100
4: Modular(Int)
```

3.2.4. Further remarks

- On some processor architectures code to manipulate \texttt{short int} can be larger and slower than corresponding code which deals with \texttt{int}. This is particularly true on the Intel x86 processors executing 32 bit code. Every instruction which references a \texttt{short int} in such code is one byte larger and usually takes extra processor time to execute.
- Do not use \texttt{char} but \texttt{signed char} or \texttt{unsigned char} for the sake of portability.
3.3. Floating Point Numbers

3.3.1. Floatings

3.3.1.1. C++ interface

Floating point numbers of arbitrarily large size are available through the class `floating` defined in `floating.hpp`. This class is a simple wrapper to the class `mpfr_t` of the MPFR library.

```cpp
#include <numerix/floating.hpp>
using namespace mmx;
void main () {
    floating<> a (2), b (3);
    mmout << a * b << "\n";
}
```

The precision can be set thanks to the global variable `mmx_bit_precision`.
Lower and upper certified approximates can be obtained as follows:

```cpp
typedef rounding_helper%floating<> >::UV Up;
typedef rounding_helper%floating<> >::DV Down;
mmout << Up::sqrt (floating<> (2)) << "\n";
mmout << Down::sqrt (floating<> (2)) << "\n";
```

3.3.1.2. Mathemagix interface

The above floating type is glued to Mathemagix as `Floating`. Default bit-precision can be modified by setting the variable `bit_precision`.

```
Mmx] use "numerix";
    type_mode? := true;

Mmx] a: Floating == 1.0
1.00000000000000000000: Floating

Mmx] exp a
2.71828182845904523543: Floating

Mmx] sin a
0.841470984807896506665: Floating

Mmx] 1 / 0.0
∞: Floating

Mmx] bit_precision := 128
128: Int
```
3.3.2. Intervals

3.3.2.1. C++ interface

Interval are implemented within the class `interval` defined in `interval.hpp`.

```cpp
#include <numerix/floating.hpp>
#include <numerix/interval.hpp>
using namespace mmx;
typedef interval<floating<> > Interval;

void main () {
    Interval a (2), b (3.0, 3.1);
    mmout << a * b << "\n";
}
```

3.3.2.2. MATHEMAGIX interface

The above interval type is glued to MATHEMAGIX as `Interval`. Classical scientific notation are used for pretty printing intervals.

```plaintext
Mmx] a == interval (0.999, 1)

1.00: Interval(Floating)

Mmx] exp a

2.72: Interval(Floating)

Mmx] radius a

5.00000000000000118776e-4: Floating

Mmx] lower a

0.998999999999999999979: Floating

Mmx] upper a

1.000000000000000000000: Floating
```

3.3.3. Complex numbers

3.3.3.1. C++ interface

Complex numbers are available through the class `complex` defined in `complex.hpp`. Over `double` one must include `numerix/complex_double.hpp`.
3.3.3.2. MATHEMAGIX interface

The above complex type is glued to MATHEMAGIX as Complex.

\[
\begin{align*}
\text{Mmx} & \quad i = \text{complex} (0, 1) \\
& \quad \text{i: Complex(Rational)} \\
\text{Mmx} & \quad i \times i \\
& \quad -1: \text{Complex(Rational)} \\
\text{Mmx} & \quad 1 / (1 + i) \\
& \quad \frac{1}{2} - \frac{1}{2}i: \text{Complex(Rational)} \\
\text{Mmx} & \quad i = \text{complex} (0 :> \text{Floating}, 1 :> \text{Floating}) \\
& \quad 1.00000000000000000000i: \text{Complex(Floating)} \\
\text{Mmx} & \quad \text{exp } i \\
& \quad 0.540302305868139717414 + 0.841470984807896506665i: \text{Complex(Floating)}
\end{align*}
\]

3.3.4. Balls

3.3.4.1. C++ interface

Balls are implemented in the class ball defined in ball.hpp.

\[
\begin{align*}
\#include<\text{numerix/ball.hpp}> \\
\text{using namespace mmx;} \\
\text{typedef ball<floating<>> } \text{Ball;} \\
\text{void main () }\{ \\
& \quad \text{Ball a (2), b (3.0, 0.1);} \\
& \quad \text{mmout }\ll\text{a }\ast\text{b }\ll\text{"n";} \\
\}
\end{align*}
\]

3.3.4.2. MATHEMAGIX interface

The above ball type is glued to MATHEMAGIX as Ball.
#include<numerix/tangent.hpp>
using namespace mmx;
void main () {
 tangent<double> a (2.0, 3.0);
 mmout << "a= " << base (a)
 << " + " << slope (a) << " * x + 0(x^-2)\n";
}
4.1. MECHANISM FOR IMPLEMENTATION VARIANTS

Several important template classes, such as `vector`, `matrix`, `polynomial` and `series` admit a last template parameter `V`, called the implementation variant (or the traits class, in C++ terminology). For most MATHEMAGIX template classes, the class itself determines the internal representation of instances. For instance, the `polynomial` class corresponds to dense univariate polynomials, determined by a low level vector of coefficients. The implementation variant is used to specify the actual algorithms which are used for common operations. For instance, the `polynomial_naive` variant uses the naive \(O(n^2) \) algorithm for polynomial multiplication, whereas Karatsuba multiplication is used by the variant `polynomial_karatsuba<polynomial_naive>`.

As is suggested by the variant `polynomial_karatsuba<polynomial_naive>`, new variants can be built on top of other variants and existing variants can be customized. Typically, an implementation of dense polynomials provides several features:

- Vectorial routines on polynomials, such as addition.
- Other linear-time routines, such as differentiation.
- Multiplication.
- Division.
- Greatest common divisor.
- Several higher level routines, such as subresultants or multi-point evaluation.

Variants and features are essentially empty classes, which are mainly used as template parameters. MATHEMAGIX provides a standard implementation helper class, which allows to associate a concrete implementation to a feature and variant.

For instance, polynomial multiplication corresponds to the feature `polynomial_multiply`. The main multiplication routine for dense polynomials is a static member function

\[
\text{implementation<polynomial_multiply, polynomial_naive>::mul}
\]

of the implementation helper class. This routine directly operates on vectors in memory:

```cpp
template< typename C, typename K >
static void
mul (C* dest, const C* s1, const K* s2, nat n1, nat n2)
{
    if (n1+n2>0)
        Pol::clear (dest, n1+n2-1);
    while (n2 != 0)
    {
        Pol::mul_add (dest, s1, *s2, n1);
        dest++; s2++; n2--;
    }
}
```
Here Pol is an alias for `implementation<polynomial_linear,polynomial_naive>`, hence the implementation of naive multiplication relies on the implementation of naive vectorial and linear-time algorithms on polynomials.

From the high level point of view, the implementation of polynomial multiplication for the type `polynomial<C,V>` relies on the low level multiplication algorithm determined by the variant V:

```
template<typename C, typename V> polynomial<C,V>
operator * (const polynomial<C,V>& P1, const polynomial<C,V>& P2) {
    typedef implementation<polynomial_multiply,V> Pol;
    nat n1 = N(P1), n2 = N(P2);
    if (n1 == 0 || n2 == 0) return polynomial<C,V> ();
    nat l = aligned_size<C,V> (n1+n2-1);
    C* r = mmx_new<C> (l);
    Pol::mul (r, seg (P1), seg (P2), n1, n2);
    return polynomial<C,V> (r, n1+n2-1, l);
}
```

A default variant is usually defined in terms of the remaining template parameters. In the case of polynomials, this is accomplished by means of the `polynomial_variant_helper` template: for any coefficient type `C`, `polynomial_variant_helper<C>::PV` yields the default variant for `C`.

In fact, the template `implementation` takes three arguments: the feature, the polynomial variant and the variant for the actual implementation. This allows for the customization of a specific feature. More precisely, assume that we are given a feature `F` and a variant `V` and that we want to define a new variant `customized<V>` with a different implementation of the feature `F`, but unaltered implementations of all other features. This is achieved using a code of the type

```
template<typename V, typename W>
struct implementation<F,V,customized<W>>:
    public implementation<F,V,W> {
    typedef implementation<F,V,W> Fallback;
    ...
};
```

For the actual implementation of the customized feature, one may rely on the original implementation `Fallback` specified by the variants `V` and `W`. Here we notice that `implementation<F,V>` is equivalent to `implementation<F,V,V>`.

We recall that the variant mechanism is only used in order to implement different algorithms for a similar functionality, while presupposing a given internal representation. Some higher level functions on polynomials may still be correct for polynomials with alternative internal representations. In that case, a new template class should be defined for each alternative representation, such as `sparse_polynomial`. This class should be implemented with care, so as to match the same signature as the usual dense class `polynomial`. For instance, if we have an operation

```
template<typename C, typename V> polynomial<C,V>
foo (const polynomial<C,V>& p) { ... }
```
which is not specific to dense polynomials, then we should have its sparse counterpart with the same name

template<
typename C, typename V> sparse_polynomial<C,V>
foo (const sparse_polynomial<C,V>& p) { ... }

The high level functionality bar can then be implemented by using the class of polynomials itself as a template parameter:

template<
typename Pol> Pol
bar (const Pol& p) {
 return foo (foo (p));
}

4.2. Optimized variants for vectors

4.2.1. Unrolled vectorial operations

In vector_unrolled.hpp is implemented a variant for vectorial operations with loop unrolling. Precisely vectorial operations on elements of type vector<C,vector_unrolled<n,V> > are unrolled by blocks of size n. For example the piece of code

```cpp
#define vector_unrolled<4, vector_naive> V
vector<signed char, V> v1=..., v2=...;
vector<signed char, V> w= v1 * v2;
```

actually computes the entrywise product of $v1$ and $v2$ as follows:

```cpp
for (nat i= 0; i <=...; i += 4) {
    w1[i ] = v1[i ] * v2[i];
    w1[i+1]= v1[i+1] * v2[i+1];
    w1[i+2]= v1[i+2] * v2[i+2];
    w1[i+3]= v1[i+3] * v2[i+3];
}
```

4.2.2. SIMD support

Several architectures support special instructions of type called SIMD (Single Instruction, Multiple Data) for performing operations on “hardware vectors”. This imposes the memory position of the vectors to be aligned. When allocating memory space for a vector of type vector<C,V> of size n one thus needs to proceed as follows:

```cpp
nat l= aligned_size<C,V> (n);
C* buf= mmx_new<C> (1);
// fill buf here...
vector<C,V> v (buf, n, l);
```

Note that the memory will be freed once v destructed.
In `vector_simd.hpp`, the variant `vector_simd` allows one to benefit of the SIMD functionalities. For instance a vector of type `vector<unsigned char,vector_simd<8,4>>` unrolls blocks of 8 simd sub-vectors, the rest being unrolled by blocks of size 4 with classical instructions.

A default variant of type C is available through the macro `Vector_simd_variant(C)`.

Currently only SSE2 and SSE3 are partially supported – details are to be found in `vector_sse.hpp`.

4.3. Univariate polynomials

4.3.1. Naive algorithms

Univariate polynomials over \mathbb{C} are implemented in the class `polynomial<C,V>`, defined in `polynomial.hpp`. The default variant `polynomial_naive` assumes that \mathbb{C} is a field, not necessarily commutative. This provides implementations of the naive algorithms. For instance the product, the division, and the gcd have quadratic costs.

```cpp
#include <numerix/rational.hpp>
#include <algebramix/polynomial.hpp>
...
polynomial<rational> x (C(1), 1); // defines the monomial x
polynomial<rational> p = square (x) + 3 * x + 1;
```

Remark that you cannot use the infix operation `^` for powering, for it is usually reserved to bitwise operations. Instead you can use binary powering with `binpow (a, n)`. For the sake of efficiency, the monomial x^n must be constructed as `polynomial<C,V> (C(1), n)`.

For polynomials over a ring you must add the variant `polynomial_ring_naive<V>` defined in `polynomial_ring_naive.hpp`, that essentially contains implementations for the subresultants due to Ducos.

4.3.2. Divide and conquer algorithms

All classical generic divide and conquer algorithms over any field are implemented in `polynomial_dicho.hpp`. Therein is defined the variant `polynomial_dicho<V>` that implements the Karatsuba product, division with Newton’s inversion algorithm, fast Euclidean sequence, the half-gcd algorithm, Padé approximants, fast multipoint evaluation and interpolation, fast multimod and Chinese remaindering. If you want these algorithms to be applied in $\mathbb{Q}[x]$ you can modify the above piece of code into:

```cpp
#include <algebramix/polynomial.hpp>
#include <algebramix/polynomial_dicho.hpp>
#define polynomial_dicho<polynomial_naive> V
...
polynomial<rational,V> x (C(1), 1); // defines the monomial x
polynomial<rational,V> p = square (x) + 3 * x + 1;
```

For polynomials over a ring you must add the variant `polynomial_ring_dicho<V>` defined in `polynomial_ring_dicho.hpp`, that essentially contains the half-subresultant algorithm.
4.3.3. Asymptotically fast algorithms

Schönhage & Strassen’s, and Cantor & Kaltofen’s fast products are implemented in polynomial_schonhage. It supports any ring with unity. This provides the generic a default variant.

4.3.4. Special types of coefficients

4.3.4.1. Kronecker’s substitution

The Kronecker substitution is available for polynomials over polynomials, hardware or long integers, and also with modular coefficients. One must include one of the corresponding files:

- polynomial_polynomial.hpp,
- polynomial_integer.hpp, polynomial_modular_integer.hpp
- polynomial_int.hpp, polynomial_modular_int.hpp

4.3.4.2. Modulars

If the coefficient ring are modular numbers then a special product is available from polynomial_modular.hpp: it first computes the product of the polynomials made of the preimages of the coefficients and reduces the coefficients at the end.

4.3.4.3. Complex numbers

For polynomial over complex numbers you must use polynomial_complex.hpp.

4.3.4.4. Quotient fields

If coefficients are in a quotient field of type quotient, then one should include polynomial_quotient.hpp. A special variant is directly available for rational numbers in polynomial_rational.hpp.

4.3.5. Quotient ring

Operations in $\mathbb{K}[x]/p(x)$ are available through the class modular. Special types of moduli for polynomials is defined in modular_polynomial.hpp.

```cpp
#include "numerix/rational.hpp"
#include "algebramix/modular_polynomial.hpp"
#define C rational
#define Polynomial polynomial<C>
#define Modular modular<modulus<Polynomial> >
...
Polynomial x (C(1), 1);
Polynomial p = square (x) - 2;
Modular::set_modulus (p);
mmout << binpow (Modular (x), 1000) << "\n";
```
4.3.6. **MATHEMAGIX interface**

```lang
Mmx] use "algebramix";
    type_mode? := true;

Mmx] x == polynomial (0, 1)

x: Polynomial(Integer)

Mmx] (1 + x)^5

x^5 + 5x^4 + 10x^3 + 10x^2 + 5x + 1: Polynomial(Integer)

Mmx] gcd (1 + 2*x + x^2, 1 - x^2)

x + 1: Polynomial(Rational)

Mmx] discriminant (1 + x + x^2)

3: Rational

Mmx] (1 + x)^5 mod 5

x^5 + 1: Polynomial(Modular(Integer))
```

4.4. **Power series**

4.4.1. **Introduction**

Power series are implemented within the class `series` from `series.hpp`.

```lang
#include <numerix/rational.hpp>
#include <algebramix/series.hpp>

series<rational> z (rational (1), 1); // variable z
series<rational> f = 1 / (1 - z);
mmout << f[10] << "\n";
```

Series are implemented in a lazy way, which means that the precision has not to be specified in advance. Computations are actually done when a coefficient is actually needed.

The precision used for printing the power series can be set to `n` in the following way:

```lang
series<C,V>::set_output_order (n);
```

Instead of printing an approximation of the series, it is possible to display the formula it has been built from, as follows:

```lang
series<C,V>::set_formula_output (true);
```

Withing equality test the precision to be taken into account can be set to `n` via:
4.4 Power series

```cpp
series<C,V>::set_cancel_order (n);
```

The name of the variable to be printed can be set to \(z \) with the following command:

```cpp
series<C,V>::set_variable_name ("z");
```

4.4.2. Naive algorithms

Naive algorithms for power series are implemented in `series_naive.hpp`. For instance the product implemented therein has a quadratic cost.

Over numerical types, elementary functions are available from `series_elementary.hpp`.

4.4.3. Relaxed algorithm

The relaxed product for power series is implemented in `series_relaxed.hpp`.

```cpp
#include <numerix/rational.hpp>
#include <algebramix/series.hpp>
#include <algebramix/series_relaxed.hpp>

#define V series_relaxed<series_naive>
series<rational,V> z (rational (1), 1); // variable \( z \)
series<rational,V> f = 1 / (1 - z);
mmout << z[10] << "\n";
```

The relaxed product has a softly linear cost.

4.4.4. Recursive series

A series \(f \) is said to be recursive if it satisfies an equation \(f = \Phi(f) \) that allows to compute the \(n \)-th coefficient of \(f \) as the \(n \)-th coefficient of \(\Phi(f) \) with the only knowledge of the \(n-1 \) first coefficients of \(f \), whenever \(n \) is larger than an integer \(k \) called the index.

For example \(f(z) = f(z)^2 + zf(z)+1 \), with \(f_0 = 1 \) can be implemented as follows:

```cpp
template<typename C, typename V>
struct example_series_rep : recursive_series_rep<C,V>
example_series_rep () {}
    syntactic expression (const syntactic& z) const {
        return apply ("example", z); }
    series<C,V> initialize () {
        series<C,V> f = this->me ();
        this->initial (0) = C(1);
        return square (f) + lshiftz (f, 1) + C(1); }

template<typename C, typename V>
example_series () {
    series_rep<C,V>* rep = new example_series_rep<C,V> ();
    return recursive (series<C,V> (rep)); }
```
4.4.5. Implicit series

Implicit series are implemented in `series Implicit.hpp`.

4.4.6. Vectorial operations

Vectorial and matricial auxiliary functions are available from `series_vector.hpp` and `series_matrix.hpp` respectively. They are useful for computing recursive vectors of series.

4.4.7. Matemagix interface

```
Mmx] use "algebramix";
    type_mode? := true;

Mmx] z := series (0 -> Rational, 1 -> Rational)

z + O(z^10): Series(Rational)

Mmx] f := log (1 - z)

- z - 1/2 z^2 - 1/3 z^3 - 1/4 z^4 - 1/5 z^5 - 1/6 z^6 - 1/7 z^7 - 1/8 z^8 - 1/9 z^9 + O(z^10): Series(Rational)

Mmx] f[20]

-1/20: Rational
```

4.5. p-ADIC INTEGERS

4.5.1. Introduction

p-adic numbers are implemented as a variant of the series over modular integers: the representation is the same, only the operations differ. All the necessary definitions are gathered in `p_adic.hpp`.

```
#include <numerix/p_adic.hpp>

#define C modular<modulus<int, modulus_int_preinverse<14> > >
#define V series_carry_variant_helper<C>::SV
#define P_adic series<C,V>

C::set_modulus (9973);
P_adic p (C (1), 1); // parameter p
P_adic f = 1 / (1 - p);
mmout << f[10] << "\n";
```

4.5.2. Specific variants

Naive algorithms for p-adic numbers are implemented in `series_carry_naive.hpp`. The relaxed product is available from `series_carry_relaxed.hpp`.
4.5.3. Matemagix interface

```plaintext
Mmx] p == modulus 7
7: Modulus(Integer)

Mmx] a == p_adic (1 mod p, 1 mod p)
1 + p + O(p^{10}): \text{P}_\text{adic}(\text{Modular}(\text{Integer}))

Mmx] b == separable_root (a, 2)
1 + 4 p + 2 p^2 + p^3 + 3 p^4 + 2 p^5 + 4 p^6 + 2 p^7 + 5 p^8 + O(p^{10}): \text{P}_\text{adic}(\text{Modular}(\text{Integer}))

Mmx] b^2
1 + p + O(p^{10}): \text{P}_\text{adic}(\text{Modular}(\text{Integer}))

Mmx] p_expansion (100, p)
2 p^2 + 2: \text{P}_\text{expansion}(\text{Modular}(\text{Integer}))

Mmx] p_adic (@p_expansion (100, p))
2 + 2 p^2 + O(p^{10}): \text{P}_\text{adic}(\text{Modular}(\text{Integer}))
```

4.6. Quotient fields

4.6.1. C++ interface

Quotient fields are implemented within the class quotient from quotient.hpp.

```plaintext
#include <numerix/rational.hpp>
#include <algebramix/polynomial.hpp>

#define rational C
#define polynomial<C> UP
#define quotient<UP,UP> UF
...
UP p =..., q =...;
UF f (p, q); // Rational function p / q
```

4.6.2. Matemagix interface

```plaintext
Mmx] x == polynomial (0, 1)
x: Polynomial(Integer)

Mmx] quotient (1 + x, x)
```
\[
\frac{x + 1}{x}: \text{Quotient}(\text{Polynomial}(\text{Rational}))
\]

4.7. Matrices

The class `matrix<C,V>` implements matrices over \(C \). All the available algorithms have a naive implementation in `matrix_naive.hpp`.

```cpp
#include <algebramix/matrix.hpp>
...
matrix<C,V> M (C(0), 3, 2) // 3 x 2 matrix filled with 0
M (0,0)= C(0); M (1,0)= C(1); ...
matrix<C,V> N= M * transpose (M);
mmout << M << "\n";
mmout << det (N) << "\n";
mmout << column_reduced_echelon (M) << "\n";
```

4.7.1. Optimized variants

As for vectors, matrices have a variant for unrolling loops, namely `matrix_unrolled<s,V>`, where \(s \) represents the number of steps to be unrolled.

Strassen product is implemented in the variant `matrix_strassen<V>`.

Support for SIMD instructions is available through the variant `matrix_simd<n,m,V>`: \(n \) is the size for unrolling SIMD data and \(m \) is the one for unrolling the data of the original type. Only SSE2 and SSE3 are supported at the present time.

Multi-threading is possible with the variant `matrix_threads<V>`.

4.7.2. Special types of coefficients

`matrix_double.hpp` contains a recommended default variant for `double`.

`matrix_int.hpp` contains a recommended default variant for hardware integers.

`matrix_modular_int.hpp` contains a recommended default variant for modulares over hardware integers.

`matrix_integer.hpp` contains a recommended default variant for integers.

4.7.3. Mathemagix Interface

```plaintext
Mmx] A == [ (i :> Rational) + j | i in 0..5 || j in 0..5 ]

[[ 0 1 2 3 4 ]
 [ 1 2 3 4 5 ]
 [ 2 3 4 5 6 ]
 [ 3 4 5 6 7 ]
 [ 4 5 6 7 8 ]]

Mmx] det A
```

\[
\begin{bmatrix}
0 & 1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4 & 5 \\
2 & 3 & 4 & 5 & 6 \\
3 & 4 & 5 & 6 & 7 \\
4 & 5 & 6 & 7 & 8 \\
\end{bmatrix}
: \text{Matrix}(\text{Rational})
\]
0: Rational

\[
\begin{bmatrix}
1 & 2 & 3 & 4 & 5 \\
0 & 1 & 2 & 3 & 4 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]: Matrix(Rational)

Mmx row_echelon A

2: Int

\[
\begin{bmatrix}
1 & 2 & 3 \\
-2 & -3 & -4 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]: Matrix(Rational)

Mmx rank A

Mmx ker A

4.8. Multi-modular techniques

Naive algorithms for bidirectional multi-modular transformers are implemented in `crt_naive.hpp`.

The following piece of code computes 101 modulo 2, 3, 5, and 7:

```cpp
#include "crt_int.hpp"
...
crt_naive_transformer<int> crter (vec (2, 3, 5, 7));
mmout << direct_crt (101, crter) << "\n";
```

Here `crt_int.hpp` contains specific routines for hardware integers.

4.8.1. Coverings

Let S be a subset of a ring R. A covering C of S is a set of coprime elements of R such that any element of S is uniquely characterized by its residues modulo all the elements of C.

The class `moduli_helper<C,Modulus>` provides the user with a default covering in a specific size whose definition actually depends on R. For example for the integers, the following instructions fill the vector p with a covering for integers of 30 bits.

```cpp
vector<modulus<int> > p;
bool t= moduli_helper<int, modulus<int> >::covering (p, 30);
```

Here the default covering being used is made of the sequence of the prime numbers: 2, 3, 5, 7, 11, etc. The value returned in t is `false` if no covering can be made for the specified size. Otherwise `true` is returned.
The sequence used for the covering can be specified as an extra argument:

```cpp
#define Seq fft_prime_sequence_int<10>
vector<modulus<int>> p;
bool t = moduli_helper<int, modulus<int>, Seq>::covering(p, 30);
```

Here are used prime numbers of at most 10 bits. The first ones are well-suited to FFT.
Support for long integers is available in crt_integer.hpp. The following piece of code covers signed integers of 1000 bits with prime hardware integers of at most 20 bits:

```cpp
#include <algebramix/crt_integer.hpp>
#define Seq fft_prime_sequence_int<20>
vector<modulus<int, modulus_int_preinverse<20>>> p;
bool t = moduli_helper<int, modulus<int>, Seq>::covering(p, 1000);
```

4.8.2. Transformers

The divide and conquer algorithm is implemented in crt_dicho.hpp:

```cpp
#include <algebramix/crt_integer.hpp>
// let p be a covering obtained as described above
crt_dicho_transformer<integer> crrter (p);
```

If the moduli are small, it is often faster to use the naive algorithm. While for large moduli the divide and conquer has soft linear cost. In crt_blocks.hpp is implemented a class to stack two different kinds of transformers in the following way:

```cpp
#define Crter_naive crt_naive_transformer<integer, modulus<int>>
#define Crter_dicho crt_dicho_transformer<integer>
#define Crter crt_blocks_transformer<Crter_naive, Crter_dicho, 10>
```

Here 10 is the threshold between the two transformers: each block of 10 moduli is using the naive algorithm, and then the dichotomic algorithm is called with the moduli obtained from the products of those of each block.
5.1. UNIVARIATE POLYNOMIALS

5.1.1. C++ interface

Analyziz completes Algebramix by providing the user with special variants for polynomials with numerical type coefficients:

- `analyziz/polynomial_double.hpp`,
- `analyziz/polynomial_floating.hpp`,
- `analyziz/polynomial_ball.hpp`.

Root finding is implemented:

- `analyziz/solver_aberth.hpp` contains an implementation of Aberth’s method,
- `analyziz/solver_floating.hpp` uses the latter solver with gradual precision doubling,
- `analyziz/solver_ball.hpp` includes certification with ball coefficients.

5.1.2. MATHEMAGIX interface

```plaintext
Mmx] use "analyziz"

Mmx] p: Polynomial Floating == polynomial (-1.0001, 0.0^-4, 1.0)

1.000000000000000000000000000000000000000\x5 – 1.000100000000000000000000000000000000000\00000000003: Polynomial(Floating)

Mmx] bit_precision := 128;

v == roots p

[-0.8090331740676601576484569941996680425059 - 0.5877970075273189885146121\5012659640572021 i, 0.3090231744676361593283293244132217784405 - 0.95107553664\6799096692391457311313580 i, 1.000019999047996640255339572892528134 -\1.463023860841311977236202941830836428098e - 98 i, 0.3090231744676361593283293\244132217784405 + 0.951075536646799096692339145731131313610 i, -0.80903317406\76601576484569941996680425059 + 0.5877970075273189885146125012659640572021 i]: Vector(Complex(Floating))

Mmx] [ eval (p, a) | a in v ]
```
\[-1.17549435082228750796873653722245677819e - 38, -1.17549435082228750796873653722245677819e - 38 + 5.87747175411143753984368268611228389093e - 39i, -1.17549435082228750796873653722245677819e - 38 - 7.3157045078990350385060983263372575725e - 98i, -1.17549435082228750796873653722245677819e - 38 - 7.3157045078990350385060983263372575725e - 98i - 1.469367938527859384960920671527807097273e - 39i, \]

\[\text{Vector}(\text{Complex}(\text{Floating}))\]

\[\text{Mmx} p: \text{Polynomial Ball (Floating, Complex Floating)} ==\]

\[\text{polynomial (ball (-1.0001), (ball 0.0)^4, ball 1.0)}\]

\[1.000000000000000000000000000000000000000 x^5 + (0 e - 323228496 + 0 e - 323228496) x^4 + (0 e - 323228496 + 0 e - 323228496 i) x^3 + (0 e - 323228496 + 0 e - 323228496 i) x^2 + (0 e - 323228496 + 0 e - 323228496 i) x - 1.001000000000000000000000000000000000000: \text{Polynomial}(\text{Ball}(\text{Floating}, \text{Complex}(\text{Floating})))\]

\[\text{Mmx} roots p\]

\[[-0.8090317406766015764845699419966804 - 0.587797007527318985851461250126596, 0.30902317446763615932832932441322178 - 0.9510755366646799096923391145, 1.0019999920004799640255339572892528, 0.3090231744676361593283293241322178 + 0.9510755366646799096923391145, -0.8090317406766015764845699419966804 + 0.587797007527318985851461250126596057 i]: \text{Vector}(\text{Ball}(\text{Floating}, \text{Complex}(\text{Floating})))\]

5.2. Power series

5.2.1. C++ interface

\textsc{Analyziz} completes \textsc{AlgebRamix} by providing the user with special variants for power series with numerical type coefficients:

- \texttt{analyziz/series_double.hpp},
- \texttt{analyziz/series_floating.hpp},
- \texttt{analyziz/series_ball.hpp}.

5.2.2. Mathemagix interface

\[\text{Mmx} use "analyziz"
\]

\[\text{Mmx} z == \text{series} (\text{ball} (0 :> \text{Floating}), \text{ball} (1 :> \text{Floating}))\]

\[1.000000000000000000000000000000000000000 z + 0 e - 323228496 z^2 + 0 e - 323228496 z^3 + 0 e - 323228496 z^4 + 0 e - 323228496 z^5 + 0 e - 323228496 z^6 + 0 e - 323228496 z^7 + 0 e - 323228496 z^8 + 0 e - 323228496 z^9 + O(z^{10})\]: \text{Series}(\text{Ball}(\text{Floating}, \text{Floating}))

\[\text{Mmx} f == \text{log} (1 - z)\]
0e − 38 − 1.000000000000000000000000000000000000 1.000000000000000000000000000000000000 0.500000000000000000000000000000000000 0.333333333333333333333333333333333333 0.250000000000000000000000000000000000 0.200000000000000000000000000000000000 0.166666666666666666666666666666666666 0.142857142857142857142857142857142857 142857 z^7 − 0.125000000000000000000000000000000000 0.111111111111111111111111111111111111 111111111111111111111111111111111111 z^9 + O(z^{10}): \text{Series(Ball(Floating, Floating))}

5.3. Matrices

5.3.1. C++ interface

Analyziz completes Algebramix by providing the user with special variants for matrices with numerical type entries:

- `analyziz/matrix_double.hpp`
- `analyziz/matrix_floating.hpp`
- `analyziz/matrix_ball.hpp`

Computations of eigen values and vectors are implemented in the following files:

- `analyziz/eigen.hpp` contains the generic implementation,
- `analyziz/eigen_floating.hpp` uses the latter solver with gradual precision doubling,
- `analyziz/eigen_ball.hpp` includes certification with ball coefficients.

5.3.2. Mathemagix interface

```plaintext
Mmx] use "analyziz";
    type_mode? := true;

Mmx] rnd () := {
    x := uniform_deviate (0.0, 1.0);
    return ball (x, 0.0000001);
};

Mmx] M == [ rnd () | i in 0..3 || j in 0..3 ]

0.601796 0.205660 0.787142
0.965621 0.989548 0.209385
0.86737 0.437911 0.142280
```

: Matrix(Ball(Floating, Floating))
Mmx significant_digits := 5; // print 5 digits only

eigen_solve M

\[
\begin{bmatrix}
0.56938 - 0.0073627i & -0.49790 + 0.052058i & -0.65354 + 0.031053i \\
0.91734 - 0.011862i & 0.90368 - 0.094485i & 0.33724 - 0.016024i \\
0.56815 - 0.0073467i & -0.12633 + 0.013209i & 0.75461 - 0.035855i
\end{bmatrix}:
\]

Matrix(Ball(Floating, Complex(Floating)))

v == eigenvalues M

[0.42825, -0.4132, 1.7186]: Vector(Ball(Floating, Complex(Floating)))

radius v[0]

1.950520130e – 6: Floating
6.1. **Separable factorization**

```plaintext
Mmx] use "factorix"
Mmx] help separable_factorization

separable_factorization : Polynomial (Integer) -> Vector
  (Separable_factor (Polynomial (Integer)))  (Native)
separable_factorization : Polynomial (Rational) -> Vector
  (Separable_factor (Polynomial (Rational)))  (Native)
separable_factorization : Polynomial (Modular (Integer)) -> Vector
  (Separable_factor (Polynomial (Modular (Integer))))  (Native)

Mmx] x == polynomial (0 :> Integer, 1 :> Integer);
Mmx] separable_factorization ((x-1)^10 * (x-2)^2)
  (x - 2)^2(x - 1)^10

Mmx] v == separable_factorization ((x-1)^10 * (x-2)^2 mod modulus 5)
  (x + 3)^2(x^5 + 4)^2

Mmx] factor (v[1])
  x + 4

Mmx] ideg (v[1])
  5

Mmx] mul (v[1])
  2

Mmx] separable? ((x - 1)^10 - 1)
  true
```

6.2. **Squarefree factorization**

```plaintext
Mmx] use "factorix"
Mmx] help squarefree_factorization
```

57
squarefree_factorization : Integer -> Vector (Squarefree_factor (Integer)) (Native)
squarefree_factorization : Rational -> Vector (Squarefree_factor (Rational)) (Native)
squarefree_factorization : Polynomial (Integer) -> Vector (Squarefree_factor (Polynomial (Integer))) (Native)
squarefree_factorization : Polynomial (Rational) -> Vector (Squarefree_factor (Polynomial (Rational))) (Native)
squarefree_factorization : Modular (Integer) -> Vector (Squarefree_factor (Modular (Integer))) (Native)
squarefree_factorization : Polynomial (Modular (Integer)) -> Vector (Squarefree_factor (Polynomial (Modular (Integer)))) (Native)

Mmx] x == polynomial (0 :> Integer, 1 :> Integer);
Mmx] squarefree_factorization (-(x-1)^10 * (x-2)^2)

$-(x - 2)^2 (x - 1)^{10}$

Mmx] squarefree_factorization ((x-1)^10 * (x-2)^2 mod modulus 5)

$(x + 3)^2 (x + 4)^{10}$

Mmx] time_mode? := true;
Mmx] squarefree_factorization (10006452100200091 * 9 * (x^10-1)^3 * (x-2)^2)

35164639 284560069 $3^2 (x - 2)^2 (x^{10} - 1)^3$

Computed in 29365 ms

Mmx] probable_squarefree_factorization (10006452100200091 * (x^10-1)^3 * (x-2)^2)

35164639 284560069 $(x - 2)^2 (x^{10} - 1)^3$

Computed in 855 ms

Mmx] help squarefree?

squarefree? : Integer -> Boolean (Native)
squarefree? : Polynomial (Integer) -> Boolean (Native)
squarefree? : Rational -> Boolean (Native)
squarefree? : Polynomial (Rational) -> Boolean (Native)
squarefree? : Modular (Integer) -> Boolean (Native)
squarefree? : Polynomial (Modular (Integer)) -> Boolean (Native)

Mmx] squarefree? 35164639

true
CHAPTER 7

GEOMSOVEX

7.1. GEOMETRIC RESOLUTION

7.2. USE FROM THE INTERPRETER

```
Mmx] use "geomsolvex"
Mmx] X == coordinate ('x); Y == coordinate ('y);
Mmx] x == polynomial_dag (1 :> Rational, X);
    y == polynomial_dag (1 :> Rational, Y);
Mmx] f1 == x^2 + y^2 - 1;
    f2 == x^2 + x * y - 2;
Mmx] probable_geometric_solve_reduced_regular ([f1, f2])

lifting_fiber\left(x^2+y^2-1,x^2+xy-2,\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix},[0, 0],[],x,x^4-\frac{5}{2}x^2+2,4x^3-5x,\right.
\left.5x^2-8,3x^2-2\right)

Mmx] p: Integer == 101;
Mmx] x == polynomial_dag (1 :> Integer, X);
    y == polynomial_dag (1 :> Integer, Y);
Mmx] f1 == x^2 + y^2 - 1;
    f2 == x^2 + x * y - 2;
Mmx] probable_geometric_solve_reduced_regular ([f1 mod p, f2 mod p])

lifting_fiber\left(x^2+y^2-1,x^2+xy-2,\begin{bmatrix} 27 & 61 \\ 62 & 17 \end{bmatrix},[79, 61],[],x,x^4+79x^3+23x^2+68x+36,1,[x,95x^3+99x^2+60x+59]\right)

For long computations, verbosity can be enabled by setting geomsolvex_verbose.
```
8.1. ANALYTIC FUNCTIONS

This document contains simple examples using analytic functions within Mathemagix.

8.1.1. Use from C++

Basic calculations are shown in continewz/test/analytic_test.cpp. The following sample of code shows how to construct simple analytic functions operating on balls:

```cpp
#include <numerix/ball_complex.hpp>
#include <continewz/analytic_matrix.hpp>
using namespace mmx;

#define R ball<floating> >
#define C ball<complex<floating> > >
#define Polynomial polynomial<C>
#define Analytic analytic<C>

int main () {
    Polynomial P = seq (C (1), C (-2), C (3));
    Analytic f (1);
    Analytic g (P);

    mmout << "f= " << f << lf;
    mmout << "g= " << g << lf;
    mmout << "f + g= " << f + g << lf;
}
```

8.1.2. Use from the interpreter

The following session shows basic operations available for constructing and studying \(z \mapsto \log(1 - z) \):

```plaintext
Mmx] use "continewz";
    type_mode? := true;
Mmx] z == analytic (ball 0.0, ball 1.0)
```

61
The latter computation corresponds to the evaluation of $z \mapsto \log (1 - z)$ along the following loop around the pole 1:

```
0e - 323228496 + 0e - 323228496i + 1.000000000000000000000 z + (0e - 323228496 + 0e - 323228496i) z^2 + (0e - 323228496 + 0e - 323228496i) z^3 + (0e - 323228496 + 0e - 323228496i) z^4 + (0e - 323228496 + 0e - 323228496i) z^5 + (0e - 323228496 + 0e - 323228496i) z^6 + (0e - 323228496 + 0e - 323228496i) z^7 + (0e - 323228496 + 0e - 323228496i) z^8 + (0e - 323228496 + 0e - 323228496i) z^9 + O(z^{10});
Analytic(Ball(Floating, Floating), Ball(Floating, Complex(Floating)))
```
8.2. Reliable integration of differential equations

This document shows how to use reliable integration for the classical pendulum problem, within the Mathemagix interpreter.

Pendulum vector field

\[
\begin{align*}
y' &= y' \\
y'' &= -\sin y \\
(sin y)' &= y' \cos y \\
(cos y)' &= -y' \sin y
\end{align*}
\]

```
Mmx] use "continewz"

Mmx] bit_precision := 128; significant_digits := 6;

Mmx] z == analytic (ball 0.0, ball 1.0);

Mmx] vector_field (v) == [ v[1], -v[2], v[1]*v[3], -v[1]*v[2] ];

Mmx] initial_conditions == [ ball 0.0, ball 1.0, ball 0.0, ball 1.0 ];

Mmx] pendulum == integrate_analytic (vector_field, initial_conditions);

Mmx] pendulum[0]

0e - 323228496 + 0e - 323228496 i + 1.00000 z + (0e - 323228495 + 0e - 323228495 i) z^2 - 0.166667 z^3 + (0e - 323228495 + 0e - 323228495 i) z^4 + 0.0166667 z^5 + (0e - 323228495 + 0e - 323228495 i) z^6 - 0.00257937 z^7 + (0e - 323228495 + 0e - 323228495 i) z^8 + 4.43673e - 4 z^9 + O(z^10)

Mmx] significant_digits := 0;

Mmx] pendulum[0] [99]

-3.672113029971573729664587108439956e - 35

Mmx] pendulum[0] (0.0)

0e - 323228495 + 0e - 323228495 i

Mmx] pendulum[0] (0.1)

0.0998334997425063911976915124459230269

Mmx] radius pendulum[0] (0.2)
```
3.345841135532960184472605160255210656787e − 38

Mmx significant_digits := 15;

Mmx points == [(0.25 * t, pendulum[0] (0.25 * t)) || t in 0 to 20]

```plaintext
[ 0 0e-323228495 + 0e-323228495i ]
[ 0.250000000000000 0.247411953617254 ]
[ 0.500000000000000 0.479681790556066 ]
[ 0.750000000000000 0.68332861912675 ]
[ 1.000000000000000 0.847798681677117 ]
[ 1.250000000000000 0.96564417872573 ]
[ 1.500000000000000 1.0327880694143 ]
[ 1.750000000000000 1.04541037505998 ]
[ 2.000000000000000 1.00461455367257 ]
[ 2.250000000000000 0.911239711602712 ]
[ 2.500000000000000 0.768688968108693 ]
[ 2.750000000000000 0.582949063558809 ]
[ 3.000000000000000 0.363070877719344 ]
[ 3.250000000000000 0.121202209128179 ]
[ 3.500000000000000 −0.128146241310137 ]
[ 3.750000000000000 −0.369588550851423 ]
[ 4.000000000000000 −0.588662784601856 ]
[ 4.250000000000000 −0.773301810983781 ]
[ 4.500000000000000 −0.91454398767028 ]
[ 4.750000000000000 −1.00648255368516 ]
[ 5.000000000000000 −1.04577846614345 ]
```

Mmx include "graphix/simple_plot.mmx";

```plaintext
$draw_diagram ([ [Re center points[i,0], Re center points[i,1]] || i in 0..rows points ])
```
8.3. Homotopy continuation

This document briefly describes how to use numeric homotopy continuation within MATHEMAGIX for solving a polynomial system.

```
> use "continewz";
> include "continewz/homotopy_solve.mmx"
> x1 == coordinate ('x[1]); x2 == coordinate ('x[2]);
> f1 == x1 * x2 + x1^2 + x2^2 + x1 - 20
> f2 == x1 - x2^2 - x1^2 + x2 - 10
> sys == [ f1, f2 ]
> [x2^2 + x1 x2 + x1^2 + x1 - 20, -x2^2 + x2 - x1^2 + x1 - 10]
> sols == homotopy_solve (sys, [ x1, x2 ], 1 :> Ball (Floating, Complex Floating))
> [ eval (sys [j], [ x1, x2 ], row (sols, 0)) | j in 0..2 || i in 0..2 ]

> bit_precision:= 128;
> sols[0,0]
3.24579224630132 - 3.127341848803361i
> center sols[0,0]
3.24579224630131954617 - 3.12734184880336128190i
> radius sols[0,0]
9.979312409837135579177212812263881238814e - 17
```
CHAPTER 9

GRAPHIX

9.1. GRAPHICAL INTERFACE TO TEXMACS

The main graphical objects are defined in graphix/graphics.mmx.

\begin{verbatim}
Mmx] use "graphix"
Mmx] $point (1, 2)
\end{verbatim}
9.2. Graphs of functions

Mmx] use "graphix"

Mmx] foo(x) == x * sin x;
9.3 Animations

Please notice that, at the present time, the following animations are only visible when run within \texttt{\LaTeX__MACS}.
9.3.1. Animations that remain in the document

use "graphix"

$o == point (0, 0);

$p (t) == point (2 * cos t, 2 * sin t);

$red x == color ("red", x);

animation ($hold ("0.04sec", $red $line ($o, $p (t/10))) | t in 0 to 63)

9.3.2. Animations that operate on the document

demo (view: Dynamic, sec: Double): Void == {
 start: Double == time ();
 while time () - start < (1000 * sec) do {
 t: Double == (time () - start) / 1000;
 g: Graphics == $graphics $red $line ($o, $p (t));
 assign (view, as_document
 $grid (0, 0, 1, $size ("0.3par", "0.3par", g));
 flush mmout; } };

demo (view, as_double 10.0);
10.1. Download and installation of Blad

Blad is available from

http://www.lifl.fr/~boulier/

In order to work properly with Mathemagix, a version at least 3.9 of Blad compiled with GMP and MPFR enabled is necessary. The installation instructions can be found from the latter link.

10.2. Using Bad from Mathemagix

At the present time only a small subset of the Blad functionalities is available.

```
Mmx] use "mblad";
  type_mode? := true;

Mmx] help bad_rosenfeld_groebner

bad_rosenfeld_groebner : (Vector (MVPolynomial (Rational)), Vector (MVPolynomial (Rational)), Vector (Coordinate), Vector (Coordinate)) -> Vector (Regular_chain (MVPolynomial (Rational)))  (Native)

bad_rosenfeld_groebner : (Vector (MVPolynomial (Rational)), Vector (Coordinate), Vector (Coordinate)) -> Vector (Regular_chain (MVPolynomial (Rational)))  (Native)

Mmx] x: Coordinate == coordinate ('x)
  x: Coordinate

Mmx] u: Coordinate == coordinate ('u)
  u: Coordinate

Mmx] u_x: Coordinate == derivative (u, x)
  \( \frac{\partial u}{\partial x} \): Coordinate

Mmx] eqn: MVPolynomial Rational == u_x^2 - mvpolynomial (4 :> Rational) * u

(\( \frac{\partial u}{\partial x} \))^2 - 4 u: MVPolynomial(Rational)
```
\[
\text{Mmx}\] \text{sols} == \text{bad_rosenfeld_groebner ([eqn], [x], [u])}

\[
\left[\left[\left(\frac{\partial u}{\partial x}\right)^2 - 4u\right],\left[\text{differential, autoreduced, squarefree, primitive}\right]\right],\left[u\right],
\left[\text{differential, prime, autoreduced, squarefree, primitive}\right]\right] : \text{Vector(Regular_chain(MVPolynomial(Rational)))}
\]

\text{Mmx}\] \text{sols[0].decision_system}

\[
\left(\frac{\partial u}{\partial x}\right)^2 - 4u : \text{Vector(MVPolynomial(Rational))}
\]

\text{Mmx}\] \text{sols[0].attrib}

[differential, autoreduced, squarefree, primitive] : Vector(Generic)
11.1. Download and Installation of FGb

This document briefly describes how to install FGb.

FGb is a piece of software written by Jean-Charles Faugère, and available from

It is not open source, so please refer to the copyright notice before using FGb.

11.1.1. Installation for Linux platforms

You need to download the archive call_FGb*.linux.*.tar.gz that corresponds to your platform, and to unarchive it:

```
tar zxvf call_FGb*.linux.*.tar.gz
```

Then you can copy the library libcallfgb.a (located in call_FGb/nv/maple/C/*/) into a directory of your choice. If copied into /usr/local/lib or /usr/local/lib64, then no special configuration option is needed for Mathemagix.

11.1.2. Installation for Mac OSX platforms

You need to download the archive call_FGb4.mac.universal.tar.gz, and to unarchive it:

```
tar zxvf call_FGb.mac.universal.tar.gz
```

Then you might want to copy all the libraries from call_FGb/nv/maple/C/darwin/ into a dedicated directory of your choice. For instance, if copied into /usr/local/lib, then no special configuration option is needed for Mathemagix.

11.1.3. Configuration

Using configure, if the FGb libraries have not been copied into one of the aforementioned standard location, then you need to specify their path as follows:

```
./configure --with-fgb="fgb_path"
```

Alternatively, for cmake, you need to specify the path as follows:

```
cmake ..//mmx/mfgb -DFGB_PATH="/fgb_path/lib"
```
11.2. Using FGb within Mathemagix

This document briefly describes how to use FGb within Mathemagix.

11.2.1. Use from C++

Block DRL bases over the rational numbers can be directly computed with sparse_polynomial from multimix. Examples are available from mfgb/test/.

11.2.2. Use from the interpreter

```
Mmx] use "mfgb"
Mmx] X == coordinate ('x); Y == coordinate ('y);
Mmx] x == mvpolynomial (1 :> Rational, X);
    y == mvpolynomial (1 :> Rational, Y);
Mmx] f1 == x^2 + y^2 - 1;
    f2 == x^2 + x * y - 2;
Mmx] fgb_basis_drldrl ([f1, f2], [X], [Y])
[2 y^3 + x, 2 y^4 + y^2 + 1]

Mmx] p: Integer == 7
7
Mmx] x == mvpolynomial (1 :> Integer, X);
    y == mvpolynomial (1 :> Integer, Y);
Mmx] f1 == x^2 + y^2 - 1;
    f2 == x^2 + x * y - 2;
Mmx] fgb_basis_drldrl ([f1 mod p, f2 mod p], [X], [Y])
[2 y^3 + x, y^4 + 4 y^2 + 4]
```

For long computations, verbosity can be activated with fgb_verbose? := true.
Chapter 12
Mpari

12.1. Download and installation of Pari/GP

Pari/GP is available from

http://pari.math.u-bordeaux.fr/

In order to work properly with MATHEMAGIX, a version at least 2.6.0 of Pari/GP compiled with GMP is necessary. The installation instructions can be found from the latter link.

12.2. Using Pari from MatheMagix

At the present time only a small subset of the Pari functionalities is available.

\begin{Verbatim}
Mmx] use "mpari"

Mmx] pari_square_root 10000023409823400002340982340000003^2
10000023409823400002340982340000003

Mmx] pari_factor (2^-50-1)
[[3,1],[11,1],[31,1],[251,1],[601,1],[1801,1],[4051,1]]

Mmx] pari_is_squarefree (2309834082340322)
true

Mmx] pari_kronecker_symbol (10, 3)
1

Mmx] x: Polynomial Integer == polynomial (0,1);

Mmx] v == pari_factor (x^10 - 1)
[[x - 1,1],[x + 1,1],[x^4 - x^3 + x^2 - x + 1,1],[x^4 + x^3 + x^2 + x + 1,1]]

Mmx] q: Polynomial Integer == x^2 + x - 1001
x^2 + x - 1001

Mmx] pari_nfdisc (q)
445

Mmx] pari_nfbase (q)
[1, \frac{1}{3} x - \frac{1}{3}]
\end{Verbatim}
series_naive.hpp 47
data_points::vector 48
string 28
tangent 39
triangle 29
tuple.hpp 29
vector 29
vector_naive.hpp 29
vector_simd 44
vector_simd.hpp 44
Vector_simd_variant(C) 44
vector_simd.Unrolled 44
vector_sse 44
vector_unrolled 43
VERIFY 30